diff options
Diffstat (limited to 'Modern_Physics/Chapter5.ipynb')
-rwxr-xr-x | Modern_Physics/Chapter5.ipynb | 269 |
1 files changed, 32 insertions, 237 deletions
diff --git a/Modern_Physics/Chapter5.ipynb b/Modern_Physics/Chapter5.ipynb index 175eed34..331dc531 100755 --- a/Modern_Physics/Chapter5.ipynb +++ b/Modern_Physics/Chapter5.ipynb @@ -1,7 +1,6 @@ { "metadata": { - "name": "", - "signature": "sha256:e257dccb197e3cab0c059eb9e1d236e5359e2a825fc6be941cab77026f236087" + "name": "Chapter5" }, "nbformat": 3, "nbformat_minor": 0, @@ -10,10 +9,10 @@ "cells": [ { "cell_type": "heading", - "level": 2, + "level": 1, "metadata": {}, "source": [ - "Chapter 5: Matter Waves" + "Chapter 5: The Schrodinger Equation" ] }, { @@ -21,203 +20,44 @@ "level": 2, "metadata": {}, "source": [ - "Example 5.1, page no. 154" + "Example 5.2 Page 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "\n", - "\n", - "#Variable declaration\n", - "\n", - "h = 6.63 * 10 ** -34 #Planck's constant (J.s)\n", - "m = 0.14 #mass of the baseball (kg)\n", - "v = 27.0 #speed of the baseball (m/s)\n", - "\n", - "#Calculation\n", - "\n", - "lamda = h / (m * v)\n", - "\n", - "#Result\n", - "\n", - "print \"The de Broglie wavelength of the baseball is\",round(lamda/10**-34,2),\"X 10^-34 m.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The de Broglie wavelength of the baseball is 1.75 X 10^-34 m.\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.2, page no. 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", + "#initiation of variable\n", + "#parta\n", + "from math import pi, sin\n", "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "h = 6.63 * 10 ** -34 #Planck's constant (J.s)\n", - "me = 9.11 * 10 ** -31 #mass of electron (kg)\n", - "q = 1.6 * 10 ** -19 #charge of electron (C)\n", - "V = 50 #potential difference (V)\n", - "\n", - "#Calculation\n", - "\n", - "lamda = h / math.sqrt(2*me*q*V)\n", - "\n", - "#Result\n", - "\n", - "print \"The de Broglie wavelength of electron is\",round(lamda/10 ** -10,1),\"X 10^-10 m.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The de Broglie wavelength of electron is 1.7 X 10^-10 m.\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.3, page no. 158" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#Variable declaration\n", - "\n", - "h = 6.63 * 10 ** -34 #Planck's constant (J.s)\n", - "lamda = 1.0 * 10 ** -10 #de Broglie wavelength of the neutron (m)\n", - "mn = 1.66 * 10**-27 #mass of neutrons (kg)\n", - "e = 1.602 * 10 **-19 #charge of electron(C)\n", - "\n", - "#Calculation\n", - "\n", - "p = h / lamda\n", - "K = p**2/(2*mn)\n", + "from scipy import integrate\n", + "h=1.05*10**-34;m=9.11*10**-31;L=10.0**-10; # all the values are taken in SI units\n", + "E1=h**2*pi**2/(2*m*L**2); E2=4*E1; #Energies are calculated\n", + "delE=(E2-E1)/(1.6*10**-19); #Difference in energy is converted to eV\n", "\n", "#result\n", + "print \"Energy to be supplied in eV. is \",round(delE,3);\n", "\n", - "print \"The kinetic energy is\",round(K/e,4),\"eV.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The kinetic energy is 0.0826 eV.\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.8, page no. 177" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#Variable Declaration\n", - "\n", - "h = 1.05 * 10 ** -34 #(J.s)\n", - "dx = 15 #length of the room (m)\n", - "m = 0.1 #mass of the ball (kg)\n", - "vx = 2.0 #velocity of the ball (m/s)\n", - "\n", - "#Calculation\n", - "\n", - "dpx = h /( 2* dx)\n", - "dvx = dpx /m\n", - "uncertainity = dvx/vx\n", - "\n", - "#Result\n", - "\n", - "print \"The relative uncertainty is\",round(uncertainity/10**-35,1),\"X 10^-35 which is not measurable.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The relative uncertainty is 1.8 X 10^-35 which is not measurable.\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.9, page no. 178" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", + "#partb\n", + "x1=0.09*10**-10;x2=0.11*10**-10 #limits of the given region\n", + "def integrand(x,L):\n", + " return 2.0/L*(sin(pi*x/L))**2\n", "\n", - "#Variable declaration\n", + "probGnd=integrate.quad(integrand,x1,x2,args=(L))\n", "\n", - "h = 6.58 * 10 ** -16 #(eV.s)\n", - "dx = 1.0 * 10 ** -14 / 2.0 # dx is half the length of confinement (m)\n", - "c = 3.00 * 10 ** 8 #speed of light (m/s)\n", - "me = 9.11 * 10 ** -31 # mass of electron (kg)\n", - "e = 1.6 * 10 ** -19 #charge of electron (C)\n", + "#result\n", + "print \"The percentage probability of finding an electron in the ground state is \\n\",round(probGnd[0]*100,3);\n", "\n", - "#Calculation\n", + "#partc\n", + "k1=0.0;k2=0.25*10**-10;\n", + "def integrand(k,L):\n", + " return 2.0/L*(sin(2*pi*k/L))**2\n", "\n", - "dpx = h * c / (2 * dx)\n", - "E = math.sqrt(dpx**2 + (me * c**2/e)**2)\n", - "K = E - (me * c**2/e)\n", + "probExc=integrate.quad(integrand,k1,k2,args=(L))\n", "\n", "#result\n", - "\n", - "print \"The kinetic energy of an intranuclear electron is\",round(K/10**6,2),\"MeV.\"" + "print \"The probability of finding an electron in the excited state is\",round(probExc[0],3);" ], "language": "python", "metadata": {}, @@ -226,67 +66,22 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The kinetic energy of an intranuclear electron is 19.23 MeV.\n" + " Energy to be supplied in eV. is 111.978\n", + "The percentage probablility of finding an electron in the ground state is \n", + "0.383\n", + "The probablility of finding an electron in the excited state is 0.25\n" ] } ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.10, page no. 178" - ] + "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "dt = 1.0 * 10 ** -8 #lifetime (s)\n", - "\n", - "#calculation\n", - "\n", - "df = 1/(4*math.pi*dt)\n", - "\n", - "#result\n", - "\n", - "print \"The frequency of the light emitted is\",round(df/10**6,1),\"X 10^6 Hz.\"\n", - "\n", - "#Variable declaration\n", - "\n", - "c = 3.0 * 10 ** 8 #speed of light (m/s)\n", - "lamda = 500 * 10 ** -9 #wavelength (m)\n", - "\n", - "#Calculation\n", - "\n", - "f = c/ lamda\n", - "df_by_f0 = df / f\n", - "\n", - "#result\n", - "\n", - "print \"The fractional broadening is\",round(df_by_f0/10**-8,1),\"X 10^-8.\"" - ], + "input": [], "language": "python", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The frequency of the light emitted is 8.0 X 10^6 Hz.\n", - "The fractional broadening is 1.3 X 10^-8.\n" - ] - } - ], - "prompt_number": 19 + "outputs": [] } ], "metadata": {} |