diff options
Diffstat (limited to 'Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb')
-rwxr-xr-x | Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb new file mode 100755 index 00000000..b3818649 --- /dev/null +++ b/Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb @@ -0,0 +1,285 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:881432a5cd98267b92bdfa11e021925fdef61ae98abdadccafbf254c6f9ca038"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "12: Band theory of solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.1, Page number 243"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "EF=8; #fermi energy(eV)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "E0bar=3*EF/5; \n",
+ "v=math.sqrt(2*E0bar*e/m); #speed of electron(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"speed of electron is\",round(v/10**6,1),\"*10**6 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "speed of electron is 1.3 *10**6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.2, Page number 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=8; #current(ampere)\n",
+ "r=9*10**-4; #radius(m)\n",
+ "V=5; #potential difference(V)\n",
+ "L=1; #length(m)\n",
+ "\n",
+ "#Calculation\n",
+ "A=math.pi*r**2; #area of wire(m**2)\n",
+ "E=V/L;\n",
+ "J=I/A; #current density(V/m)\n",
+ "rho=E/J; #resistivity(ohm m)\n",
+ "\n",
+ "#Result\n",
+ "print \"current density is\",round(J/10**6,3),\"*10**6 V/m\"\n",
+ "print \"resistivity is\",round(rho*10**6,2),\"*10**-6 ohm m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "current density is 3.144 *10**6 V/m\n",
+ "resistivity is 1.59 *10**-6 ohm m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.3, Page number 245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "a=4*10**-10; #lattice parameter(m)\n",
+ "N=1.56*10**28; \n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "tow=10**-15; #collision time(s)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
+ "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
+ "rho=1/sigma; #resistivity(ohm m)\n",
+ "\n",
+ "#Result\n",
+ "print \"conductivity is\",round(sigma/10**6,2),\"*10**6 ohm m\"\n",
+ "print \"resistivity is\",rho,\"ohm m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity is 0.44 *10**6 ohm m\n",
+ "resistivity is 2.275e-06 ohm m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.4, Page number 247"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23; #boltzmann constant(J/K)\n",
+ "NA=6.02*10**26; #avagadro number(k/mole)\n",
+ "T=300; #temperature(K)\n",
+ "EF=2; #fermi energy(eV)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "\n",
+ "#Calculation\n",
+ "C=math.pi**2*k**2*NA*T/(2*EF*e); #electronic specific heat(J/kmol/K)\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic specific heat is\",int(C),\"J/kmol/K\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electronic specific heat is 530 J/kmol/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.5, Page number 247"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "K=327; #thermal conductivity(W/mK)\n",
+ "T=300; #temperature(K)\n",
+ "rho=7.13*10**3; #density(kg/m**3)\n",
+ "NA=6.02*10**26; #avagadro number(k/mole)\n",
+ "w=65.38; #atomic weight\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "tow=2.5*10**-14; #relaxation time(s)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "N=2*rho*NA/w; #number of electrons per unit volume(per m**3)\n",
+ "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
+ "L=K/(sigma*T); #lorentz number(W ohm/K**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm/K**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lorentz number is 1.1804 *10**-8 W ohm/K**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 12.6, Page number 248"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "n=5*10**28; #number of atoms(/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "RH=-1/(n*e); #hall coefficient(m**3/C)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall coefficient is\",round(RH*10**9,3),\"*10**-9 m**3/C\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hall coefficient is -0.125 *10**-9 m**3/C\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |