diff options
Diffstat (limited to 'Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb')
-rwxr-xr-x | Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb | 252 |
1 files changed, 0 insertions, 252 deletions
diff --git a/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb b/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb deleted file mode 100755 index 2383415f..00000000 --- a/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb +++ /dev/null @@ -1,252 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1a1f7133700fa452f49cfaeb319a776f69d7e64235d3f11f1abd2825b262e6e8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "chapter6 - Optical sources" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.3.1, page 6-7 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "x=0.07 \n", - "Eg=1.424+1.266*x+0.266*x**2 \n", - "lamda=1.24/Eg #computing wavelength\n", - "print \"Wavlength is %.3f micrometer.\" %lamda " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Wavlength is 0.819 micrometer.\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.3.2, page 6.12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "n=1.7 #refractive index\n", - "L=5*10**-2 #distance between mirror\n", - "c=3*10**8 #speed of light\n", - "lamda=0.45*10**-6 #wavelength\n", - "k=2*n*L/lamda #computing number of modes\n", - "delf=c/(2*n*L) #computing mode separation\n", - "delf=delf*10**-9 \n", - "print \"Number of modes are %.2e.\\nFrequency separation is %.2f GHz.\"%(k,delf) " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Number of modes are 3.78e+05.\n", - "Frequency separation is 1.76 GHz.\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.7.1, page 6-26" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "tr=50 #radiative recombination lifetime\n", - "tnr=85 #non-radiative recombination lifetime\n", - "h=6.624*10**-34 #plank's constant\n", - "c=3*10**8 #speed of light\n", - "q=1.6*10**-19 #charge of electron\n", - "i=35*10**-3 #current\n", - "lamda=0.85*10**-6 #wavelength\n", - "t=tr*tnr/(tr+tnr) #computing total recombination time\n", - "eta=t/tr #computing internal quantum efficiency\n", - "Pint=eta*h*c*i/(q*lamda) #computing internally generated power\n", - "Pint=Pint*10**3\n", - "print \"Total recombinaiton time is %.2f ns.\\nInternal quantum efficiency is %.3f.\\nInternally generated power is %.2f mW.\" %(t,eta,Pint) \n", - "#answer in the book for Internal quantum efficiency & Internally generated power is wrong." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Total recombinaiton time is 31.48 ns.\n", - "Internal quantum efficiency is 0.630.\n", - "Internally generated power is 32.20 mW.\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.8.1, page 6-34" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from numpy import sqrt, pi\n", - "f1=10*10**6 #frequency\n", - "f2=100*10**6\n", - "t=4*10**-9 \n", - "Pdc=280*10**-6 #optincal output power\n", - "w1=2*pi*f1 #computing omega\n", - "Pout1=Pdc*10**6/(sqrt(1+(w1*t)**2)) #computing output power\n", - "w2=2*pi*f2 #computing omega\n", - "Pout2=Pdc*10**6/(sqrt(1+(w2*t)**2)) #computing output power\n", - "print \"\"\"Ouput power at 10 MHz is %.2f microwatt.\n", - "Ouput power at 100 MHz is %.2f microwatt.\n", - "Conclusion when device is drive at higher frequency the optical power reduces.\"\"\" %(Pout1,Pout2) \n", - "BWopt = sqrt(3)/(2*pi*t) \n", - "BWelec = BWopt/sqrt(2) \n", - "BWopt=BWopt*10**-6 \n", - "BWelec=BWelec*10**-6 \n", - "print \"3 dB optical power is %.2f MHz.\\n3 dB electrical power is %.2f MHz.\" %(BWopt,BWelec) \n", - "#calculation error. In the book square term in the denominater is not taken.\n", - "#answers in the book are wrong." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ouput power at 10 MHz is 271.55 microwatt.\n", - "Ouput power at 100 MHz is 103.52 microwatt.\n", - "Conclusion when device is drive at higher frequency the optical power reduces.\n", - "3 dB optical power is 68.92 MHz.\n", - "3 dB electrical power is 48.73 MHz.\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.8.2, page 6-35" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "n1=3.5 #refractive index\n", - "n=1 #refractive index of air\n", - "F=0.69 #transmission factor\n", - "eta = 100*(n1*(n1+1)**2)**-1 #computing eta\n", - "print \"eta external is %.1f percent i.e. small fraction of intrnally generated opticalpower is emitted from the device.\" %eta \n", - "r= 100*F*n**2/(4*n1**2) #computing ratio of Popt/Pint\n", - "print \"Popt/Pint is %.1f percent\" %r\n", - "#printing mistake at final answer." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "eta external is 1.4 percent i.e. small fraction of intrnally generated opticalpower is emitted from the device.\n", - "Popt/Pint is 1.4 percent\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.8.3, page 6-39" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from numpy import log, exp\n", - "beta0=1.85*10**7 \n", - "T=293 #temperature\n", - "k=1.38*10**-23 #Boltzman constant\n", - "Ea=0.9*1.6*10**-19 \n", - "theta=0.65 #thershold\n", - "betar=beta0*exp(-Ea/(k*T)) \n", - "t=-log(theta)/betar \n", - "print \"Degradation rate is %.1e per hour.\\nOperating lifetime is %.1e hour.\" %(betar,t) \n", - "#answer in the book for Degradation rate & Operating lifetime is wrong." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Degradation rate is 6.3e-09 per hour.\n", - "Operating lifetime is 6.8e+07 hour.\n" - ] - } - ], - "prompt_number": 12 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |