summaryrefslogtreecommitdiff
path: root/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb')
-rwxr-xr-xOptical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb252
1 files changed, 0 insertions, 252 deletions
diff --git a/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb b/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb
deleted file mode 100755
index 2383415f..00000000
--- a/Optical_Communiation_by_Anasuya_Kalavar/chapter6.ipynb
+++ /dev/null
@@ -1,252 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1a1f7133700fa452f49cfaeb319a776f69d7e64235d3f11f1abd2825b262e6e8"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "chapter6 - Optical sources"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 6.3.1, page 6-7 "
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from __future__ import division\n",
- "x=0.07 \n",
- "Eg=1.424+1.266*x+0.266*x**2 \n",
- "lamda=1.24/Eg #computing wavelength\n",
- "print \"Wavlength is %.3f micrometer.\" %lamda "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Wavlength is 0.819 micrometer.\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 6.3.2, page 6.12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "n=1.7 #refractive index\n",
- "L=5*10**-2 #distance between mirror\n",
- "c=3*10**8 #speed of light\n",
- "lamda=0.45*10**-6 #wavelength\n",
- "k=2*n*L/lamda #computing number of modes\n",
- "delf=c/(2*n*L) #computing mode separation\n",
- "delf=delf*10**-9 \n",
- "print \"Number of modes are %.2e.\\nFrequency separation is %.2f GHz.\"%(k,delf) "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of modes are 3.78e+05.\n",
- "Frequency separation is 1.76 GHz.\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 6.7.1, page 6-26"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from __future__ import division\n",
- "tr=50 #radiative recombination lifetime\n",
- "tnr=85 #non-radiative recombination lifetime\n",
- "h=6.624*10**-34 #plank's constant\n",
- "c=3*10**8 #speed of light\n",
- "q=1.6*10**-19 #charge of electron\n",
- "i=35*10**-3 #current\n",
- "lamda=0.85*10**-6 #wavelength\n",
- "t=tr*tnr/(tr+tnr) #computing total recombination time\n",
- "eta=t/tr #computing internal quantum efficiency\n",
- "Pint=eta*h*c*i/(q*lamda) #computing internally generated power\n",
- "Pint=Pint*10**3\n",
- "print \"Total recombinaiton time is %.2f ns.\\nInternal quantum efficiency is %.3f.\\nInternally generated power is %.2f mW.\" %(t,eta,Pint) \n",
- "#answer in the book for Internal quantum efficiency & Internally generated power is wrong."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Total recombinaiton time is 31.48 ns.\n",
- "Internal quantum efficiency is 0.630.\n",
- "Internally generated power is 32.20 mW.\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 6.8.1, page 6-34"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from numpy import sqrt, pi\n",
- "f1=10*10**6 #frequency\n",
- "f2=100*10**6\n",
- "t=4*10**-9 \n",
- "Pdc=280*10**-6 #optincal output power\n",
- "w1=2*pi*f1 #computing omega\n",
- "Pout1=Pdc*10**6/(sqrt(1+(w1*t)**2)) #computing output power\n",
- "w2=2*pi*f2 #computing omega\n",
- "Pout2=Pdc*10**6/(sqrt(1+(w2*t)**2)) #computing output power\n",
- "print \"\"\"Ouput power at 10 MHz is %.2f microwatt.\n",
- "Ouput power at 100 MHz is %.2f microwatt.\n",
- "Conclusion when device is drive at higher frequency the optical power reduces.\"\"\" %(Pout1,Pout2) \n",
- "BWopt = sqrt(3)/(2*pi*t) \n",
- "BWelec = BWopt/sqrt(2) \n",
- "BWopt=BWopt*10**-6 \n",
- "BWelec=BWelec*10**-6 \n",
- "print \"3 dB optical power is %.2f MHz.\\n3 dB electrical power is %.2f MHz.\" %(BWopt,BWelec) \n",
- "#calculation error. In the book square term in the denominater is not taken.\n",
- "#answers in the book are wrong."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ouput power at 10 MHz is 271.55 microwatt.\n",
- "Ouput power at 100 MHz is 103.52 microwatt.\n",
- "Conclusion when device is drive at higher frequency the optical power reduces.\n",
- "3 dB optical power is 68.92 MHz.\n",
- "3 dB electrical power is 48.73 MHz.\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 6.8.2, page 6-35"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "n1=3.5 #refractive index\n",
- "n=1 #refractive index of air\n",
- "F=0.69 #transmission factor\n",
- "eta = 100*(n1*(n1+1)**2)**-1 #computing eta\n",
- "print \"eta external is %.1f percent i.e. small fraction of intrnally generated opticalpower is emitted from the device.\" %eta \n",
- "r= 100*F*n**2/(4*n1**2) #computing ratio of Popt/Pint\n",
- "print \"Popt/Pint is %.1f percent\" %r\n",
- "#printing mistake at final answer."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "eta external is 1.4 percent i.e. small fraction of intrnally generated opticalpower is emitted from the device.\n",
- "Popt/Pint is 1.4 percent\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 6.8.3, page 6-39"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from numpy import log, exp\n",
- "beta0=1.85*10**7 \n",
- "T=293 #temperature\n",
- "k=1.38*10**-23 #Boltzman constant\n",
- "Ea=0.9*1.6*10**-19 \n",
- "theta=0.65 #thershold\n",
- "betar=beta0*exp(-Ea/(k*T)) \n",
- "t=-log(theta)/betar \n",
- "print \"Degradation rate is %.1e per hour.\\nOperating lifetime is %.1e hour.\" %(betar,t) \n",
- "#answer in the book for Degradation rate & Operating lifetime is wrong."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Degradation rate is 6.3e-09 per hour.\n",
- "Operating lifetime is 6.8e+07 hour.\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file