diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb | 413 |
1 files changed, 413 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb new file mode 100644 index 00000000..6b3b6494 --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb @@ -0,0 +1,413 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter04: Newtons Law" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.1:pg-147" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The force required is F= 900.0 N\n" + ] + } + ], + "source": [ + " import math #Example 4_1\n", + " \n", + " \n", + " #To calculate the force required\n", + "vf=12 #units in meters/sec\n", + "v0=0 #units in meters/sec\n", + "t=8 #units in sec\n", + "a=(vf-v0)/t #units in meters/sec**2\n", + "m=900 #units in Kg\n", + "F=m*a #units in Newtons\n", + "print \"The force required is F=\",round(F),\" N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.2:pg-147" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Frictional force that is required is f= 540.0 N\n" + ] + } + ], + "source": [ + " import math #Example 4_2\n", + " \n", + " \n", + " #To find the friction force that opposes the motion\n", + "F1=500 #units in Newtons\n", + "F2=800 #units in Newtons\n", + "theta=30 #units in degrees\n", + "Fn=F1+(F2*math.sin(theta*math.pi/180)) #units in Newtons\n", + "u=0.6\n", + "f=u*Fn #units in Newtons\n", + "print \"The Frictional force that is required is f=\",round(f),\" N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.3:pg-153" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The wagon accelerates at ax= 8.7 meters/sec**2\n", + "\n", + "Force by which the ground pushing is P= 30.0 N\n" + ] + } + ], + "source": [ + " import math #Example 4_3\n", + " \n", + " \n", + " #To find out at what rate the wagon accelerate and how large a force the ground pushing up on wagon\n", + "F1=90 #units in Newtons\n", + "F2=60 #units in Newtons\n", + "P=F1-F2 #units in Newtons\n", + "F3=100 #units in Newtons\n", + "F4=math.sqrt(F3**2-F2**2) #units in Newtons\n", + "a=9.8 #units in meters/sec**2\n", + "ax=(F4*a)/F1 #units in Meters/sec**2\n", + "print \"The wagon accelerates at ax=\",round(ax,1),\" meters/sec**2\\n\"\n", + "print \"Force by which the ground pushing is P=\",round(P),\" N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.4:pg-153" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The car goes by x= 21.1 meters\n" + ] + } + ], + "source": [ + " import math #Example 4_4\n", + " \n", + " \n", + " # To calculate How far does the car goes\n", + "w1=3300 #units in lb\n", + "F1=4.45 #units in Newtons\n", + "w2=1 #units in lb\n", + "weight=w1*(F1/w2) #units in Newtons\n", + "g=9.8 #units in meters/sec**2\n", + "Mass=weight/g #units in Kg\n", + "speed=38 #units in mi/h\n", + "speed=speed*(1.61)*(1/3600) #units in Km/sec\n", + "stoppingforce=0.7*(weight) #units in Newtons\n", + "a=stoppingforce/-(Mass) #units in meters/sec**2\n", + "vf=0\n", + "v0=17 #units in meters/sec\n", + "x=(vf**2-v0**2)/(2*a)\n", + "print \"The car goes by x=\",round(x,1),\" meters\"\n", + " #In text book the answer is printed wrong as x=20.9 meters the correct answer is x=21.1 meters\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.5:pg-155" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration is a= 3.3 meters/sec**2\n" + ] + } + ], + "source": [ + " import math #Example 4_5\n", + " \n", + " \n", + " #To find the acceleration of the masses\n", + "w1=10 #units in Kg\n", + "w2=5 #units in Kg\n", + "f1=98 #units in Newtons\n", + "f2=49 #units in Newtons\n", + "w=w1/w2\n", + "T=round((f1+(w*f2))/(w+1)) #units in Newtons\n", + "a=(f1-T)/w1 #units in meters/sec**2\n", + "print \"Acceleration is a=\",round(a,1),\" meters/sec**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.6:pg-156" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration a= 3.1 meters/sec**2\n" + ] + } + ], + "source": [ + " import math #Example 4_6\n", + " \n", + "\n", + " #To find the acceleration of the objects\n", + "w1=0.4 #units in Kg\n", + "w2=0.2 #units in Kg\n", + "w=w1/w2\n", + "a=9.8 #units in meters/sec**2\n", + "f=0.098 #units in Newtons\n", + "c=w2*a #units in Newtons\n", + "T=((w*c)+f)/(1+w) #units in Newtons\n", + "a=(T-f)/w1 #units in meters/sec**2\n", + "print \"Acceleration a=\",round(a,1),\" meters/sec**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.7:pg-157" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The lower limit of the speed v0= 8.3 meter/sec\n" + ] + } + ], + "source": [ + " import math #Example 4_7\n", + " \n", + " \n", + " #To estimate the lower limit for the speed\n", + " #In a practical situation u should be atleast 0.5\n", + "u=0.5\n", + "g=9.8 #units in meter/sec**2\n", + "x=7 #units in meters\n", + "v0=math.sqrt(2*u*g*x) #units in meters/sec\n", + "print \"The lower limit of the speed v0=\",round(v0,1),\" meter/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.9:pg-158" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The force required is P= 600.0 N\n" + ] + } + ], + "source": [ + " import math #Example 4_9\n", + " \n", + " \n", + " #To calculate how large a force must push on car to accelerate\n", + "m=1200 #units in Kg\n", + "g=9.8 #units in meters/sec**2\n", + "d1=4 #units in meters\n", + "d2=40 #units in meters\n", + "a=0.5 #units in meters/sec**2\n", + "P=((m*g)*(d1/d2))+(m*a) #units in Newtons\n", + "print \"The force required is P=\",round(P),\" N\"\n", + " #In text book the answer is printed wrong as P=1780 N but the correct answer is P=1776 N\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.10:pg-159" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The tension in the rope is T= 568.0 N\n" + ] + } + ], + "source": [ + " import math #Example 4_10\n", + " \n", + " \n", + " #To calculate the tension in the rope\n", + "u=0.7\n", + "sintheta=(6.0/10)\n", + "w1=50 #units in Kg\n", + "g=9.8 #units in meter/sec**2\n", + "costheta=(8.0/10)\n", + "Fn=w1*g*costheta #units in Newtons\n", + "f=u*Fn #units in Newtons\n", + "T=f+(w1*g*sintheta)\n", + "print \"The tension in the rope is T=\",round(T),\" N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4.11:pg-159" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration a= 1.6 meters/sec**2\n" + ] + } + ], + "source": [ + " import math #Example 4_11\n", + " \n", + " \n", + " #To find the acceleration of the system\n", + "w1=7.0 #units in Kg\n", + "a=9.8 #units in meters/sec**2\n", + "w2=5 #units in Kg\n", + "w=w1/w2\n", + "F1=29.4 #units in Newtons\n", + "F2=20 #units in Newtons\n", + "f=(F1+F2) #units in Newtons\n", + "T1=w1*a #units in Newtons\n", + "T=(T1+(w*f))/(1+w) #units in Newtons\n", + "a=((w1*a)-T)/w1 #units in meters/sec**2\n", + "print \"Acceleration a=\",round(a,2),\" meters/sec**2\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |