summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter10_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics/Chapter10_1.ipynb')
-rwxr-xr-xModern_Physics/Chapter10_1.ipynb180
1 files changed, 0 insertions, 180 deletions
diff --git a/Modern_Physics/Chapter10_1.ipynb b/Modern_Physics/Chapter10_1.ipynb
deleted file mode 100755
index 77c37cd7..00000000
--- a/Modern_Physics/Chapter10_1.ipynb
+++ /dev/null
@@ -1,180 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Statistical Physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 10.2 Page 307"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import sqrt\n",
- "#The solution is purely theoretical and involves a lot of approximations.\n",
- "print\"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\";\n",
- "T=6000.0; #temperature for sun\n",
- "delf=7.14*10**-7*sqrt(T);#change in frequency\n",
- "\n",
- "#result\n",
- "print\"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is\",delf,\" times the frequency of the light.\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\n",
- "The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is 5.53062021838e-05 times the frequency of the light.\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 10.3 Page 309"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import sqrt,pi, exp, log\n",
- "kT=0.0252;E=10.2 # at room temperature, kT=0.0252 standard value and given value of E\n",
- "\n",
- "#calculation\n",
- "n2=2;n1=1; g2=2*(n2**2);g1=2*(n1**2); #values for ground and excited states\n",
- "t=(g2/g1)*exp(-E/kT); #fraction of atoms\n",
- "\n",
- "#result\n",
- "print\"The number of hydrogen atoms required is %.1e\" %(1.0/t),\" which weighs %.1e\" %((1/t)*(1.67*10**-27)),\"Kg\"\n",
- "\n",
- "#partb\n",
- "t=0.1/0.9;k=8.65*10**-5 #fracion of atoms in case-2 is given\n",
- "T=-E/(log(t/(g2/g1))*k); #temperature\n",
- "\n",
- "#result\n",
- "print\"The value of temperature at which 1/10 atoms are in excited state in K is %.1e\" %round(T,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The number of hydrogen atoms required is 1.5e+175 which weighs 2.5e+148 Kg\n",
- "The value of temperature at which 1/10 atoms are in excited state in K is 3.3e+04\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 10.4 Page 311"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import log\n",
- "#theoritical part a\n",
- "print'The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\\nThe ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)';\n",
- "#partb\n",
- "uB=5.79*10**-4; #for a typical atom\n",
- "t=1.1;k=8.65*10**-5; #ratio and constant k\n",
- "\n",
- "#calculation\n",
- "T=2*uB/(log(t)*k); #temperature\n",
- "\n",
- "#result\n",
- "print\"The value of temperature ar which the given ratio exists in K is\",round(T,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\n",
- "The ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)\n",
- "The value of temperature ar which the given ratio exists in K is 140.46\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 10.5 Page 313"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#initiation of variable\n",
- "from math import pi\n",
- "p=0.971; A=6.023*10**23; m=23.0; # various given values and constants\n",
- "\n",
- "#calculation\n",
- "c= (p*A/m)*10**6; # atoms per unit volume\n",
- "hc=1240.0; mc2=0.511*10**6; # hc=1240 eV.nm\n",
- "E= ((hc**2)/(2*mc2))*(((3/(8*pi))*c)**(2.0/3)); #value of fermi energy\n",
- "\n",
- "#result\n",
- "print\"The fermi energy for sodium is\",round(E*10**-18,4),\"eV\";#multiply by 10^-18 to convert metres^2 term to nm^2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The fermi energy for sodium is 3.1539 eV\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file