diff options
Diffstat (limited to 'Optical_Fiber_Communication/Chapter9_1.ipynb')
-rwxr-xr-x | Optical_Fiber_Communication/Chapter9_1.ipynb | 1146 |
1 files changed, 1146 insertions, 0 deletions
diff --git a/Optical_Fiber_Communication/Chapter9_1.ipynb b/Optical_Fiber_Communication/Chapter9_1.ipynb new file mode 100755 index 00000000..367cadc1 --- /dev/null +++ b/Optical_Fiber_Communication/Chapter9_1.ipynb @@ -0,0 +1,1146 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e11123ba8b6bbada16d8c62d198839756136e69c9f0cc93a98384db776536508"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9 : Optical Fiber System-I"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Example 1: PgNo-424"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initialisation of variables\n",
+ "e_c=550.0 # number of electron collected\n",
+ "p=800.0 # number of photon incident\n",
+ "n=e_c/p # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19)# charge\n",
+ "h=6.626*math.pow(10,-34)# plank constant\n",
+ "c=3*math.pow(10,8)# speed of light in m/s\n",
+ "y=1.3*math.pow(10,-6) #wavelength in m\n",
+ "R=(n*eq*y)/(h*c)# responsivity in A/W\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The responsivity = \",R,\"Amp/Watt\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The responsivity = 0.72 Amp/Watt\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2: PgNo-427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "eq=1.602*math.pow(10,-19)# charge\n",
+ "h=6.626*math.pow(10,-34)# plank constant\n",
+ "c=3*math.pow(10,8)# speed of light in m/s\n",
+ "y=0.85*math.pow(10,-6) # wavelength in m\n",
+ "R=0.274 # responsivity in A/W\n",
+ "n=(R*h*c)/(eq*y) # quantum efficiency\n",
+ "n1=n*100 # % of quantum efficiency\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The quantum efficiency = \",n1,\"%\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The quantum efficiency = 40.00 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3: PgNo-429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e_c=1.0 # number of electron collected\n",
+ "p=3.0 # number of photon incident\n",
+ "n=e_c/p # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=0.8*math.pow(10,-6) # wavelength in m\n",
+ "Eg=(h*c)/y # band gap energy in J\n",
+ "R=(n*eq*y)/(h*c)# responsivity in A/W\n",
+ "Po=math.pow(10,-7) # in W\n",
+ "Ip=R*Po # output photo current\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The quantum efficiency = \",n*100,\"%\"))\n",
+ "print ('%s %.2f %s' %(\"\\n band gap energy = \",Eg*pow(10,20),\"*10^-20 J\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The output photo current = \",Ip*pow(10,9),\"nA\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The quantum efficiency = 33.33 %\n",
+ "\n",
+ " band gap energy = 24.85 *10^-20 J\n",
+ "\n",
+ " The output photo current = 21.49 nA\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4: PgNo-432"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "n=0.50 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19)# charge\n",
+ "h=6.626*math.pow(10,-34)# plank constant\n",
+ "c=3*math.pow(10,8)# speed of light in m/s\n",
+ "y=0.85*math.pow(10,-6) # wavelength in m\n",
+ "R=(n*eq*y)/(h*c)# responsivity in A/W\n",
+ "Ip=math.pow(10,-6)# mean photo current\n",
+ "Po=Ip/R # received optical power in W\n",
+ "f=c/y\n",
+ "re=(n*Po)/(h*f)\n",
+ "rp=re/n # number of received photons\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The responsivity = \",R,\"A/W\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The received optical power = \",Po*pow(10,6),\"uW\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The number of received photons = \",rp/pow(10,13),\"*10^13 photons/sec\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The responsivity = 0.34 A/W\n",
+ "\n",
+ " The received optical power = 2.92 uW\n",
+ "\n",
+ " The number of received photons = 1.25 *10^13 photons/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5: PgNo-435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "h=6.626*math.pow(10,-34)# plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "Eg=1.43 # in eV\n",
+ "Eg1=Eg*1.602*math.pow(10,-19) # in J\n",
+ "y=(h*c)/Eg1 # cut off wavelength in m\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The cut off wavelength = \",y*pow(10,6),\"um\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The cut off wavelength = 0.87 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6: PgNo-437"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initialisation of variables\n",
+ "vd=2.5*math.pow(10,4)# carrier velocity in m/s\n",
+ "w=30*math.pow(10,-6)# width in m\n",
+ "Bm=vd/(2*math.pi*w)\n",
+ "Tm=1/Bm # max response time in sec\n",
+ "Tm1=Tm*math.pow(10,9) # max response time in ns\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The max response time = \",Tm1,\"ns\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The max response time = 7.54 ns\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7: PgNo-440"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "n=0.65 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=0.85*math.pow(10,-6)# wavelength in m\n",
+ "R=(n*eq*y)/(h*c)# responsivity in A/W\n",
+ "Po=0.35*math.pow(10,-6) # in W\n",
+ "Ip=R*Po # output photo current\n",
+ "I=9*math.pow(10,-6) # output current in A\n",
+ "M=I/Ip # multiplication factor\n",
+ "M1=math.ceil(M)\n",
+ "# Results\n",
+ "print \" The multiplication factor = \",int(M1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The multiplication factor = 58\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8: PgNo-442"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n=0.50 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "Eg=1.5*math.pow(10,-19) # in J\n",
+ "y=(h*c)/Eg # cut off wavelength in m\n",
+ "f=c/y\n",
+ "R=(n*eq)/(h*f) # responsivity in A/W\n",
+ "Ip=2.7*math.pow(10,-6) # photo current in A\n",
+ "Po=Ip/R # incident optical power in W\n",
+ "Po1=Po*math.pow(10,6) # incident optical power in uW\n",
+ "\n",
+ "# results\n",
+ "print ('%s %.2f %s' %( \" The cut off wavelength = \",y*pow(10,6),\"um\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The responsivity = \",R,\"A/W \"))\n",
+ "print ('%s %.2f %s' %(\"\\n The incident optical power = \",Po1,\"uW\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The cut off wavelength = 1.33 um\n",
+ "\n",
+ " The responsivity = 0.53 A/W \n",
+ "\n",
+ " The incident optical power = 5.06 uW\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9: PgNo-445"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=0.15 # quantum efficiency\n",
+ "eq=1.6*math.pow(10,-19) # charge\n",
+ "h=6.63*math.pow(10,-34)# plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=0.85*math.pow(10,-6) # cut off wavelength in m\n",
+ "f=c/y # frequency in Hz\n",
+ "R=(n*eq)/(h*f) # responsivity in A/W\n",
+ "# Results\n",
+ "print ('%s %.3f %s' %(\" The responsivity = \",R,\"A/W\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The responsivity = 0.103 A/W\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10: PgNo-448"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "Iph=75*math.pow(10,-6) # output photocurrent in A\n",
+ "y=0.85 # operating wavelength in um\n",
+ "Pie=750*math.pow(10,-6) # incident optical power in uW\n",
+ "R=Iph/Pie # responsivity in A/W\n",
+ "n=1.24*R/y # external quantum efficiency\n",
+ "n1=n*100 # percentage of external quantum efficiency\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The responsivity = \",R,\"A/W\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The external quantum efficiency = \",n1,\"%\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The responsivity = 0.10 A/W\n",
+ "\n",
+ " The external quantum efficiency = 14.59 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11: PgNo-451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "Vs=math.pow(10,5) # saturation in m/s\n",
+ "W=7*math.pow(10,-6) # depletion layer width in m\n",
+ "tr=W/Vs # transit time in sec\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.1f %s' %(\" The transit time = \",tr*pow(10,12),\"ps\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The transit time = 70.0 ps\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12: PgNo-454"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "Vs=3*math.pow(10,4)# saturation in m/s\n",
+ "W=25*math.pow(10,-6) # depletion layer width in m\n",
+ "tr=W/Vs # transit time in sec\n",
+ "f=0.35/tr # max 3 dB bandwidth Hz\n",
+ "f1=f/math.pow(10,6) # max 3 dB bandwidth Hz\n",
+ "\n",
+ "# results\n",
+ "print ('%s %.f %s' %(\" The max 3 dB bandwidth = \",f1,\"MHz\"))\n",
+ "print (\"\\n The answer is wrong in the textbook \")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The max 3 dB bandwidth = 420 MHz\n",
+ "\n",
+ " The answer is wrong in the textbook \n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13: PgNo-456"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# variable initialisation\n",
+ "Vs=3*math.pow(10,4) # saturation in m/s\n",
+ "W=25*math.pow(10,-6) # depletion layer width in m\n",
+ "E=10.5*math.pow(10,-11) # in F/m\n",
+ "RL=15*math.pow(10,6) # load resister in ohm\n",
+ "A=0.25*math.pow(10,-6) # area in m^2\n",
+ "tr=W/Vs # transit time in sec\n",
+ "Cj=E*A/W # junction capacitance in F\n",
+ "t=RL*Cj # time constant in sec\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.3f %s' %(\" The transit time = \",tr*pow(10,9),\"ns\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The junction capacitance = \",Cj*pow(10,12),\"pF\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The time constant = \",t*pow(10,6),\"us\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The transit time = 0.833 ns\n",
+ "\n",
+ " The junction capacitance = 1.05 pF\n",
+ "\n",
+ " The time constant = 15.75 us\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14: PgNo-459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initialisation of variables\n",
+ "Eg1=1.12 # band gap for Si in eV\n",
+ "Eg2=0.667 # band gap for Ge in eV\n",
+ "y_si=1.24/Eg1 # cut off wavelength for Si in um\n",
+ "y_he=1.24/Eg2 # cut off wavelength for Ge in um\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.3f %s' %(\" The cut off wavelength for Si = \",y_si,\"um\"))\n",
+ "print ('%s %.3f %s' %(\"\\n The cut off wavelength for Ge = \",y_he,\"um\"))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The cut off wavelength for Si = 1.107 um\n",
+ "\n",
+ " The cut off wavelength for Ge = 1.859 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15: PgNo-463"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# variable declaration\n",
+ "n=0.50 # quantum efficiency\n",
+ "eq=1.6*math.pow(10,-19)# charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=0.9*math.pow(10,-6) # wavelength in m\n",
+ "R=(n*eq*y)/(h*c) # responsivity in A/W\n",
+ "Ip=math.pow(10,-6) # mean photo current\n",
+ "Po=Ip/R # received optical power in W\n",
+ "f=c/y\n",
+ "re=(n*Po)/(h*f)\n",
+ "rp=re/n # number of received photons\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The responsivity = \",R,\"A/W\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The received optical power = \",Po*pow(10,6),\"uW\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The number of received photons = \",rp/pow(10,13),\"*10^13 photons/sec\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The responsivity = 0.36 A/W\n",
+ "\n",
+ " The received optical power = 2.76 uW\n",
+ "\n",
+ " The number of received photons = 1.25 *10^13 photons/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16: PgNo-466"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initialisation of variables\n",
+ "R=0.40 # Responsivity in A/W\n",
+ "m=100*math.pow(10,-6) # incident flux in W/m-m\n",
+ "A=2 # area in m-m\n",
+ "Po=m*A # incident power in W\n",
+ "Ip=R*Po # photon current in A\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.f %s' %(\" The photon current = \",Ip*math.pow(10,6),\"uA\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The photon current = 80 uA\n"
+ ]
+ }
+ ],
+ "prompt_number": 46
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17: PgNo-470"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n=0.65 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "Eg=1.5*math.pow(10,-19) # in J\n",
+ "y=(h*c)/Eg # cut off wavelength in m\n",
+ "f=c/y\n",
+ "R=(n*eq)/(h*f) # responsivity in A/W\n",
+ "Ip=2.5*math.pow(10,-6) # photo current in A\n",
+ "Po=Ip/R # incident optical power in W\n",
+ "Po1=Po*math.pow(10,6) # incident optical power in uW\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The cut off wavelength = \",y*math.pow(10,6),\"um\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The responsivity = \",R,\"A/W\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The incident optical power = \",Po1,\"uW\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The cut off wavelength = 1.33 um\n",
+ "\n",
+ " The responsivity = 0.69 A/W\n",
+ "\n",
+ " The incident optical power = 3.60 uW\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 18: PgNo-472"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "Eg=1.43 # in eV\n",
+ "Eg1=Eg*1.602*math.pow(10,-19) # in J\n",
+ "y=(h*c)/Eg1 # cut off wavelength in m\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.3f %s' %(\" The cut off wavelength = \",y*math.pow(10,6),\"um\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The cut off wavelength = 0.868 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19: PgNo-474"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "n=0.45 # quantum efficiency\n",
+ "h=6.62*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=1.2*math.pow(10,-6) # cut off wavelength in m\n",
+ "Ic=20*math.pow(10,-6) # collector current in A\n",
+ "Po=120*math.pow(10,-6)# incident optical power in W\n",
+ "eq=1.602*math.pow(10,-19)# charge\n",
+ "Go=(h*c*Ic)/(y*Po*eq) # optical gain\n",
+ "h_e=Go/n # common emitter gain\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.3f ' %(\" The optical gain = \",Go))\n",
+ "print ('%s %.3f ' %(\"\\n The common emitter gain = \",h_e))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The optical gain = 0.172 \n",
+ "\n",
+ " The common emitter gain = 0.383 \n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20: PgNo-477"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initialisation of variables\n",
+ "n=0.5 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=1.3*math.pow(10,-6) # wavelength in m\n",
+ "R=(n*eq*y)/(h*c)# responsivity in A/W\n",
+ "Po=0.4*math.pow(10,-6) # in W\n",
+ "Ip=R*Po # output photo current\n",
+ "I=8*math.pow(10,-6) # output current in A\n",
+ "M=I/Ip # multiplication factor\n",
+ "\n",
+ "# Results\n",
+ "print \" The multiplication factor = \",int(M)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The multiplication factor = 38\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21: PgNo-481"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initialisation of variables\n",
+ "n=0.85 # quantum efficiency\n",
+ "eq=1.6*math.pow(10,-19) # charge\n",
+ "h=6.625*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=0.9*math.pow(10,-6) # wavelength in m\n",
+ "R=(n*eq*y)/(h*c)# responsivity in A/W\n",
+ "Po=0.6*math.pow(10,-6) # in W\n",
+ "Ip=R*Po # output photo current\n",
+ "I=10*math.pow(10,-6) # output current in A\n",
+ "M=I/Ip # multiplication factor\n",
+ "\n",
+ "# Results\n",
+ "print \" The multiplication factor = \",int(M)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The multiplication factor = 27\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22: PgNo-483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "e_c=1.2*math.pow(10,11) # number of electron collected\n",
+ "p=2*math.pow(10,11) # number of photon incident\n",
+ "n=e_c/p # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "E=1.5*math.pow(10,-19) # energy in J\n",
+ "\n",
+ "# Calculations\n",
+ "y=(h*c)/E # wavelength in m\n",
+ "R=(n*eq*y)/(h*c) # responsivity in A/W\n",
+ "Ip=2.6*math.pow(10,-6) # photocurrent in A\n",
+ "Po=Ip/R # incident optical power in W\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The quantum efficiency = \",n*100,\"%\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The wavelength = \",y*pow(10,6),\"um\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The responsivity = \",R,\"Amp/Watt\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The incident optical power = \",Po*math.pow(10,6),\"uW\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The quantum efficiency = 60.00 %\n",
+ "\n",
+ " The wavelength = 1.33 um\n",
+ "\n",
+ " The responsivity = 0.64 Amp/Watt\n",
+ "\n",
+ " The incident optical power = 4.06 uW\n"
+ ]
+ }
+ ],
+ "prompt_number": 52
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 23: PgNo-485"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "n=0.40 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=1.35*math.pow(10,-6) # wavelength in m\n",
+ "R=(n*eq*y)/(h*c) # responsivity in A/W\n",
+ "Po=0.2*math.pow(10,-6) # in W\n",
+ "Ip=R*Po # output photo current\n",
+ "I=4.9*math.pow(10,-6) # output current in A\n",
+ "M=I/Ip # multiplication factor\n",
+ "\n",
+ "# Results\n",
+ "print \" The multiplication factor = \",int(M)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The multiplication factor = 56\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24: PgNo-489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable initialisation\n",
+ "n=0.55 # quantum efficiency\n",
+ "eq=1.6*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "y=0.85*math.pow(10,-6) # wavelength in m\n",
+ "R=(n*eq*y)/(h*c) # responsivity in A/W\n",
+ "Ip=2*math.pow(10,-6) # mean photo current\n",
+ "Po=Ip/R # received optical power in W\n",
+ "re=(n*Po*y)/(h*c) # number of received photons\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.3f %s' %(\" The responsivity = \",R,\"A/W\"))\n",
+ "print ('%s %.3f %s' %(\"\\n The received optical power = \",Po*math.pow(10,6),\"uW\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The number of received photons = \",re/math.pow(10,13),\"*10^13 photons/sec\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The responsivity = 0.376 A/W\n",
+ "\n",
+ " The received optical power = 5.315 uW\n",
+ "\n",
+ " The number of received photons = 1.25 *10^13 photons/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 25: PgNo-494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h=6.625*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8) # speed of light in m/s\n",
+ "n=1 # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "E=1.3*math.pow(10,-19) # energy in J\n",
+ "y=(h*c)/E # wavelength in m\n",
+ "M=18 # multiplication factor\n",
+ "rp=math.pow(10,13) # no. of photon per sec\n",
+ "Po=rp*E # output power in w\n",
+ "Ip=(n*Po*eq)/E # output photocurrent in A\n",
+ "I=M*Ip # photocurrent in A\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.3f %s' %(\" The wavelength = \",y*math.pow(10,6),\"um\"))\n",
+ "print ('%s %.1f %s' %(\"\\n The output power = \",Po*math.pow(10,6),\"uW\"))\n",
+ "print ('%s %.3f %s' %(\"\\n The photocurrent = \",I*math.pow(10,6),\"uA\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The wavelength = 1.529 um\n",
+ "\n",
+ " The output power = 1.3 uW\n",
+ "\n",
+ " The photocurrent = 28.836 uA\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26: PgNo-497"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e_c=2*math.pow(10,10) # number of electron collected\n",
+ "p=5*math.pow(10,10) # number of photon incident\n",
+ "n=e_c/p # quantum efficiency\n",
+ "eq=1.602*math.pow(10,-19) # charge\n",
+ "h=6.626*math.pow(10,-34) # plank constant\n",
+ "c=3*math.pow(10,8)# speed of light in m/s\n",
+ "y=0.85*math.pow(10,-6) # wavelength in m\n",
+ "y1=0.85 # wavelength in um\n",
+ "Eg=(h*c)/y # bandgap energy in J\n",
+ "Eg1=1.24/y1 # bandgap energy in terms of eV\n",
+ "Po=10*math.pow(10,-6) # incident power in W\n",
+ "Ip=(n*eq*Po)/Eg # mean output photocurrent in A\n",
+ "\n",
+ "# Results\n",
+ "print ('%s %.2f %s' %(\" The quantum efficiency = \",n*100,\"%\"))\n",
+ "print ('%s %.3f %s' %(\"\\n The bandgap energy = \",Eg*math.pow(10,19),\"*10^-19 J\"))\n",
+ "print ('%s %.2f %s' %(\"\\n The bandgap energy = \",Eg1,\"eV\"))\n",
+ "print ('%s %.3f %s' %(\"\\n The mean output photocurrent = \",Ip*math.pow(10,6),\"uA\"))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The quantum efficiency = 40.00 %\n",
+ "\n",
+ " The bandgap energy = 2.339 *10^-19 J\n",
+ "\n",
+ " The bandgap energy = 1.46 eV\n",
+ "\n",
+ " The mean output photocurrent = 2.740 uA\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |