diff options
Diffstat (limited to 'Modern_Physics/Chapter10_1.ipynb')
-rwxr-xr-x | Modern_Physics/Chapter10_1.ipynb | 180 |
1 files changed, 0 insertions, 180 deletions
diff --git a/Modern_Physics/Chapter10_1.ipynb b/Modern_Physics/Chapter10_1.ipynb deleted file mode 100755 index 77c37cd7..00000000 --- a/Modern_Physics/Chapter10_1.ipynb +++ /dev/null @@ -1,180 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Statistical Physics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.2 Page 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt\n", - "#The solution is purely theoretical and involves a lot of approximations.\n", - "print\"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\";\n", - "T=6000.0; #temperature for sun\n", - "delf=7.14*10**-7*sqrt(T);#change in frequency\n", - "\n", - "#result\n", - "print\"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is\",delf,\" times the frequency of the light.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\n", - "The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is 5.53062021838e-05 times the frequency of the light.\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.3 Page 309" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import sqrt,pi, exp, log\n", - "kT=0.0252;E=10.2 # at room temperature, kT=0.0252 standard value and given value of E\n", - "\n", - "#calculation\n", - "n2=2;n1=1; g2=2*(n2**2);g1=2*(n1**2); #values for ground and excited states\n", - "t=(g2/g1)*exp(-E/kT); #fraction of atoms\n", - "\n", - "#result\n", - "print\"The number of hydrogen atoms required is %.1e\" %(1.0/t),\" which weighs %.1e\" %((1/t)*(1.67*10**-27)),\"Kg\"\n", - "\n", - "#partb\n", - "t=0.1/0.9;k=8.65*10**-5 #fracion of atoms in case-2 is given\n", - "T=-E/(log(t/(g2/g1))*k); #temperature\n", - "\n", - "#result\n", - "print\"The value of temperature at which 1/10 atoms are in excited state in K is %.1e\" %round(T,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The number of hydrogen atoms required is 1.5e+175 which weighs 2.5e+148 Kg\n", - "The value of temperature at which 1/10 atoms are in excited state in K is 3.3e+04\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.4 Page 311" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import log\n", - "#theoritical part a\n", - "print'The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\\nThe ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)';\n", - "#partb\n", - "uB=5.79*10**-4; #for a typical atom\n", - "t=1.1;k=8.65*10**-5; #ratio and constant k\n", - "\n", - "#calculation\n", - "T=2*uB/(log(t)*k); #temperature\n", - "\n", - "#result\n", - "print\"The value of temperature ar which the given ratio exists in K is\",round(T,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\n", - "The ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)\n", - "The value of temperature ar which the given ratio exists in K is 140.46\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.5 Page 313" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#initiation of variable\n", - "from math import pi\n", - "p=0.971; A=6.023*10**23; m=23.0; # various given values and constants\n", - "\n", - "#calculation\n", - "c= (p*A/m)*10**6; # atoms per unit volume\n", - "hc=1240.0; mc2=0.511*10**6; # hc=1240 eV.nm\n", - "E= ((hc**2)/(2*mc2))*(((3/(8*pi))*c)**(2.0/3)); #value of fermi energy\n", - "\n", - "#result\n", - "print\"The fermi energy for sodium is\",round(E*10**-18,4),\"eV\";#multiply by 10^-18 to convert metres^2 term to nm^2" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The fermi energy for sodium is 3.1539 eV\n" - ] - } - ], - "prompt_number": 12 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |