diff options
Diffstat (limited to 'Physics_for_BSc(Paper-3)/Chapter6.ipynb')
-rwxr-xr-x | Physics_for_BSc(Paper-3)/Chapter6.ipynb | 650 |
1 files changed, 650 insertions, 0 deletions
diff --git a/Physics_for_BSc(Paper-3)/Chapter6.ipynb b/Physics_for_BSc(Paper-3)/Chapter6.ipynb new file mode 100755 index 00000000..fe7643f3 --- /dev/null +++ b/Physics_for_BSc(Paper-3)/Chapter6.ipynb @@ -0,0 +1,650 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6eaeb1b666053d6a5e25f6642f9c553eb5c875421649f4bad88cbcf5e3456f43"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "6: Moving charge in electric and magnetic fields"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.1, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "theta=90-60; #angle(degrees)\n",
+ "N=30; #number of turns\n",
+ "i=10; #current(A)\n",
+ "a=0.2; #length(m)\n",
+ "b=0.1; #breadth(m)\n",
+ "B=8*10**-4; #magnetic field of induction(Wb/m**2)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "tow=N*a*b*B*i*math.sin(theta); #torque on coil(Nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"torque on coil is\",tow*10**3,\"*10**-3 Nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "torque on coil is 2.4 *10**-3 Nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.2, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "ia=10; #current(A)\n",
+ "ib=10; #current(A)\n",
+ "d=0.02; #diameter(m)\n",
+ "\n",
+ "#Calculation\n",
+ "F=mew0*ia*ib/(2*math.pi*d); #force(N/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"force is\",F*10**3,\"*10**-3 N/m\"\n",
+ "print \"force is attractive\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "force is 1.0 *10**-3 N/m\n",
+ "force is attractive\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.3, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=0.1; #current(A)\n",
+ "N=60; #number of turns\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "R=7*10**-2; #radius(m)\n",
+ "x=(18/2)*10**-2; #distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "a=mew0*i*N*(R**2);\n",
+ "b=((x**2)+(R**2))**(3/2);\n",
+ "B=2*a/(2*b); #magnetic field of induction(Wb/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field of induction is\",round(B*10**5,1),\"*10**-5 Wb/m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic field of induction is 2.5 *10**-5 Wb/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.4, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=32; #current(A)\n",
+ "r=1.5*10**-3; #radius(m)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "d=1.2*10**-3; #distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "B1=mew0*i/(2*math.pi*r); #magnetic field on surface(T)\n",
+ "B2=B1*d; #magnetic field at a distance(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field on surface is\",round(B1*10**3,1),\"mT\"\n",
+ "print \"magnetic field at a distance is\",B2*10**3,\"mT\"\n",
+ "print \"answer for magnetic field at a distance given in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic field on surface is 4.3 mT\n",
+ "magnetic field at a distance is 0.00512 mT\n",
+ "answer for magnetic field at a distance given in the book is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.5, Page number 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i0=5.57; #current(A)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "n=850; #number of turns\n",
+ "l=1.23; #length(m)\n",
+ "\n",
+ "#Calculation\n",
+ "N=5*n/l; #number of turns per cm\n",
+ "B=mew0*i0*N; #magnetic field in solenoid(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field in solenoid is\",round(B*10**3,1),\"mT\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic field in solenoid is 24.2 mT\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.6, Page number 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=20; #current(A)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "n=1000; #number of turns\n",
+ "l=1; #length(m)\n",
+ "r=10*10**-2; #radius(m) \n",
+ "theta=90*math.pi/180;\n",
+ "\n",
+ "#Calculation\n",
+ "a=l/2;\n",
+ "b=r/2;\n",
+ "c=(a**2)+(b**2);\n",
+ "costheta1=a/math.sqrt(c);\n",
+ "costheta2=-a/math.sqrt(c);\n",
+ "B1=mew0*n*i*(costheta1-costheta2)/2; #magnetic field induction at the middle(Wb/m**2)\n",
+ "costheta_1=l/math.sqrt((l**2)+(r**2));\n",
+ "costheta_2=round(math.cos(theta));\n",
+ "B2=mew0*n*i*(costheta_1-costheta_2)/2; #magnetic field induction at one end(Wb/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field induction at the middle is\",round(B1*10**2,3),\"*10**-2 Wb/m**2\"\n",
+ "print \"magnetic field induction at one end is\",round(B2*10**3,1),\"mT\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic field induction at the middle is 2.501 *10**-2 Wb/m**2\n",
+ "magnetic field induction at one end is 12.5 mT\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.7, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #conversion factor from eV to J\n",
+ "K=200*q; #kinetic energy(J)\n",
+ "m=9.1083*10**-31; #mass(kg)\n",
+ "B=10**-2; #magnetic field(T)\n",
+ "theta=30*math.pi/180; #angle(radian)\n",
+ "\n",
+ "#Calculation\n",
+ "p=math.sqrt(2*m*K); #momentum(kg m/s)\n",
+ "a=p/(q*B); #radius of path(m)\n",
+ "d=2*math.pi*p*math.cos(theta)/(q*B); #pitch of helix(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of path is\",round(a*10**3,3),\"mm\"\n",
+ "print \"pitch of helix is\",round(d*10**3),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of path is 4.772 mm\n",
+ "pitch of helix is 26.0 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.8, Page number 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #conversion factor from eV to J\n",
+ "K=20*q; #kinetic energy(J)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "B=10**2; #magnetic field(T)\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(2*K/m); #velocity(m/sec)\n",
+ "r=m*v/(q*B); #radius of path(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of path is\",round(r*10**8,2),\"*10**-8 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of path is 15.08 *10**-8 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.9, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "B=0.1; #magnetic field(Wb/m**2)\n",
+ "v=10**4; #velocity(m/s)\n",
+ "q=1.6*10**-19; #conversion factor from eV to J\n",
+ "\n",
+ "#Calculation\n",
+ "r=m*v/(q*B); #radius of path(m)\n",
+ "f=v/(2*math.pi*r); #frequency of revolution(rev/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of path is\",round(r*10**7,2),\"*10**-7 m\"\n",
+ "print \"frequency of revolution is\",round(f/10**9,1),\"*10**9 rev/sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of path is 5.69 *10**-7 m\n",
+ "frequency of revolution is 2.8 *10**9 rev/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.10, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "s=0.1; #distance(m)\n",
+ "v=3*10**6; #velocity(m/s)\n",
+ "y=2*10**-3; #deflected distance(m)\n",
+ "E=0.18; #static electric field(V/m)\n",
+ "\n",
+ "#Calculation\n",
+ "t=s/v; #time(sec)\n",
+ "ebym=2*y/(E*(t**2)); #e/m of electron(C/kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"e/m of electron is\",ebym,\"C/kg\"\n",
+ "print \"answer given in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "e/m of electron is 2e+13 C/kg\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.11, Page number 165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=5; #current(A)\n",
+ "B=1.2; #magnetic field(T)\n",
+ "t=0.1*10**-2; #thickness(m)\n",
+ "q=1.6*10**-19; #conversion factor from eV to J\n",
+ "n=8.48*10**28; #concentration(electron/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "VH=I*B/(n*q*t); #hall voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall voltage is\",round(VH*10**6,4),\"micro V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hall voltage is 0.4422 micro V\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.12, Page number 165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=0.5; #current(A)\n",
+ "R=0.1/2; #radius(m)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "N=200; #number of turns\n",
+ "\n",
+ "#Calculation\n",
+ "B=8*mew0*N*i/(R*math.sqrt(125)); #magnetic field induction(Wb/m**2)\n",
+ "B=round(B,4);\n",
+ "H=B/mew0; #intensity of magnetic field(A/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field induction is\",B*10**3,\"*10**-3 Wb/m**2\"\n",
+ "print \"intensity of magnetic field is\",round(H),\"A/m**2\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic field induction is 1.8 *10**-3 Wb/m**2\n",
+ "intensity of magnetic field is 1432.0 A/m**2\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.14, Page number 166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #conversion factor from eV to J\n",
+ "m=3.3*10**-27; #mass(kg)\n",
+ "t=10**-7; #time(sec)\n",
+ "r=0.3; #radius(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "B=2*math.pi*m/(q*t); #magnetic flux density(Wb/m**2)\n",
+ "v=B*q*r/m; #velocity of particle(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic flux density is\",round(B,3),\"Wb/m**2\"\n",
+ "print \"velocity of particle is\",round(v/10**7,2),\"*10**7 m/sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetic flux density is 1.296 Wb/m**2\n",
+ "velocity of particle is 1.88 *10**7 m/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.15, Page number 167"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #conversion factor from eV to J\n",
+ "i=1; #current(amp)\n",
+ "n=10**28; #concentration(electron/m**3)\n",
+ "r=0.055*10**-2; #radius(m)\n",
+ "rho=1.7*10**-8; #resistivity of Cu(ohm m)\n",
+ "\n",
+ "#Calculation\n",
+ "A=math.pi*(r**2); #area(m**2)\n",
+ "vd=1/(n*q*A); #drift velocity(m/sec)\n",
+ "E=rho*i/A; #electric field(v/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"drift velocity is\",round(vd*10**4,2),\"*10**-4 m/sec\"\n",
+ "print \"electric field is\",round(E*10**2,3),\"*10**-2 v/m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "drift velocity is 6.58 *10**-4 m/sec\n",
+ "electric field is 1.789 *10**-2 v/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 52
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |