diff options
Diffstat (limited to 'Principles_Of_Geotechnical_Engineering/Chapter7.ipynb')
-rwxr-xr-x | Principles_Of_Geotechnical_Engineering/Chapter7.ipynb | 444 |
1 files changed, 444 insertions, 0 deletions
diff --git a/Principles_Of_Geotechnical_Engineering/Chapter7.ipynb b/Principles_Of_Geotechnical_Engineering/Chapter7.ipynb new file mode 100755 index 00000000..75e8c79b --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering/Chapter7.ipynb @@ -0,0 +1,444 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:db9787af9c3d4874a56e96ce130e20ad75db81e8408117171d5753e7537a242c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-Permeability"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate the hydraulic conductivity in cm/sec.\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "L= 30. ##cm\n",
+ "A= 177. ##cm^2\n",
+ "h= 50. ##cm\n",
+ "Q= 350. ##cm^3\n",
+ "t= 300. ##sec\n",
+ "##claculations\n",
+ "k=Q*L/(A*h*t)\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.0040 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg169\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Determine the hydraulic conductivity of the soil in in./sec.\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "L= 203. ##mm\n",
+ "A= 10.3 ##cm^2\n",
+ "a= 0.39 ##cm^2\n",
+ "h0= 508. ##mm\n",
+ "h180= 305. ##mm\n",
+ "t= 180. ##sec\n",
+ "##calculations\n",
+ "k= 2.303*a*L*math.log10(h0/h180)/(A*t)\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('hydraulic conductivity of sand = ',k,' in/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity of sand = 0.02 in/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#The hydraulic conductivity of a clayey soil is 3 107 cm/sec. The viscosity of water at 25\u00b0C is 0.0911 104 g # sec/cm2 \n",
+ "#Calculate the absolute permeability of the soil.\n",
+ "import math\n",
+ "##initialisation of varilables\n",
+ "k= 3e-7 ##cm/sec\n",
+ "n= 0.0911e-4 ##g*sec/cm^2\n",
+ "dw= 1 ##g/cc\n",
+ "##calculations\n",
+ "K= k*n/dw\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('absolute premeability = ',K,' cm^2 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "absolute premeability = 0.0000 cm^2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#With k 5.3 105 m/sec for the permeable layer, calculate the rate of seepage through it in m3 /hr/m width if H 3 m and a 8\u00b0.\n",
+ "\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "k= 5.3e-5 ##m/sec\n",
+ "H= 3 ##m\n",
+ "a= 0.139 ##radians\n",
+ "##calculations\n",
+ "A= H*math.cos(a)\n",
+ "i= math.sin(a)\n",
+ "q= k*i*A*3600\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('rate of seepage = ',q,' m^3/hr/m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of seepage = 0.0785 m^3/hr/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate flow rate\n",
+ "##initialisation of variables\n",
+ "L= 50. ##m\n",
+ "k= 0.08e-2##m/sec\n",
+ "h= 4. ##m\n",
+ "H1= 3. ##m\n",
+ "H= 8. ##m\n",
+ "a= 0.139 ##radians\n",
+ "##calculations\n",
+ "i= h*math.cos(a)/L\n",
+ "A= H1*math.cos(a)\n",
+ "q= k*i*A\n",
+ "##results\n",
+ "print'%s %.5f %s'% ('flow rate = ',q,' m^3/sec/m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "flow rate = 0.00019 m^3/sec/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity at void ratio of 0.65\n",
+ "##initialisation of variables\n",
+ "k1= 0.02 ##cm/sec\n",
+ "e1= 0.5 \n",
+ "e2= 0.65\n",
+ "##calculations\n",
+ "k2= k1*(e2**3/(1.+e2))/(e1**3/(1.+e1))\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('hydraulic conductivity at void ratio of 0.65 =',k2,'cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity at void ratio of 0.65 = 0.04 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "e= 0.6\n",
+ "D10= 0.09 ##mm\n",
+ "##calculations\n",
+ "k= 2.4622*(D10**2*(e**3/(1+e)))**0.7825\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.0119 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "e= 0.6\n",
+ "D10= 0.09 ##mm\n",
+ "D60= 0.16 ##mm\n",
+ "##calculations\n",
+ "Cu=D60/D10\n",
+ "k= 35*(e**3/(1+e))*(Cu**0.6)*(D10**2.32)\n",
+ "##results\n",
+ "print'%s %.3f %s'% ('hydraulic conductivity =',k,'cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.025 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "k1= 0.302e-7 ##cm/sec\n",
+ "k2= 0.12e-7 ##cm/sec\n",
+ "e1= 1.1\n",
+ "e2= 0.9\n",
+ "e= 0.75\n",
+ "##calcualtions\n",
+ "n= (math.log10((k1/k2)*((1+e1)/(1+e2))))/math.log10(e1/e2)\n",
+ "C= k1/(e1**n/(1+e1))\n",
+ "k= C*(e**n/(1+e))\n",
+ "##results\n",
+ "print'%s %.e %s'% ('hydraulic conductivity =',k,'cm/sec')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 5e-09 cm/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate ration of equivalent hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "H1= 2. ##m\n",
+ "H2= 3. ##m\n",
+ "H3= 4. ##m\n",
+ "k1= 1e-4 ##cm/sec\n",
+ "k2= 3.2e-2 ##cm/sec\n",
+ "k3= 4.1e-5 ##cm/sec\n",
+ "##calculations\n",
+ "H= H1+H2+H3\n",
+ "Kh= (1./H)*((k1*H1)+(k2*H2)+(k3*H3))\n",
+ "Kv= H/((H1/k1)+(H2/k2)+(H3/k3))\n",
+ "P= Kh/Kv\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('ration of equivalent hydraulic conductivity =',P,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ration of equivalent hydraulic conductivity = 139.97 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate rate of water supply\n",
+ "##initialisation of variables\n",
+ "H= 450. ##mm\n",
+ "h= 150. ##mm\n",
+ "k1= 1e-2 ##cm/sec\n",
+ "k2= 3e-3 ##cm/sec\n",
+ "k3= 4.9e-4 ##cm/sec\n",
+ "h1= 300. ##mm\n",
+ "##calculations\n",
+ "Kv= H/(h*(1./k1+1./k2+1./k3))\n",
+ "i= h1/H\n",
+ "q= Kv*i*100.*3600.\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('rate of water supply =',q,' cm/hr ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of water supply = 291.01 cm/hr \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |