summaryrefslogtreecommitdiff
path: root/Principles_Of_Foundation_Engineering/Chapter13.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_Of_Foundation_Engineering/Chapter13.ipynb')
-rwxr-xr-xPrinciples_Of_Foundation_Engineering/Chapter13.ipynb176
1 files changed, 176 insertions, 0 deletions
diff --git a/Principles_Of_Foundation_Engineering/Chapter13.ipynb b/Principles_Of_Foundation_Engineering/Chapter13.ipynb
new file mode 100755
index 00000000..bfb80602
--- /dev/null
+++ b/Principles_Of_Foundation_Engineering/Chapter13.ipynb
@@ -0,0 +1,176 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:549425d7a43cc856ebd1610c783821836546fd833bb34512fcafdb71f662b655"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter13:Foundations on Difficult Soils"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.1:Pg-653"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 13.1\n",
+ "\n",
+ "Sw=1;\n",
+ "Z=2; # in m\n",
+ "deltaSf=0.0033*Z*Sw*1000; # in mm\n",
+ "print deltaSf,\"free surface swell in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6.6 free surface swell in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.2:Pg-13.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 13.2\n",
+ "\n",
+ "#from figure 13.11\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "deltaS=1/100.0*1/2.0*(0.55+0+0.55+1.2+1.2+2+2+3);\n",
+ "print deltaS*1000,\"total swell in mm\"\n",
+ "#partb\n",
+ "D=numpy.array([5.2, 4.2, 3.2, 2.2, 1.2]);\n",
+ "deltaS=numpy.array([0, 0.00275, 0.0115, 0.0275, 0.0525]);\n",
+ "print \"depth(m)\\t total swell (m) \\n\"\n",
+ "for i in range (0,5):\n",
+ " print D[i],\"\\t \",deltaS[i],\" \\n\",\n",
+ "\n",
+ "plt.plot(deltaS*1000,D);\n",
+ "plt.title(\"depth vs total swell\")\n",
+ "plt.xlabel(\"total swell (m)\")\n",
+ "plt.ylabel(\"depth (m)\")\n",
+ "plt.show()\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "52.5 total swell in mm\n",
+ "depth(m)\t total swell (m) \n",
+ "\n",
+ "5.2 \t 0.0 \n",
+ "4.2 \t 0.00275 \n",
+ "3.2 \t 0.0115 \n",
+ "2.2 \t 0.0275 \n",
+ "1.2 \t 0.0525 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81VW9//HXm8EJ50wcQHHMzAlNnGWjpIKIWl4nfk73\nd9PS0rrmVN1E8+q1btchK72paYaaSaEmznoQs8ABFEVMBXMGzQmkFORz/1jfI9vNGfYZvmdP7+fj\nsR9993ev/f1+1pHO56y1vmstRQRmZma9Kh2AmZlVBycEMzMDnBDMzCzjhGBmZoATgpmZZZwQzMwM\ncEKwHiTpGkk/zOnaYyVdl8e1K0XSsZImV+jen/w8JQ2StESSf1/UOf8Htp4U2atLJBUkvdzCtXtU\nRxNcngkxB56g1ICcEKynqcau26j882xATgiWG0mDJT0u6X1JNwIrlHw+StJ0Se9I+pOkrYs+e1HS\nmZKelvS2pKslLS+pH3AHsJ6k+dm11yX9RbucpGuzc09J2qGVuH4h6ccl526R9K3s+AxJr2TXmSVp\nrxaucTxwJHB6Fsct2fnPS2rK6vSUpAPaKX+mpOezez0t6aAyf7YrSPqNpLeye02VtLakYZKeLCp3\nj6SpRe8nSxqdHa8nabykeZJmS/pmOfe2OhYRfvnV7S9gOeBvwClAb+ArwEfAudnng4G5wI6kv0aP\nBuYAfbPPXwSeBNYH1gAeAn6YfTYUeLnkfmOBfwD7Zdc7H/hzK7HtAbxU9H4NYCGwDvA54CVgneyz\nDYCNW7nOr5rrk73vCzwPnAn0AYYB7wObt1Q+O3dI0b0OBRYA/bP3xwKTW7n3CcCtpCSr7Oe5CrBi\n9nNYM4tnLvAy0C/7bGFW317AY8D3s1g3Al4A9in6eV6XHQ8ClgC9Kv3vyq98X24hWF52BvpExCUR\n8XFEjAceKfr8eOCKiHgkkl8DH2bfg/QX/2UR8WpEvAP8J3BE9llr3RmTI+LOiAjgN8C2rZR7CAhJ\ne2TvDwEejog3gI+B5YEvSOobES9FxOw26lkcy85Av4j4r4hYHBEPAH8siftTsUfEzdl9iYibgOeA\nndq4X7OPgM8Am2U/v2kRMT8i/kH6OQ8FdgCmA38Cds/iey77ee4IrBUR52WxzgGuBA4v495Wp5wQ\nLC/rAa+WnPtb0fGGwKlZd8c7kt4BBmTfa1Y8cPxSyWctmVt0vBBYoaUnY7KEcSNLf1EfCYzLPnse\n+BbpL+S5km7IuqTKsV5JzJDq3Bz3MgO1ko6WNK3oZ7AV6Rd9e64D7gJulPSqpAsl9ck+mwQUSC2h\nSdlrKLAn0JSV2ZDU7Vb88z8LWLusmlpdckKwvLxO6u4ptmHR8UvAf0bEGkWvlSPit0VlNig5fi07\nbukJmI4+FXMDcIikDYEhwPhPLhRxQ0TskcUbwIWtXKP0nq8BAyUVtwI2ZGli/FT57N7/C5wErBkR\nawBPUcaAbvZX/bkR8QVgV2AUqdsNUgIYxtIE0JwghmbHkBLXnJKf/6oRMaqVulkDcEKwvDwMLJZ0\nsqS+kr5M6qZo9kvga5KGKOknaX9JK2efCzhR0vqS1gS+R/qrHlJL4DOSVi26XoeeiomI6cBbpG6S\nOyPifQBJm0vaS9LypC6sf5K6kVoyF9i46P1fSC2T07M6F0i/qG9spXw/0i/et4Beko4jtRDalT16\nu7Wk3sB8YFFRnH8mjYXsCEyNiJmkxLQT8GBWZgowX9LpklaU1FvSVpK+2HyLcuKw+uKEYLmIiEXA\nl0kDo38nDZgW/xX+GPBV4DLgbVLf+dEs/cs0gOuBu0mDnc8B52XfnUX6C3929gRS81NGpX/VtvdX\n7vXAXtn/NlseuAB4k9TKWYvUldKSq4Atsy6X32d1PgAYkX3/MuCoiPhrK+VnAj8h/QJ/g5QMHiqJ\nv7U6rAP8DngPmElqCVwHEBEfkAaMn46IxVn5h4EXI+KtrMwSUrLaDpidxfu/QHOSLb23WwwNQKk7\nNccbSC+SnrT4GFgUEUNKPi8At5D+UQKMj4jzcg3Kqp6kOcD/j4j7Kx2LWaPo036RLgugEBFvt1Fm\nUkSM7oFYzMysFT3VZdRef6T7K83MKqwnEkIA90p6VNJXW/l8V0lPSJooacseiMmqXERs5O4is57V\nE11Gu0XE65I+C9wjaVZEFK/g+DgwMCIWShoBTAA274G4zMysSO6Dyp+6mXQ2sCAiftJGmTnADsVj\nDpL8hIOZWSdERNld8rl2GUlaSdIq2XE/YB9gRkmZ/s0TeSQNISWpZQagK73GR56vs88+u+IxuH6u\nm+tXf6+OyrvLqD/wh+z3fR9gXETcLekEgIi4grSOzNclLSZN6vFaKmZmFZBrQoi0YNZ2LZy/ouj4\nZ8DP8ozDzMza55nKVaBQKFQ6hFzVc/3quW7g+jWaHh1U7ixJUQtxmplVE0lEtQwqm5lZ7XBCMDMz\nwAnBzMwyTghmZgY4IZiZWcYJwczMACcEMzPLOCGYmRnghGBmZpmaSQieqGxmlq+aSQizZlU6AjOz\n+lYzCWHChEpHYGZW32omIdxyS6UjMDOrbzWTEJ59Fl5/vdJRmJnVr9wTgqQXJT0paZqkqa2UuVTS\nc5KekDS4pTL77Qe33ZZvrGZmjawnWggBFCJicEQMKf1Q0khg04jYDDge+EVLFznwQHcbmZnlqae6\njNraoGE0cC1AREwBVpfUv7TQiBHw4IMwf35OEZqZNbieaiHcK+lRSV9t4fP1gZeL3r8CDCgttNpq\nsOuucNddOUVpZtbg+vTAPXaLiNclfRa4R9KsiJhcUqa0BbHMNLSxY8fSpw+cey6stVbBe6GamZVo\namqiqamp09/v0T2VJZ0NLIiInxSduxxoiogbs/ezgKERMbeoTEQEr7wC224Lb7wBffv2WNhmZjWp\nqvZUlrSSpFWy437APsCMkmK3AkdnZXYG3i1OBsUGDICNNoKHHsoxaDOzBpX3GEJ/YLKk6cAU4I8R\ncbekEySdABARE4HZkp4HrgBObOuCBx7oWctmZnno0S6jzmruMgKYMQMOOADmzAGV3RAyM2s8VdVl\nlIettoJeveDJJysdiZlZfam5hCB5kpqZWR5qLiGAE4KZWR5qbgwBYPFi6N8fpk2DDTaoYGBmZlWs\n7scQAPr0gVGj4NZbKx2JmVn9qMmEAO42MjPrbjXZZQSwYAGstx689BKsvnqFAjMzq2IN0WUEsPLK\nsOeecMcdlY7EzKw+1GxCAM9aNjPrTjXbZQRpkbsttoC5c2H55SsQmJlZFWuYLiOAddaBLbeELqz2\namZmmZpOCOCnjczMuktNdxkBzJoFw4enp4161Xx6MzPrPg3VZQRpDKFfP3jssUpHYmZW22o+IQAc\ndJC7jczMuqouEoLHEczMui73hCCpt6Rpkm5r4bOCpPeyz6dJ+n5n7rHTTjBvHsye3fV4zcwaVU+0\nEE4BZgKtjV5PiojB2eu8ztygd++0i5pbCWZmnZdrQpA0ABgJXAm0NtLdLRthetaymVnX5N1CuAg4\nDVjSyucB7CrpCUkTJW3Z2RsNHw7Tp8Nbb3X2CmZmja1PXheWNAqYFxHTJBVaKfY4MDAiFkoaAUwA\nNm+p4NixYz85LhQKFAqfvuSKK8Lee8Ptt8Mxx3Q9fjOzWtPU1ERTF5ZuyG1imqTzgaOAxcAKwKrA\n+Ig4uo3vzAF2iIi3S863OjGt2LXXpnGE3/++S6GbmdWFjk5M65GZypKGAt+JiANKzvcntSJC0hDg\npogY1ML3y0oIb70Fm2ySFr1bccVuCt7MrEZV80zlAJB0gqQTsnOHADMkTQcuBg7vyg3WWgu22w7u\nvbdrgZqZNaKaX8uo1EUXwdNPw5VX5hyUmVmVq8ouo67qSEKYPRt22QVeey3NTzAza1TV3GXUIzbe\nGNZeG6ZMqXQkZma1pe4SAnhtIzOzzqjbhOBZy2ZmHVOXCWGHHeCDD9LmOWZmVp66TAi9esHo0e42\nMjPriLpMCOBxBDOzjqq7x06bffgh9O+fuo3WWSenwMzMqljDP3babPnlYd994bZltuUxM7OW1G1C\ngLTXshe6MzMrT10nhFGjYM4cOP/8SkdiZlb9ctsPoRqssgrcfz8UCtCnD5x+eqUjMjOrXnWdEADW\nWw8eeACGDk1J4d//vdIRmZlVp7pPCADrr//ppHDyyZWOyMys+jREQgAYODAlhUIhrYJ60kmVjsjM\nrLo0TEIA2HBDuO8+GDYstRROOKH975iZNYrcnzKS1FvSNEktzgiQdKmk5yQ9IWlw3vFsvHFKCued\nB1ddlffdzMxqR0+0EE4BZgKrlH4gaSSwaURsJmkn4BfAznkHtOmmKSnstVfqPjr22LzvaGZW/XJt\nIUgaAIwErgRamj49GrgWICKmAKtL6p9nTM023zztvfy978FvftMTdzQzq255txAuAk4DVm3l8/WB\nl4vevwIMAObmHBcAW2wB99wDw4enlsIRR/TEXc3MqlNuCUHSKGBeREyTVGiraMn7FlexGzt27CfH\nhUKBQqGtS5Zvyy3h7rvhS19KSeHQQ7vlsmZmPa6pqYmmpqZOfz+31U4lnQ8cBSwGViC1EsZHxNFF\nZS4HmiLixuz9LGBoRMwtuVaHVzvtqCeeSIvh/exn8JWv5HorM7MeUTWrnUbEdyNiYERsBBwO3F+c\nDDK3AkcDSNoZeLc0GfSUbbeFO+6AE0/0Pgpm1ph6ch5CAEg6ASAiroiIiZJGSnoe+AA4rgfjWcbg\nwXD77TByZOo+GjWqktGYmfWsut0gpyumTk3J4NprYcSIHrutmVm3qpouo1o2ZEjqNjrmmDTgbGbW\nCJwQWrHLLmlznTFj0iQ2M7N654TQht13h/Hj4fDDoQtPcpmZ1QQnhHbsuSfcdBP8y7/A5MmVjsbM\nLD9OCGUYNgxuuCHNT/jTnyodjZlZPpwQyjR8OFx3HRx8MPzlL5WOxsys+zkhdMC++8I118Do0fDI\nI5WOxsysezkhdNDIkWkfhVGj4LHHKh2NmVn3cULohAMOgMsvT8lh+vRKR2Nm1j3aXLpCUl9gH2BP\nYBBp+Ym/AQ8Cd0XE4rwDrFYHHwwffwz77Zcmr22zTaUjMjPrmlaXrpD0H8BXgD8DU4HXSC2KdYEh\npJ3Nbo6I83IPsoeXruiI3/4WvvWttK/CVltVOhozs6U6unRFWy2EJ4DzWvlNfLWkXkDDL/922GGp\npbDPPmlG8+c/X+mIzMw6x4vbdZNf/xrOOgvuvx8+97lKR2Nm1r0thOYL7gh8lzSG0Fw+IsK95kWO\nPjq1FPbeGx54ADbbrNIRmZl1TDn7IYwDvgM8BSzJN5zadtxxsHjx0qSwySaVjsjMrHzlJIQ3I+LW\nzlxc0grAJGB5YDnglog4q6RMAbgFmJ2dGt8TA9V5+epXU0thr73SgngbbVTpiMzMylNOQjhH0lXA\nvcBH2bmIiN+398WI+KekYRGxUFIf4CFJu0fEQyVFJ0XE6I6FXr2+9rXUUmhOChtuWOmIzMzaV05C\nOAb4XFa2uMuo3YQAEBELs8PlgN7A2y0UK3vQo1Z84xufTgoDB1Y6IjOztpWTEL4IbNHZx3yyx1Mf\nBzYBfhERM0uKBLCrpCeAV4HvtFCmJn3rW5/uPlp//UpHZGbWunKWrngY2LKzN4iIJRGxHTAA2DMb\nMyj2ODAwIrYFfgpM6Oy9qtGpp8K//VtKCq+/XulozMxaV04LYRdguqQ5wIfZuQ4/dhoR70m6ndTi\naCo6P7/o+A5JP5e0ZkR8qmtp7NixnxwXCgUKhUJHbl9RZ5zx6ZZC//6VjsjM6lFTUxNNXdjesd2J\naZIGtXQ+Il5s9+LSWsDiiHhX0orAXcA5EXFfUZn+wLyICElDgJsiYlDJdap+Ylo5zj03LXXxwAOw\n9tqVjsbM6l23TUyTtEpEzG/rF39zmTauvy5wbTaO0Au4LiLuk3QCQERcARwCfF3SYmAhcHi5wdea\nH/wgDTQPH55mNK+1VqUjMjNbqq3F7e4FniXNEXi0uQtH0mdI3T4HAZtFxPDcg6yTFgJABHzvezBx\nYkoKa65Z6YjMrF51tIXQZpeRpL2AI4HdgPWy068BDwHjIqKp86GWr54SAqSkcMYZaTG8e++FNdao\ndERmVo+6NSFUi3pLCJCSwqmnwuTJaens1VevdERmVm+cEGpIBJxyCkydmjbZWXXVSkdkZvWkownB\nW2hWkASXXALbbw8jRsD8tobnzcxy5oRQYRJcdlnabW3kSFiwoNIRmVmjKqvLSFJvoD9Fj6lGxEs5\nxlV6/7rsMiq2ZElaKfWFF+D226Ffv0pHZGa1rtvHECR9EzgbmAd83Hw+IrbubJAd1QgJAVJS+Nd/\nhZdfhttug5VWqnREZlbL8kgILwBDIuLvXQ2usxolIUBa4uKYY2DePLj1VlhhhUpHZGa1Ko9B5ZeA\n9zsfknVE795wzTXwmc/AwQfDhx+2+xUzs27R1kzlU7PDLYEtgD/y6Q1y/if/8D6JpWFaCM0WL4Yj\nj4SFC2H8eFh++UpHZGa1pjtbCKsAK5NaCPeQNrhZOXut0pUgrX19+sC4cbDccrDvvjBjRqUjMrN6\nV84YwqERcVN75/LUiC2EZosWweWXw3nnwejRacXUddetdFRmVgvyGEM4q8xzloO+feGb34Rnn01r\nHm21FZxzDnzwQaUjM7N609YYwghgJHAYcCNL9z1eBdgyIob0SIQ0dguh1Isvwne/C5MmwQ9/mJ5I\n6t270lGZWTXqtsdOJW0LDAbOBf6j6KP5wAMR8U5XAu0IJ4RlTZ2aFsd77z347/+GffapdERmVm3y\nmIfQl9S1tAUQwKyI+KjNL3UzJ4SWRcCECXD66bDJJikxbLVVpaMys2qRxxjCPsDzwKXAT4EXJI0s\nI5AVJE2RNF3STEkXtFLuUknPSXpC0uByA7e0DtLBB8PTT6d1kPbaKy1/8frrlY7MzGpROQnhf4Bh\nETE0IoYCBeCi9r4UEf/MvrcdsA0wTNLuxWWyxLJpRGwGHA/8ooPxG+nR1JNPhr/+1QPPZtZ55SSE\n9yPi+aL3sylz5nJELMwOlwN6A2+XFBkNXJuVnQKsLql/Ode2Za2+OvzoR/DYY+mppM03h6uvTsth\nmJm1p5yE8JikiZKOlXQsacbyo5K+LOnLbX1RUi9J04G5pIHomSVF1gdeLnr/CjCg/PCtJYMGwfXX\nw+9/D7/6FQwenDbgMTNrSzkJYQXSSqdDs9eb2bkDslerImJJ1mU0ANhTUqGFYqUDHh497iY77QQP\nPpi6j046KW3C89RTlY7KzKpVn/YKRMSxXb1JRLwn6Xbgi0BT0UevAgOL3g/Izi1j7NixnxwXCgUK\nhUJXw2oIzQPP+++fZjzvtRcceKBnPJvVo6amJpqamjr9/XIeO/0c8HNgnYj4gqRtgNERcV4731sL\nWBwR70paEbgLOCci7isqMxL4RkSMlLQzcHFE7NzCtfzYaTd59104/3y46qo0EP2d73gzHrN6lcdj\np78EvsvSlU5nAEeU8b11gfuzMYQpwG0RcZ+kEySdABARE4HZkp4HrgBOLDdw6xwPPJtZa8ppITwa\nEV+UNC0iBmfnpmdjAz3CLYT8TJmSWgme8WxWf/JoIbwpadOiGxwCeOpTnfDAs5k1KychfIPUnbOF\npNeAbwNfzzUq61HFM55HjPCMZ7NG1W5CiIgXImJvYC3gcxGxW0S8mHtk1uM849mssZWzhSa0MDfA\nW2jWvxdfhLPOSl1KXmrbrPbksYXmDqQuovVJ8wS+BmzflSCtNgwaBDfcsHTG8/bbwz33VDoqM8tL\nOU8ZTQZGRsT87P0qwMSI2KMH4muOwS2ECiteanvTTeHHP/ZS22bVLo+njNYGFhW9X5SdswbigWez\n+ldOQvg1MFXSWEnnkCaZXZtvWFatPPBsVr/a7TICkLQDsAdpcPnBiJiWd2Al93eXUZWaMyft8eyB\nZ7Pq0+1baFYDJ4Tq1zzj+f3304znL32p0hGZmROCVYwHns2qSx6DymZl8cCzWW1zQrBu54Fns9rk\nhGC5aV5q+9FHYdYsL7VtVu08hmA9xgPPZj3Lg8pW1TzwbNZzqmpQWdJASQ9IelrSU5JObqFMQdJ7\nkqZlr+/nGZNVlgeezapX3mMIi4BvR8QXgJ2BkyR9voVykyJicPZqc69mqw8eeDarPrkmhIh4IyKm\nZ8cLgGeA9VooWnaTxuqLB57NqkePPWUkaRAwmLQWUrEAdpX0hKSJkrbsqZisemy0kZfaNqu0Pj1x\nE0krAzcDp2QthWKPAwMjYqGkEcAEYPPSa4wdO/aT40KhQKFQyC1eq5zmPZ4nTIATT/TAs1lHNDU1\n0dTU1Onv5/6UkaS+wB+BOyLi4jLKzwF2iIi3i875KaMG9NFHcPnlcN55cOCBcO65sO66lY7KrHZU\n21NGAq4CZraWDCT1z8ohaQgpSb3dUllrLC0NPJ97rgeezfKS9xjCbsD/A4YVPVY6QtIJkk7IyhwC\nzJA0HbgYODznmKzGFA88P/OMB57N8uKJaVZzPOPZrDyeqWwNIQL+8Ac44wwPPJu1pqrGEMzyIsGX\nv+wZz2bdyQnBapoHns26jxOC1QUPPJt1nccQrC5NmQKnngrz53vg2RqXB5XNMh54tkbnQWWzTOnA\n8957w/HHe+DZrDVOCFb3mgeen302jTV44NmsZU4I1jA88GzWNo8hWMMqHni+8ELYZx/o5T+RrI54\nUNmsA5oHnseOhffegyOPhDFjPPhs9cEJwayTnnwSxo2D66+HNddMieGII2DgwEpHZtY5TghmXbRk\nCUyenJLD+PGw9dYpORxySJoNbVYrnBDMutGHH8Idd6TkcPfdac2kMWNg1ChYYYVKR2fWNicEs5y8\n917a83ncOHj8cTjooJQcCgXo3bvS0ZktywnBrAe89hrceGNKDm+8AYcfnpLD4MFpQpxZNaiqhCBp\nIPBrYG0ggP+NiEtbKHcpMAJYCBwbEdNKPndCsKr1zDNpIHrcOFh++ZQYjjwSNt640pFZo6u2hLAO\nsE5ETJe0MvAYcFBEPFNUZiTwjYgYKWkn4JKI2LnkOk4IVvUi4C9/SYnhppvS+kljxsChh8JnP1vp\n6KwRVdVaRhHxRkRMz44XAM8A65UUGw1cm5WZAqwuqX+ecZnlQYJddoHLLoNXX4Xvfx8efhg22wz2\n3z+1IrxchlWzHpuXKWkQMBiYUvLR+sDLRe9fAQb0TFRm+ejbF0aOTK2FV15JXUi/+Q0MGABHHQV3\n3gmLF1c6SrNP69MTN8m6i24GTslaCssUKXm/TP/Q2LFjPzkuFAoUCoVujNAsPyuvnLqOxoyBefNS\nd9I558Axx8Bhh6XzQ4Z4MNq6rqmpiaampk5/P/enjCT1Bf4I3BERF7fw+eVAU0TcmL2fBQyNiLlF\nZTyGYHXn+eeXDkZ//PHSpLH55pWOzOpFVY0hSBJwFTCzpWSQuRU4Oiu/M/BucTIwq1ebbgo/+AHM\nmpUeYX3/fRg6FHbcES6+OD3OataT8n7KaHfgQeBJlnYDfRfYACAirsjKXQbsB3wAHBcRj5dcxy0E\nawgffwz3359aDbfckpLDmDFw8MGw6qqVjs5qTVU9dtpdnBCsEf3jH3DbbSk5TJoE++6bksN++6VN\nf8za44RgVofefht+97uUHGbOTAvtjRkDu+3mPRysdU4IZnXub3+DG25IyeH9972Hg7XOCcGsgXgP\nB2uLE4JZA/IeDtYSJwSzBuc9HKyZE4KZfcJ7ODQ2JwQza5H3cGg8Tghm1i7v4dAYnBDMrGzew6G+\nOSGYWacsWgT33JOSw+23p0lvY8bAgQdCv36Vjs46wwnBzLpswQKYMCElhz//GQ44ICWH4cOhT48s\nmm/dwQnBzLrVvHnw29+m5DBnjvdwqCVOCGaWG+/hUFucEMwsdxHw2GMpMdx4Y9oadMyY9CjrOutU\nOjpr5oRgZj3KezhULycEM6sY7+FQXaoqIUi6GtgfmBcRW7fweQG4BZidnRofEee1UM4JwazG/P3v\ncPPN3sOhkqotIewBLAB+3UZC+PeIGN3OdZwQzGqY93CojI4mhFzzdERMBt5pp5gfXDOrcxtuCGee\nCTNmpC6lJUtgxAjYdlv40Y/g5ZcrHaFBzgmhDAHsKukJSRMlbVnheMwsZ9tsAxdemFoNl16aHmXd\nbru0AusvfwnvtPcnpOUm90FlSYOA21rpMloF+DgiFkoaAVwSEcs80Swpzj777E/eFwoFCoVCbjGb\nWc/yHg7do6mpiaampk/en3POOdUzhgBtJ4QWys4BdoiIt0vOewzBrEF4D4fuU1VjCO2R1F9Kk98l\nDSElqLfb+ZqZ1bHVVoPjjoN774WnnkoDz6edBhtsAKeempKE/z7MR95PGd0ADAXWAuYCZwN9ASLi\nCkknAV8HFgMLSU8c/aWF67iFYNbgnnkmtRquv957OJSrqh477S5OCGbWLCKtwDpuHPzud97DoS1O\nCGbWMBYtSoPQ48bBxInew6GUE4KZNSTv4bAsJwQza3jewyFxQjAzK9LIezg4IZiZtaAR93BwQjAz\na0ej7OHghGBm1gH1vIeDE4KZWSfV2x4OTghmZt2gHvZwcEIwM+tmTz65dNmMNdeECy6AkSMrHVX7\nnBDMzHKyZAlMnpySwtbtrt9ceU4IZmYG1Njy12ZmVj2cEMzMDHBCMDOzTK4JQdLVkuZKmtFGmUsl\nPSfpCUmD84zHzMxal3cL4VfAfq19KGkksGlEbAYcD/wi53iqUvGm2PWonutXz3UD16/R5JoQImIy\n8E4bRUYD12ZlpwCrS+qfZ0zVqN7/UdZz/eq5buD6NZpKjyGsD7xc9P4VYECFYjEza2iVTggApc/I\nesKBmVkF5D4xTdIg4LaIWGZen6TLgaaIuDF7PwsYGhFzS8o5SZiZdUJHJqZVeqfRW4FvADdK2hl4\ntzQZQMcqZGZmnZNrQpB0AzAUWEvSy8DZQF+AiLgiIiZKGinpeeAD4Lg84zEzs9bVxFpGZmaWv2oY\nVG6TpP0kzcomr51R6Xi6oqWJepLWlHSPpL9KulvS6pWMsSskDZT0gKSnJT0l6eTsfF3UUdIKkqZI\nmi5ppqTbjaFfAAAGKElEQVQLsvN1UT8ASb0lTZN0W/a+nur2oqQns/pNzc7VU/1Wl3SzpGeyf587\ndbR+VZ0QJPUGLiNNbtsSOELS5ysbVZe0NFHvTOCeiNgcuC97X6sWAd+OiC8AOwMnZf+96qKOEfFP\nYFhEbAdsAwyTtDt1Ur/MKcBMlj7tV091C6AQEYMjYkh2rp7qdwkwMSI+T/r3OYuO1i8iqvYF7ALc\nWfT+TODMSsfVxToNAmYUvZ8F9M+O1wFmVTrGbqzrBGB4PdYRWAl4BPhCvdSPNAfoXmAY6cnAuvr3\nCcwBPlNyri7qB6wGzG7hfIfqV9UtBFqeuLZ+hWLJS/9Y+mTVXKAuZmpnjxsPBqZQR3WU1EvSdFI9\nHoiIp6mf+l0EnAYsKTpXL3WD1EK4V9Kjkr6anauX+m0EvCnpV5Iel/RLSf3oYP2qPSE01Ih3pDRe\n83WWtDIwHjglIuYXf1brdYyIJZG6jAYAe0oaVvJ5TdZP0ihgXkRMY9nJokDt1q3IbhExGBhB6s7c\no/jDGq9fH2B74OcRsT3pqc1PdQ+VU79qTwivAgOL3g8ktRLqyVxJ6wBIWheYV+F4ukRSX1IyuC4i\nJmSn66qOABHxHnA7sAP1Ub9dgdGS5gA3AHtJuo76qBsAEfF69r9vAn8AhlA/9XsFeCUiHsne30xK\nEG90pH7VnhAeBTaTNEjScsBhpMls9eRW4Jjs+BhSv3tNkiTgKmBmRFxc9FFd1FHSWs1PaUhaEfgS\nMI06qF9EfDciBkbERsDhwP0RcRR1UDcASStJWiU77gfsA8ygTuoXEW8AL0vaPDs1HHgauI0O1K/q\n5yFIGgFcDPQGroqICyocUqcVT9Qj9ef9ALgFuAnYAHgRODQi3q1UjF2RPXHzIPAkS5umZwFTqYM6\nStqatDpvr+x1XUT8WNKa1EH9mkkaCpwaEaPrpW6SNiK1CiB1r4yLiAvqpX4AkrYFrgSWA14gTfTt\nTQfqV/UJwczMeka1dxmZmVkPcUIwMzPACcHMzDJOCGZmBjghmJlZxgnBzMwAJwSrQZJWk/T1Mspt\nKOmIMsoNKl6SPC+SrpH0ley4SdIOrZT7raRNOnDdbSRd1V1xWuNyQrBatAZwYhnlNgKOzDmWjihe\nS6bFdWUkbQr0i4gXyr5oxJPAJpLW7pYorWE5IVgt+i/SL8Bpki4EkPRjSTOyDVAOLSq3R1bulKzF\n8KCkx7LXLm3dRNK6Wflp2bV3l3SIpJ9kn58i6YXseGNJD2XHO2QtgEcl3dm8lkyZDqdoeRZJCyT9\nSGnDoXsk7SxpkqQXJB1Q9L07gH/pwH3MluGEYLXoDOCFSBudnJF1w2xL2hRkOPDj7JfwGcDkrNwl\npIW9vhQRO5B+8V7azn2OIO3HMTi79nRgMtC8SuYewFuS1suOJ0nqA/wU+EpEfJG0KdJ/dqBuu5HW\n8Gq2EnBfRGwFzAfOBfYCDs6Om00F9uzAfcyW0afSAZh1QunyzLsB12fL+86TNAnYEXi/pNxywGXZ\nmi8fA5vTtkeAq7MVXCdExBPAAkkrZ0t8DwCuJ/0i3p20yusWpE1z7k1r/dEbeK0DddsQeL3o/UcR\ncVd2PAP4Z0R8LOkp0mZLzV4veW/WYW4hWL0oTRItLdL1beD1iNgG+CIpQbQqIppbA68C10g6Kvvo\nYdLCYc8CD5ESwi7An7I4ns5aJYMjYpuIKN02tSN1WVR0vAT4KIttCZ/+g07U7lr+ViWcEKwWzQdW\nKXo/GTgs283ss6Rf0FOBBSXlVgXeyI6PJv313ipJGwBvRsSVpFUkBxfd7zRgEmn562Gkv9znk5LE\nZyXtnF2jr6QtO1C3vwHrdqB8s3Wz75p1mruMrOZExN8l/Sl7VHRiNo6wC/AE6a/k0yJinqS3gY+z\nLS9/BfwcGC/paOBOUsL45LIt3KoAnCZpESkJHZ2df4i0leuDEbFE0kvAM1lsH0k6BLhU0mqk/49d\nRNq4vhwPkVovj7USV7RyPIS09LhZp3n5a7MqImlj4KcRsX8Hv9dEWuu+Vnf8sirgLiOzKhIRs4H5\nHZ2YBjzvZGBd5RaCmZkBbiGYmVnGCcHMzAAnBDMzyzghmJkZ4IRgZmYZJwQzMwPg/wDP0conunvE\nNwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1d192b0>"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.3:Pg-664"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 13.3\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "phi=12*math.pi/180;\n",
+ "Ds=0.8; # in m\n",
+ "Z=5; # in m \n",
+ "sigmaT=450;\n",
+ "U=math.pi*Ds*Z*sigmaT*math.tan(phi); # in kN\n",
+ "def f(D):\n",
+ " return 1202-450*6.14/1.25*3.14/4*(D**2-0.8**2)\n",
+ "[x]=fsolve(f,1);\n",
+ "Db=x; # in m\n",
+ "print round(Db,2),\"diameter of bell in m\"\n",
+ "#partb\n",
+ "D=600; # in kN\n",
+ "cu=450; # in kN/m^2\n",
+ "Nc=6.14;\n",
+ "FS=cu*Nc*math.pi/4*(Db**2-Ds**2)/(U-D);\n",
+ "if FS>2 :\n",
+ " print \"the structure is compatible with safety measures\"\n",
+ "\n",
+ "#check bearing capacity\n",
+ "L=D+300;#dead+live load in kN\n",
+ "Dp=L/math.pi*4/Db**2;#downward pressure\n",
+ "FS=2763/Dp; # factor of safety\n",
+ "if FS>3:\n",
+ " print \"the structure is safe in bearing \"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.15 diameter of bell in m\n",
+ "the structure is compatible with safety measures\n",
+ "the structure is safe in bearing \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file