summaryrefslogtreecommitdiff
path: root/Numerical_Methods_by_E._Balaguruswamy/chapter11.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Numerical_Methods_by_E._Balaguruswamy/chapter11.ipynb')
-rw-r--r--Numerical_Methods_by_E._Balaguruswamy/chapter11.ipynb428
1 files changed, 428 insertions, 0 deletions
diff --git a/Numerical_Methods_by_E._Balaguruswamy/chapter11.ipynb b/Numerical_Methods_by_E._Balaguruswamy/chapter11.ipynb
new file mode 100644
index 00000000..c717bdbd
--- /dev/null
+++ b/Numerical_Methods_by_E._Balaguruswamy/chapter11.ipynb
@@ -0,0 +1,428 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11 - Numerical differentiation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_01 Pg No. 348"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "h\ty\terr\n",
+ "0.2 \t2.2 \t0.2\n",
+ "0.1 \t2.1 \t0.1\n",
+ "0.05 \t2.05 \t0.05\n",
+ "0.01 \t2.01 \t0.01\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from scipy.misc import derivative\n",
+ "\n",
+ "#First order forward difference\n",
+ "\n",
+ "def f(x):\n",
+ " F=x**2\n",
+ " return F\n",
+ " \n",
+ "\n",
+ "def df(x,h):\n",
+ " DF=(f(x+h)-f(x))/h\n",
+ " return DF\n",
+ "\n",
+ "dfactual = derivative(f,1)\n",
+ "h = [0.2, 0.1, 0.05, 0.01 ]\n",
+ "print 'h\\ty\\terr'\n",
+ "for hh in h:\n",
+ " y = df(1,hh)\n",
+ " err = y - dfactual\n",
+ " print hh,'\\t',y,'\\t',err"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_02 Pg No. 350"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "h\ty\terr\n",
+ "0.2 \t2.0 \t-4.4408920985e-16\n",
+ "0.1 \t2.0 \t4.4408920985e-16\n",
+ "0.05 \t2.0 \t4.4408920985e-16\n",
+ "0.01 \t2.0 \t1.7763568394e-15\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from scipy.misc import derivative\n",
+ "\n",
+ "#Three-Point Formula\n",
+ "\n",
+ "def f(x):\n",
+ " F = x**2\n",
+ " return F\n",
+ "def df(x,h):\n",
+ " DF = (f(x+h)-f(x-h))/(2*h)\n",
+ " return DF\n",
+ "dfactual = derivative(f,1)\n",
+ "h = [0.2, 0.1, 0.05, 0.01 ]\n",
+ "print 'h\\ty\\terr'\n",
+ "for hh in h:\n",
+ " y = df(1,hh)\n",
+ " err = y - dfactual\n",
+ " print hh,'\\t',y,'\\t',err\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_03 Pg No. 353"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "h\ty\t\terr\n",
+ "0.01 \t0.898257285429 \t-0.00218981692372\n",
+ "0.015 \t0.897151155627 \t-0.00329594672573\n",
+ "0.02 \t0.896037563392 \t-0.00440953896077\n",
+ "0.025 \t0.894916522709 \t-0.00553057964367\n",
+ "0.03 \t0.893788047675 \t-0.00665905467759\n",
+ "0.035 \t0.892652152498 \t-0.00779494985432\n",
+ "0.04 \t0.891508851498 \t-0.00893825085448\n",
+ "\n",
+ "M2 = 2.061e-08 & hopt = 4.706e-01\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from scipy.misc import derivative\n",
+ "from numpy import arange,sin,cos,sqrt\n",
+ "x = 0.45#\n",
+ "def f(x):\n",
+ " F = sin(x)\n",
+ " return F\n",
+ "def df(x,h):\n",
+ " DF = (f(x+h) - f(x))/h\n",
+ " return DF\n",
+ "dfactual = cos(x)#\n",
+ "h = arange(0.01,0.005+0.04,0.005)\n",
+ "n = len(h)#\n",
+ "print 'h\\ty\\t\\terr'\n",
+ "for hh in h:\n",
+ " y = df(x,hh)\n",
+ " err = y - dfactual \n",
+ " print hh,'\\t',y,'\\t',err\n",
+ "\n",
+ "#using 16 significant digits so the bound for roundoff error is 0.5*10**(-16)\n",
+ "e = 0.5*10**(-16)\n",
+ "M2 = max(sin(x+h))#\n",
+ "hopt = 2*sqrt(e/M2)#\n",
+ "print '\\nM2 = %.3e & hopt = %.3e'%(hopt,M2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_04 Pg No. 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " d2fexact = -0.732 \n",
+ " err = -6.097e-06 \n",
+ " y = -0.732 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from numpy import arange,sin,cos,sqrt\n",
+ "\n",
+ "#Approximate second derivative\n",
+ "\n",
+ "x = 0.75#\n",
+ "h = 0.01#\n",
+ "def f(x):\n",
+ " F = cos(x)\n",
+ " return F\n",
+ "def d2f(x,h):\n",
+ " D2F = ( f(x+h) - 2*f(x) + f(x-h) )/h**2\n",
+ " return D2F\n",
+ "y = d2f(0.75,0.01)#\n",
+ "d2fexact = -cos(0.75)\n",
+ "err = d2fexact - y #\n",
+ "print ' d2fexact = %.3f \\n err = %.3e \\n y = %.3f '%(d2fexact,err,y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_05 Pg No. 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "v(5) = 4.25\n",
+ "v(7) = 5.5\n",
+ "v(9) = 6.75\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Differentiation of tabulated data\n",
+ "\n",
+ "T = range(5,10)\n",
+ "s = [10, 14.5, 19.5, 25.5 , 32 ]\n",
+ "h = T[1]-T[0]\n",
+ "n = len(T)\n",
+ "def v(t):\n",
+ " if t in T and T.index(t) == 0:\n",
+ " V = (-3*s[T.index(t) ] + 4*s[T.index(t+h)] - s[T.index(t+2*h) ] ) /(2*h) #Three point forward difference formula\n",
+ " elif t in T and T.index(t) == n-1:\n",
+ " V = ( 3*s[T.index(t)] - 4*s[ T.index(t-h)] + s[T.index(t-2*h) ] )/(2*h) #Backward difference formula\n",
+ " else:\n",
+ " V = ( s[T.index(t+h)] - s[T.index(t-h)] )/(2*h) #Central difference formula\n",
+ " return V\n",
+ "\n",
+ "v_5 = v(5)\n",
+ "v_7 = v(7)\n",
+ "v_9 = v(9)\n",
+ "\n",
+ "print 'v(5) = ',v_5\n",
+ "print 'v(7) = ',v_7\n",
+ "print 'v(9) = ',v_9\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_06 Pg No. 359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a(7) = 0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "T = range(5,10)\n",
+ "s = [10, 14.5 , 19.5 , 25.5, 32 ]\n",
+ "h = T[1]-T[0]\n",
+ "def a(t):\n",
+ " A = ( s[T.index(t+h) ] - 2*s[ T.index(t) ] + s[T.index(t-h) ] )/h**2\n",
+ " return A\n",
+ "a_7 = a(6)\n",
+ "\n",
+ "print 'a(7) = ',a_7"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_7 Pg No. 359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "solving the above equations we get \n",
+ "\n",
+ " y1 = y(0.25) = -0.117562 \n",
+ " y2 = y(0.5) = -0.168475 \n",
+ " y3 = y(0.75) = -0.139088 \n",
+ " \n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import mat,divide,linalg\n",
+ "h = 0.25 #\n",
+ "#y''(x) = e**(x**2)\n",
+ "#y(0) = 0 , y(1) = 0\n",
+ "# y''(x) = y(x+h) - 2*y(x) + y(x-h)/h**2 = e**(x**2)\n",
+ "#( y(x + 0.25) - 2*y(x) + y(x-0.25) )/0.0625 = e**(x**2)\n",
+ "#y(x+0.25) - 2*y(x) + y(x - 0.25) = 0.0624*e**(x**2)\n",
+ "#y(0.5) - 2*y(0.25) + y(0) = 0.0665\n",
+ "#y(0.75) - 2*y(0.5) + y(0.25) = 0.0803\n",
+ "#y(1) - 2*y(0.75) + y(0.5) = 0.1097\n",
+ "#given y(0) = y(1) = 0\n",
+ "#\n",
+ "#0 + y2 - 2y1 = 0.06665\n",
+ "#y3 - 2*y2 + y1 = 0.0803\n",
+ "#-2*y3 + y2 + 0 = 0.1097\n",
+ "#Therefore\n",
+ "A = mat([[0, 1, -2],[1, -2, 1],[-2, 1, 0 ]])\n",
+ "B = mat([[ 0.06665],[0.0803] ,[0.1097 ]])\n",
+ "C = linalg.solve(A,B)\n",
+ "print 'solving the above equations we get \\n\\n y1 = y(0.25) = %f \\n y2 = y(0.5) = %f \\n y3 = y(0.75) = %f \\n '%(C[2],C[1],C[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 11_08 Pg No. 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "richardsons technique -\n",
+ "\n",
+ "df(0.5) = 1.64850499031\n",
+ "D(rh) = D(0.25) = 1.71828182846\n",
+ "D(0.5) = 1.66594919985\n",
+ "Exact df(0.5) = 1.93757920531\n",
+ "The result by richardsons technique is much better than other results\n",
+ "for r = 2\n",
+ "df(x) = 1.64518270284\n",
+ "D(rh) = 1.93757920531\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import arange,exp\n",
+ "from scipy.misc import derivative\n",
+ "\n",
+ "x = arange(-0.5,0.25+1.5,0.25)\n",
+ "h = 0.5 ;\n",
+ "r = 1.0/2 ;\n",
+ "\n",
+ "def f(x):\n",
+ " F = exp(x)\n",
+ " return F\n",
+ "def D(x,h):\n",
+ " D = (f(x + h) - f(x-h) )/(2*h) \n",
+ " return D\n",
+ "def df(x,h,r):\n",
+ " Df = (D(x,r*h) - r**2*D(x,h))/(1-r**2)\n",
+ " return Df\n",
+ "\n",
+ "df_05 = df(0.5,0.5,1.0/2);\n",
+ "print 'richardsons technique -\\n\\ndf(0.5) = ',df_05\n",
+ "print 'D(rh) = D(0.25) = ',D(0.5,0.5)\n",
+ "print 'D(0.5) = ',D(0.5,0.25)\n",
+ "\n",
+ "dfexact = derivative(f,0.5)\n",
+ "print 'Exact df(0.5) = ',dfexact\n",
+ "print 'The result by richardsons technique is much better than other results'\n",
+ "\n",
+ "#r = 2\n",
+ "print 'for r = 2'\n",
+ "print 'df(x) = ',df(0.5,0.5,2)\n",
+ "print 'D(rh) = ',D(0.5,2*0.5)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}