summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter6_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter6_1.ipynb')
-rw-r--r--Principles_of_Physics_by_F.J.Bueche/Chapter6_1.ipynb372
1 files changed, 372 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter6_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter6_1.ipynb
new file mode 100644
index 00000000..6472bc27
--- /dev/null
+++ b/Principles_of_Physics_by_F.J.Bueche/Chapter6_1.ipynb
@@ -0,0 +1,372 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 06:Linear Momentum"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.1:pg-189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average retarding force is F= -2500.0 Newtons\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_1\n",
+ " \n",
+ " \n",
+ " #To calculate how large is the average force retarding its motion\n",
+ "m=1500 #units in Kg\n",
+ "vf=15.0 #units in meters/sec\n",
+ "v0=20 #units in meters/sec\n",
+ "t=3 #units in sec\n",
+ "f=((m*vf)-(m*v0))/t #Units in Newtons\n",
+ "print \"The average retarding force is F=\",round(f),\" Newtons\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.2:pg-190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average stopping force the tree exerts on the car is F=\n",
+ "-160000.0 Newtons\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_2\n",
+ " \n",
+ " \n",
+ " #To estimate the average stopping force the tree exerts on the car\n",
+ "m=1200 #units in Kg\n",
+ "vf=0 #units in meters/sec\n",
+ "v0=20 #units in meters/sec\n",
+ "v=0.5*(vf+v0) #units in meters/sec\n",
+ "s=1.5 #units in meters\n",
+ "t=s/v #units in sec \n",
+ "f=((m*vf)-(m*v0))/t #Units in Newtons\n",
+ "print \"The average stopping force the tree exerts on the car is F=\"\n",
+ "print f,\"Newtons\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.3:pg-191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The car is moving at vf= 8.0 Meters/sec\n",
+ "\n",
+ "The positive sign of vf Indicate the car is moving in the direction the truck was moving\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_3\n",
+ " \n",
+ " \n",
+ " #To find out how fast and the direction car moving\n",
+ "m1=30000 #units in Kg\n",
+ "m2=1200 #units in Kg\n",
+ "v10=10 #units in meters/sec\n",
+ "v20=-25 #units in meters/sec\n",
+ "vf=((m1*v10)+(m2*v20))/(m1+m2) #unis in meters/sec\n",
+ "print \"The car is moving at vf=\",round(vf,2),\" Meters/sec\\n\"\n",
+ "print \"The positive sign of vf Indicate the car is moving in the direction the truck was moving\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.5:pg-193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The velocity V2f= 0.2 meters/sec or 20.0 cm/sec\n",
+ "\n",
+ "The velocity V1f= -0.1 meters/sec or 10.0 cm/sec\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_5\n",
+ " \n",
+ " \n",
+ " #To find the velocity of each ball after collision\n",
+ "m1=0.04 #units in kg\n",
+ "m2=0.08 #units in kg\n",
+ "v1=0.3 #units in meters/sec\n",
+ "v2f=(2*m1*v1)/(m1+m2) #units in meters/sec\n",
+ "v2f1=v2f*100 #units in cm/sec\n",
+ "print \"The velocity V2f=\",round(v2f,1),\" meters/sec or \",round(v2f1),\" cm/sec\\n\"\n",
+ "v1f=((m1*v1)-(m2*v2f))/m1 #units in meters/sec\n",
+ "v1f1=-v1f*100 #units in cm/sec\n",
+ "print \"The velocity V1f=\",round(v1f,1),\" meters/sec or \",round(v1f1),\" cm/sec\\n\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.6:pg-196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The speed of the pelet before collision is V10= 487.0 meters/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_6\n",
+ " \n",
+ " \n",
+ " #To calculate the speed of the pellet before collision\n",
+ "h=0.30 #units in meters\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "v=math.sqrt(2*g*h) #units in meters/sec\n",
+ "m1=2 #units in Kgs\n",
+ "m2=0.010 #units in kgs\n",
+ "v10=((m1+m2)*v)/m2 #units in meters/sec\n",
+ "print \"The speed of the pelet before collision is V10=\",round(v10),\" meters/sec\"\n",
+ " #In textbook the answer is printed wrong as V10=486 meters/sec the correct answer is V10=487 meters/sec\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.7:pg-196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Thrust is F= 65000000.0 Newtons\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_7\n",
+ " \n",
+ " \n",
+ " #To calculate how large a forward push given to the rocket\n",
+ "m=1300 #units in Kgs\n",
+ "vf=50000 #units in meters/sec\n",
+ "v0=0 #units in meters/sec\n",
+ "F=((m*vf)-(m*v0)) #units in Newtons\n",
+ "print \"The Thrust is F=\",round(F),\" Newtons\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.8:pg-197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Z component of velocity is Vz= 0.0 meters/sec\n",
+ "\n",
+ "The Y component of velocity is Vy= -0.6 *V0\n",
+ "\n",
+ "The X component of velocity is Vx= -1.8 *V0\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_8\n",
+ " \n",
+ " \n",
+ " #To determine the velocity of the third peice\n",
+ "momentumbefore=0 #units in kg meter/s\n",
+ "m=0.33 #units in Kgs\n",
+ "vz=momentumbefore/m\n",
+ "print \"The Z component of velocity is Vz=\",round(vz),\" meters/sec\\n\"\n",
+ "m=0.33 #units in Kgs\n",
+ "v0=0.6 #units in meters/sec\n",
+ "vy=-(m*v0)/m #interms of v0 and meters/sec\n",
+ "print \"The Y component of velocity is Vy=\",round(vy,1),\"*V0\\n\"\n",
+ "v01=1 #units in meters/sec\n",
+ "v02=0.8 #units in meters/sec\n",
+ "vx=-((v01+v02)*m)/m #interms of v0 and units in meters/sec\n",
+ "print \"The X component of velocity is Vx=\",round(vx,1),\"*V0\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.9:pg-198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "After the collision the second ball moves at a speed of v= 4.1 Meters/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_9\n",
+ " \n",
+ " \n",
+ " #To find out the velocity of second ball after collision\n",
+ "v1=5 #units in meters/sec\n",
+ "theta=50.0 #units in degrees\n",
+ "v2=2 #units in meters/sec\n",
+ "vx=v1/(v2*math.cos(theta*math.pi/180)) #units in meters/sec\n",
+ "vy=-(v2*math.cos(theta*math.pi/180)) #units in meters/sec\n",
+ "v=math.sqrt(vx**2+vy**2) #units in meters/sec\n",
+ "print \"After the collision the second ball moves at a speed of v=\",round(v,2),\" Meters/sec\"\n",
+ " #in textbook the answer is printed wrong as 4.01 meters/sec the correct answer is 4.1 meters/sec\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex6.10:pg-199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average speed of the nitrogen molecule in air is V= 492.0 meters/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 6_10\n",
+ " \n",
+ " \n",
+ " #To find the average speed of the nitrogen molecule in air\n",
+ "ap=1.01*10**5 #units in Newton/meter**2\n",
+ "nofmol=2.69*10**25 #Number of molecules\n",
+ "nitmass=4.65*10**-26 #units in Kg\n",
+ "v=math.sqrt((ap*3)/(nofmol*nitmass)) #units in meters/sec\n",
+ "print \"The average speed of the nitrogen molecule in air is V=\",round(v),\" meters/sec\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}