summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb')
-rw-r--r--Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb413
1 files changed, 413 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb
new file mode 100644
index 00000000..6b3b6494
--- /dev/null
+++ b/Principles_of_Physics_by_F.J.Bueche/Chapter4_2.ipynb
@@ -0,0 +1,413 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter04: Newtons Law"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.1:pg-147"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The force required is F= 900.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_1\n",
+ " \n",
+ " \n",
+ " #To calculate the force required\n",
+ "vf=12 #units in meters/sec\n",
+ "v0=0 #units in meters/sec\n",
+ "t=8 #units in sec\n",
+ "a=(vf-v0)/t #units in meters/sec**2\n",
+ "m=900 #units in Kg\n",
+ "F=m*a #units in Newtons\n",
+ "print \"The force required is F=\",round(F),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.2:pg-147"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Frictional force that is required is f= 540.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_2\n",
+ " \n",
+ " \n",
+ " #To find the friction force that opposes the motion\n",
+ "F1=500 #units in Newtons\n",
+ "F2=800 #units in Newtons\n",
+ "theta=30 #units in degrees\n",
+ "Fn=F1+(F2*math.sin(theta*math.pi/180)) #units in Newtons\n",
+ "u=0.6\n",
+ "f=u*Fn #units in Newtons\n",
+ "print \"The Frictional force that is required is f=\",round(f),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.3:pg-153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wagon accelerates at ax= 8.7 meters/sec**2\n",
+ "\n",
+ "Force by which the ground pushing is P= 30.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_3\n",
+ " \n",
+ " \n",
+ " #To find out at what rate the wagon accelerate and how large a force the ground pushing up on wagon\n",
+ "F1=90 #units in Newtons\n",
+ "F2=60 #units in Newtons\n",
+ "P=F1-F2 #units in Newtons\n",
+ "F3=100 #units in Newtons\n",
+ "F4=math.sqrt(F3**2-F2**2) #units in Newtons\n",
+ "a=9.8 #units in meters/sec**2\n",
+ "ax=(F4*a)/F1 #units in Meters/sec**2\n",
+ "print \"The wagon accelerates at ax=\",round(ax,1),\" meters/sec**2\\n\"\n",
+ "print \"Force by which the ground pushing is P=\",round(P),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.4:pg-153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The car goes by x= 21.1 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_4\n",
+ " \n",
+ " \n",
+ " # To calculate How far does the car goes\n",
+ "w1=3300 #units in lb\n",
+ "F1=4.45 #units in Newtons\n",
+ "w2=1 #units in lb\n",
+ "weight=w1*(F1/w2) #units in Newtons\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "Mass=weight/g #units in Kg\n",
+ "speed=38 #units in mi/h\n",
+ "speed=speed*(1.61)*(1/3600) #units in Km/sec\n",
+ "stoppingforce=0.7*(weight) #units in Newtons\n",
+ "a=stoppingforce/-(Mass) #units in meters/sec**2\n",
+ "vf=0\n",
+ "v0=17 #units in meters/sec\n",
+ "x=(vf**2-v0**2)/(2*a)\n",
+ "print \"The car goes by x=\",round(x,1),\" meters\"\n",
+ " #In text book the answer is printed wrong as x=20.9 meters the correct answer is x=21.1 meters\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.5:pg-155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Acceleration is a= 3.3 meters/sec**2\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_5\n",
+ " \n",
+ " \n",
+ " #To find the acceleration of the masses\n",
+ "w1=10 #units in Kg\n",
+ "w2=5 #units in Kg\n",
+ "f1=98 #units in Newtons\n",
+ "f2=49 #units in Newtons\n",
+ "w=w1/w2\n",
+ "T=round((f1+(w*f2))/(w+1)) #units in Newtons\n",
+ "a=(f1-T)/w1 #units in meters/sec**2\n",
+ "print \"Acceleration is a=\",round(a,1),\" meters/sec**2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.6:pg-156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Acceleration a= 3.1 meters/sec**2\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_6\n",
+ " \n",
+ "\n",
+ " #To find the acceleration of the objects\n",
+ "w1=0.4 #units in Kg\n",
+ "w2=0.2 #units in Kg\n",
+ "w=w1/w2\n",
+ "a=9.8 #units in meters/sec**2\n",
+ "f=0.098 #units in Newtons\n",
+ "c=w2*a #units in Newtons\n",
+ "T=((w*c)+f)/(1+w) #units in Newtons\n",
+ "a=(T-f)/w1 #units in meters/sec**2\n",
+ "print \"Acceleration a=\",round(a,1),\" meters/sec**2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.7:pg-157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lower limit of the speed v0= 8.3 meter/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_7\n",
+ " \n",
+ " \n",
+ " #To estimate the lower limit for the speed\n",
+ " #In a practical situation u should be atleast 0.5\n",
+ "u=0.5\n",
+ "g=9.8 #units in meter/sec**2\n",
+ "x=7 #units in meters\n",
+ "v0=math.sqrt(2*u*g*x) #units in meters/sec\n",
+ "print \"The lower limit of the speed v0=\",round(v0,1),\" meter/sec\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.9:pg-158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The force required is P= 600.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_9\n",
+ " \n",
+ " \n",
+ " #To calculate how large a force must push on car to accelerate\n",
+ "m=1200 #units in Kg\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "d1=4 #units in meters\n",
+ "d2=40 #units in meters\n",
+ "a=0.5 #units in meters/sec**2\n",
+ "P=((m*g)*(d1/d2))+(m*a) #units in Newtons\n",
+ "print \"The force required is P=\",round(P),\" N\"\n",
+ " #In text book the answer is printed wrong as P=1780 N but the correct answer is P=1776 N\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.10:pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The tension in the rope is T= 568.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_10\n",
+ " \n",
+ " \n",
+ " #To calculate the tension in the rope\n",
+ "u=0.7\n",
+ "sintheta=(6.0/10)\n",
+ "w1=50 #units in Kg\n",
+ "g=9.8 #units in meter/sec**2\n",
+ "costheta=(8.0/10)\n",
+ "Fn=w1*g*costheta #units in Newtons\n",
+ "f=u*Fn #units in Newtons\n",
+ "T=f+(w1*g*sintheta)\n",
+ "print \"The tension in the rope is T=\",round(T),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.11:pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Acceleration a= 1.6 meters/sec**2\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 4_11\n",
+ " \n",
+ " \n",
+ " #To find the acceleration of the system\n",
+ "w1=7.0 #units in Kg\n",
+ "a=9.8 #units in meters/sec**2\n",
+ "w2=5 #units in Kg\n",
+ "w=w1/w2\n",
+ "F1=29.4 #units in Newtons\n",
+ "F2=20 #units in Newtons\n",
+ "f=(F1+F2) #units in Newtons\n",
+ "T1=w1*a #units in Newtons\n",
+ "T=(T1+(w*f))/(1+w) #units in Newtons\n",
+ "a=((w1*a)-T)/w1 #units in meters/sec**2\n",
+ "print \"Acceleration a=\",round(a,2),\" meters/sec**2\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}