diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter3_1.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter3_1.ipynb | 533 |
1 files changed, 533 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter3_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter3_1.ipynb new file mode 100644 index 00000000..ec024bc9 --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter3_1.ipynb @@ -0,0 +1,533 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 03:Uniform Accelerated Motion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.1:pg-97" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Instantaneous Velocity at P Vp= 10.0 meters/sec\n", + "\n", + "The Instantaneous Velocity at Q Vq= 0.0 meters/sec\n", + "\n", + "The Instantaneous Velocity at N Vn= -10.0 meters/sec\n", + "\n", + "The Average Velocity between A and Q is VAQ= 10.0 meters/sec\n", + "\n", + "The Average Velocity between A and M is VAM= 0.0 meters/sec\n", + "\n" + ] + } + ], + "source": [ + " import math #Example 3_1\n", + "\n", + "\n", + " #To find the balls instantaneous velocity and Average Velocity\n", + "d1=8.6 #units in meters\n", + "t1=0.86 #units in sec\n", + "vp=d1/t1 #units in meters/sec\n", + "print \"The Instantaneous Velocity at P Vp=\",round(vp),\" meters/sec\\n\"\n", + " #The ball stops at position Q Hence vp=0 met/sec\n", + "vq=0 #units in meters/sec\n", + "print \"The Instantaneous Velocity at Q Vq=\",round(vq,10),\" meters/sec\\n\"\n", + "d2=-10.2 #units in meters\n", + "t2=1.02 #units in sec\n", + "vn=d2/t2 #units in meters/sec\n", + "print \"The Instantaneous Velocity at N Vn=\",round(vn),\" meters/sec\\n\"\n", + "d3=20 #units in meters\n", + "t3=2.0 #units in sec\n", + "vAQ=d3/t3 #units in meters/sec\n", + "print \"The Average Velocity between A and Q is VAQ=\",round(vAQ),\" meters/sec\\n\"\n", + "d4=0 #units in meters\n", + "t4=4.0 #units in sec\n", + "vAM=d4/t4 #units in meters/sec\n", + "print \"The Average Velocity between A and M is VAM=\",round(vAM,10),\" meters/sec\\n\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.2:pg-98" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration a= -10.0 meters/sec**2\n" + ] + } + ], + "source": [ + " import math #Example 3_2\n", + "\n", + "\n", + " #To calculate the Acceleration\n", + "v1=20.0 #units in meters/sec\n", + "v2=15.0 #units in meters/sec\n", + "t1=0 #units in sec\n", + "t2=0.5 #units in sec\n", + "c_v=v2-v1 #units in meters/sec\n", + "c_t=t2-t1 #units in sec\n", + "acceleration=c_v/c_t #units in meters/sec**2\n", + "print \"Acceleration a=\",round(acceleration,2),\" meters/sec**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.3:pg-98" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration is a= 0.5 meters/sec\n", + "\n", + "Distance travelled is x= 25.0 meters\n" + ] + } + ], + "source": [ + " import math #Example 3_3\n", + "\n", + "\n", + " #To find acceleration and the distance it travels in time\n", + "vf=5.0 #units in meters/sec\n", + "v0=0 #units in meters/sec\n", + "t=10.0 #units in sec\n", + "a=(vf-v0)/t #units in meters/sec**2\n", + "v_1=(vf+v0)/2 #unis in meters/sec\n", + "x=v_1*t #units in meters\n", + "print \"Acceleration is a=\",round(a,1),\" meters/sec\\n\"\n", + "print \"Distance travelled is x=\",round(x),\" meters\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.4:pg-99" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration is a= -0.625 meters/sec**2\n", + "\n", + "Time taken to stop t= 8.0 sec\n" + ] + } + ], + "source": [ + " import math #Example 3_4\n", + "\n", + "\n", + " #To find acceleration and time taken to stop\n", + "v0=5.0 #units in meters/sec\n", + "vf=0 #units in meters/sec\n", + "v_1=(v0+vf)/2 #units in meters/sec\n", + "x=20.0 #units in meters\n", + "t=x/v_1 #units in sec\n", + "a=(vf-v0)/t #units in meters/sec**2\n", + "print \"Acceleration is a=\",round(a,3),\" meters/sec**2\\n\"\n", + "print \"Time taken to stop t=\",round(t),\" sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.5:pg-100" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed vf= 12.65 meters/sec\n", + "\n", + "Time taken T= 3.16 sec\n" + ] + } + ], + "source": [ + " import math #Example 3_5\n", + "\n", + " \n", + " #To calculate the speed and time to cover\n", + "a=4.0 #units in meters/sec**2\n", + "x=20.0 #units in meters\n", + "vf=math.sqrt(a*x*2) #units in meters/sec\n", + "t=vf/a #units in sec\n", + "print \"Speed vf=\",round(vf,2),\" meters/sec\\n\"\n", + "print \"Time taken T=\",round(t,2),\" sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.6:pg-112" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken by a car to travel is T= 7.0 sec\n" + ] + } + ], + "source": [ + " import math #Example 3_6\n", + " \n", + " \n", + " #To find the time taken by a car to travel\n", + "x=98.0 #uniys in meters\n", + "a=4.0 #units in meters/sec**2\n", + "t=math.sqrt((2*x)/a) #units in sec\n", + "print \"Time taken by a car to travel is T=\",round(t),\" sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.7:pg-112" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken to travel T= 5.6 sec\n" + ] + } + ], + "source": [ + " import math #Example 3_7\n", + " \n", + " #To calculate the time taken to travel\n", + "v0=16.7 #units in meters/sec\n", + "a=1.5 #units in meters/sec**2\n", + "x=70 #units in meters\n", + "t=-((-v0)+math.sqrt(v0**2-(4*(a/2)*x)))/(2*(a/2)) #units in sec\n", + "print \"Time taken to travel T=\",round(t,1),\" sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.8:pg-114" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acceleration a= 43200.0 km/h**2\n" + ] + } + ], + "source": [ + " import math #Example 3_8\n", + " \n", + " \n", + " #To calculate the acceleration\n", + "vf=30.0 #units in meters/sec\n", + "v0=0 #units in meters/sec\n", + "t=9.0 #units in sec\n", + "a=(vf-v0)/t #units in meters/sec**2\n", + "a=a*(1/1000.0)*(3600.0/1)*(3600.0/1) #units in km/h**2\n", + "print \"Acceleration a=\",round(a),\" km/h**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.9:pg-114" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The bridge is y= -44.0 meters above the water\n" + ] + } + ], + "source": [ + " import math #Example 3_9\n", + " \n", + " \n", + " #To find how above the water is the bridge\n", + "v0=0 #units in meters/sec\n", + "t=3.0 #units in sec\n", + "a=-9.8 #units in meters/sec**2\n", + "y=(v0*t)+(0.5*a*t**2) #units in meters\n", + "print \"The bridge is y=\",round(y),\" meters above the water\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.10:pg-115" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distance it travels is y= 11.5 meters\n", + "\n", + "The speed is vf= -15.0 meters/sec\n", + "\n", + "Time taken is T= 3.06 sec\n" + ] + } + ], + "source": [ + " import math #Example 3_10\n", + " \n", + " #To find out how high does it goes and its speed and how long will it be in air \n", + "vf=0 #units in meters/sec\n", + "v0=15 #units in meters/sec\n", + "a=-9.8 #units in meters/sec**2\n", + "y=(vf**2-v0**2)/(2*a) #units in meters\n", + "print \"Distance it travels is y=\",round(y,1),\" meters\\n\"\n", + "vf=-math.sqrt(2*a*-y) #units in meters/sec\n", + "print \"The speed is vf=\",round(vf),\" meters/sec\\n\"\n", + "t=vf/(0.5*a) #units in sec\n", + "print \"Time taken is T=\",round(t,2),\" sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.11:pg-116" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed by which the ball has to be thrown is v= 14.7 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example 3_11\n", + " \n", + " \n", + " #To find out how fast a ball must be thrown\n", + "a=9.8 #unita in meters/sec**2\n", + "t=3 #units in sec\n", + "v=(0.5*a*t**2)/t\n", + "print \"The speed by which the ball has to be thrown is v=\",round(v,1),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.12:pg-117" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The ball hits the ground at x= 9.58 meters\n" + ] + } + ], + "source": [ + " import math #Example 3_12\n", + " \n", + " \n", + "#To find out where the ball will hit the ground\n", + "#Horizontal\n", + "y=2 #units in meters\n", + "a=9.8 #units in meters/sec**2\n", + "t=math.sqrt(y/(0.5*a)) #units in sec\n", + "v=15 #units in meters/sec\n", + "x=v*t #units in sec\n", + "print \"The ball hits the ground at x=\",round(x,2),\" meters\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.13:pg-118" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The arrow hits y= 9.3 meters above the straight point\n", + "\n", + "The Vertical componet of velocity is v= 11.9 meters/sec\n", + "\n", + "As V is Positive the arrow is in its way up\n", + "\n", + "The magnitude of velocity is vtotal= 26.8 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example 3_13\n", + " \n", + " \n", + " #To find out at what height above ground does it hit wall and is it still going up befor it hits or down\n", + "v_1=24.0 #units in meters/sec\n", + "x=15.0 #units in meters\n", + "t=x/v_1 #units in sec\n", + "v0=18 #units in meters/sec\n", + "a=-9.8 #units in meters/sec**2\n", + "y=(v0*t)+(0.5*a*t**2) #units in meters\n", + "print \"The arrow hits y=\",round(y,1),\" meters above the straight point\\n\"\n", + "v=v0+(a*t) #units in meters/sec\n", + "print \"The Vertical componet of velocity is v=\",round(v,1),\" meters/sec\\n\"\n", + "print \"As V is Positive the arrow is in its way up\\n\"\n", + "vtotal=math.sqrt(v**2+v_1**2) #units in meters/sec\n", + "print \"The magnitude of velocity is vtotal=\",round(vtotal,1),\" meters/sec\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |