diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb')
-rwxr-xr-x | Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb | 433 |
1 files changed, 0 insertions, 433 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb deleted file mode 100755 index 2c6e6eeb..00000000 --- a/Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb +++ /dev/null @@ -1,433 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:83169fd272ce864306940c4a49b0d63f096c19015d841f59df75135834323538"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter07: Motion in a Circle"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.1:pg-208"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_1\n",
- " \n",
- " \n",
- " #To convert angles to radians and revolutions\n",
- "theta=70.0 #units in degrees\n",
- "deg=360.0 #units in degrees\n",
- "rad=theta*2*math.pi/deg #units in radians\n",
- "rev=1 #units in revolution\n",
- "rev=theta*rev/deg #units in revolution\n",
- "print \" 70 degrees in radians is \",round(rad,2),\"radians \\n 70 degrees in revolutions it is \",round(rev,3),\" revolutions\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " 70 degrees in radians is 1.22 radians \n",
- " 70 degrees in revolutions it is 0.194 revolutions\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.2:pg-209"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_2\n",
- " \n",
- " \n",
- "#To find average angular velocity\n",
- "theta=1800.0 #units in rev\n",
- "t=60.0 #units in sec\n",
- "w=(theta/t) #units in rev/sec\n",
- "w=w*(2*math.pi) #units in rad/sec\n",
- "print \"Average angular velocity is w=\",round(w),\" rad/sec\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Average angular velocity is w= 188.0 rad/sec\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.3:pg-210"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_3\n",
- " \n",
- " \n",
- " #To find average angular acceleration\n",
- "wf=240.0 #units in rev/sec\n",
- "w0=0 #units in rev/sec\n",
- "t=2.0 #units in minutes\n",
- "t=t*60 #units in sec\n",
- "alpha=(wf-w0)/t #units in rev/sec**2\n",
- "print \"Average angular acceleration is alpha=\",round(alpha),\" rev/sec**2\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Average angular acceleration is alpha= 2.0 rev/sec**2\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.4:pg-212"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_4\n",
- " \n",
- " \n",
- "#To find out how many revolutions does it turn before rest\n",
- "wf=0 #units in rev/sec\n",
- "w0=3 #units in rev/sec\n",
- "t=18 #units in sec\n",
- "alpha=(wf-w0)/t #units in rev/sec**2\n",
- "theta=(w0*t)+0.5*(alpha*t**2) #units in rev\n",
- "print \"Number of revolutions does it turn before rest is theta=\",round(theta),\" rev\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of revolutions does it turn before rest is theta= -108.0 rev\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.5:pg-212"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_5\n",
- " \n",
- " \n",
- " #To find the angular acceleration and angular velocity of one wheel\n",
- "vtf=20.0 #units in meters/sec\n",
- "r=0.4 #units in meters\n",
- "wf=vtf/r #units in rad/sec\n",
- "vf=20.0 #units in meters/sec\n",
- "v0=0 #units in meters/sec**2\n",
- "t=9.0 #units in sec\n",
- "a=(vf-v0)/t #units in meters/sec**2\n",
- "alpha=a/r #units in rad/sec**2\n",
- "print \"Angular accelertion is a=\",round(a,2),\" meters/sec**2\\n\"\n",
- "print \"Angular velocity is alpha=\",round(alpha,2),\" rad/sec**2\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Angular accelertion is a= 2.22 meters/sec**2\n",
- "\n",
- "Angular velocity is alpha= 5.56 rad/sec**2\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.6:pg-213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_6\n",
- " \n",
- " \n",
- " #To find out the rotation rate\n",
- "at=8.6 #units in meters/sec**2\n",
- "r=0.2 #units in meters\n",
- "alpha=at/r #units in rad/sec**2\n",
- "t=3 #units in sec\n",
- "wf=alpha*t #units in rad/sec\n",
- "print \"The rotation rate is wf=\",round(wf),\" rad/sec\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The rotation rate is wf= 129.0 rad/sec\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.7:pg-215"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_7\n",
- " \n",
- " \n",
- " #To calculate how large a horizontal force must the pavement exert\n",
- "m=1200.0 #units in Kg\n",
- "v=8.0 #units in meters/sec\n",
- "r=9 #units in meters\n",
- "F=(m*v**2)/r #units in Newtons\n",
- "print \"The horizontal force must the pavement exerts is F=\",round(F),\" Newtons\"\n",
- " #In text book the answer is printed wrong as F=8530 N but the correct answer is 8533 N\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The horizontal force must the pavement exerts is F= 8533.0 Newtons\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.9:pg-220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_9\n",
- " \n",
- " \n",
- " #To find out the angle where it should be banked\n",
- "v=25 #units in meters/sec\n",
- "r=60 #units in meters\n",
- "g=9.8 #units in meters/sec**2\n",
- "tantheta=v**2/(r*g) #units in radians\n",
- "theta=math.atan(tantheta)*180/math.pi\n",
- "print \"The angle where it should be banked is theta=\",round(theta),\" degrees\",\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The angle where it should be banked is theta= 47.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.10:pg-220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_10\n",
- " \n",
- " \n",
- " #To find out the ratio of F/W\n",
- "G=6.67*10**-11 #units in Newton meter**2/Kg**2\n",
- "m1=0.0080 #units in Kgs\n",
- "m2=0.0080 #units in Kgs\n",
- "r=2 #units in Meters\n",
- "F=(G*m1*m2)/r**2 #units in Newtons\n",
- "m=m1 #units in Kgs\n",
- "g=9.8 #units in meter/sec**2\n",
- "W=m*g #units in Newtons\n",
- "F_W=F/W\n",
- "print \"The F/W Ratio is=\",round(F_W,16)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The F/W Ratio is= 1.36e-14\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.11:pg-221"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_11\n",
- " \n",
- " \n",
- " #To find the mass of the sun\n",
- "t=3.15*10**7 #units in sec\n",
- "r=1.5*10**11 #units in meters\n",
- "v=(2*math.pi*r)/t #units in meters/sec\n",
- "G=6.67*10**-11 #units in Newtons\n",
- "ms=(v**2*r)/G #Units in Kg\n",
- "print \"The mass of the sun is Ms=\",round(ms,-28),\"Kg\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The mass of the sun is Ms= 2.01e+30 Kg\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7.12:pg-222"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " #Example 7_12\n",
- " \n",
- " \n",
- " #To findout the orbital radius and its speed\n",
- "G=6.67*10**-11 #units in Newtons\n",
- "me=5.98*10**24 #units in Kg\n",
- "t=86400.0 #units in sec\n",
- "r=((G*me*t**2)/(4*math.pi**2))**(1/3.0)\n",
- "print \"The orbital radius is r= \",round(r),\" meters\\n\"\n",
- "v=(2*math.pi*r)/t #units in meters/sec\n",
- "print \"The orbital speed is v=\",round(v),\" meters/sec\"\n",
- " #in textbook the answer is printed wrong as v=3070 m/sec but the correct answer is v=3073 m/sec\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The orbital radius is r= 42250474.0 meters\n",
- "\n",
- "The orbital speed is v= 3073.0 meters/sec\n"
- ]
- }
- ],
- "prompt_number": 34
- }
- ],
- "metadata": {}
- }
- ]
-}
|