summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics/Chapter10.ipynb')
-rwxr-xr-xModern_Physics/Chapter10.ipynb191
1 files changed, 79 insertions, 112 deletions
diff --git a/Modern_Physics/Chapter10.ipynb b/Modern_Physics/Chapter10.ipynb
index a9cbc233..6135c0d0 100755
--- a/Modern_Physics/Chapter10.ipynb
+++ b/Modern_Physics/Chapter10.ipynb
@@ -1,7 +1,7 @@
{
"metadata": {
- "name": "",
- "signature": "sha256:1d13a558dd2cc62e2c7ada350fc7a07d9283efcbc790578d0711fd6c96f50df0"
+ "name": "Chapter10",
+ "signature": "sha256:e4e2027717708d18dd95ce338ad24e83f0d7666653044656429dafb0b39af784"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -13,7 +13,7 @@
"level": 1,
"metadata": {},
"source": [
- "Chapter 10: Statistical Physics"
+ "Chapter 10:Statistical Physics"
]
},
{
@@ -21,64 +21,22 @@
"level": 2,
"metadata": {},
"source": [
- "Example 10.1, page no. 340"
+ "Example 10.2 Page 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
- "\n",
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "n1 = 1 #Ground state\n",
- "n2 = 2 #First excited state\n",
- "n3 = 3 #second excited state\n",
- "T = 300 #room temperature(K)\n",
- "kb = 8.617 * 10 **-5 #Boltzmann constant(eV/K)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "E1 = -13.6 / n1 ** 2\n",
- "g1 = 2 * n1 ** 2\n",
- "E2 = -13.6 / n2 ** 2\n",
- "g2 = 2 * n2 ** 2\n",
- "E3 = -13.6 / n3 ** 2\n",
- "g3 = 2 * n3 ** 2\n",
- "N3 = g3 * math.exp(-E3/(kb*T))\n",
- "N2 = g2 * math.exp(-E2/(kb*T))\n",
- "N1 = g1 * math.exp(-E1/(kb*T))\n",
- "ratio1 = N2 / N1\n",
- "ratio2 = N3 / N1\n",
- "\n",
- "#results\n",
- "\n",
- "print \"(a) We can see that n2/n1=\",round(ratio1),\"and n3/n1=\",round(ratio2),\"essentially all atoms are in ground state.\"\n",
- "\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "T = 20000 #Temperature(K)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "N3 = g3 * math.exp(-E3/(kb*T))\n",
- "N2 = g2 * math.exp(-E2/(kb*T))\n",
- "N1 = g1 * math.exp(-E1/(kb*T))\n",
- "ratio1 = N2 / N1\n",
- "ratio2 = N3 / N1\n",
+ "#initiation of variable\n",
+ "from math import sqrt\n",
+ "#The solution is purely theoretical and involves a lot of approximations.\n",
+ "print\"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\";\n",
+ "T=6000.0; #temperature for sun\n",
+ "delf=7.14*10**-7*sqrt(T);#change in frequency\n",
"\n",
"#result\n",
- "\n",
- "print \"(b) n2/n1=\",round(ratio1,5),\"and n3/n1=\",round(ratio2,5)\n",
- "\n",
- "\n",
- "ratio3 = N3 / N2\n",
- "\n",
- "print \"(c) S(3->2)/S(2->1)=\",round(ratio3,2)"
+ "print\"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is\",delf,\" times the frequency of the light.\""
],
"language": "python",
"metadata": {},
@@ -87,63 +45,42 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "(a) We can see that n2/n1= 0.0 and n3/n1= 0.0 essentially all atoms are in ground state.\n",
- "(b) n2/n1= 0.01076 and n3/n1= 0.00809\n",
- "(c) S(3->2)/S(2->1)= 0.75\n"
+ "The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\n",
+ "The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is 5.53062021838e-05 times the frequency of the light.\n"
]
}
],
- "prompt_number": 3
+ "prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 10.2, page no. 345"
+ "Example 10.3 Page 309"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
+ "#initiation of variable\n",
+ "from math import sqrt,pi, exp, log\n",
+ "kT=0.0252;E=10.2 # at room temperature, kT=0.0252 standard value and given value of E\n",
"\n",
- "\n",
- "import math\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "m = 3.34 * 10 ** -27 #mass of hydrogen(kg)\n",
- "kbT = 3.77 * 10 ** -21 #kb * T (eV)\n",
- "N = 6.02 * 10 ** 23 #avogadro's number\n",
- "V = 22.4 * 10 ** -3 #Volume of H2 gas (m^3)\n",
- "h = 1.055 * 10 ** -34 #Planck's constant (J.s)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "r = (N/V)* h ** 3 / (8 * (m * kbT)**1.5)\n",
+ "#calculation\n",
+ "n2=2;n1=1; g2=2*(n2**2);g1=2*(n1**2); #values for ground and excited states\n",
+ "t=(g2/g1)*exp(-E/kT); #fraction of atoms\n",
"\n",
"#result\n",
+ "print\"The number of hydrogen atoms required is %.1e\" %(1.0/t),\" which weighs %.0e\" %((1/t)*(1.67*10**-27)),\"Kg\"\n",
"\n",
- "print \"(a) (N/V)h^3/(8*(mkbT)^3/2)=\",round(r/10**-8,2),\"X10^-8 is much less than 1, we conclude that even hydrogen is described by Maxwell-Boltzmann statistics.\"\n",
- "\n",
- "\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "d = 10.5 #density of silver (g/cm^3)\n",
- "mw = 107.9 #Molar weight of silver (g/mol)\n",
- "me = 9.109*10**-31 #mass of electron(kg)\n",
- "kbT = 4.14 * 10 ** -21 #kb*T (J)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "Ns = (d/mw)* N * 10 ** 6\n",
- "r = (Ns)* h ** 3 / (8 * (me * kbT)**1.5)\n",
+ "#partb\n",
+ "t=0.1/0.9;k=8.65*10**-5 #fracion of atoms in case-2 is given\n",
+ "T=-E/(log(t/(g2/g1))*k); #temperature\n",
"\n",
"#result\n",
- "\n",
- "print \"(b) (N/V)h^3/(8*(mkbT)^3/2)=\",round(r/8,2),\"is greater than 1, we conclude that the Maxwell-Boltzmann statistics does not hold for electrons of silver.\""
+ "print\"The value of temperature at which 1/10 atoms are in excited state in K is %.1e\" %round(T,3);"
],
"language": "python",
"metadata": {},
@@ -152,46 +89,77 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "(a) (N/V)h^3/(8*(mkbT)^3/2)= 8.83 X10^-8 is much less than 1, we conclude that even hydrogen is described by Maxwell-Boltzmann statistics.\n",
- "(b) (N/V)h^3/(8*(mkbT)^3/2)= 4.64 is greater than 1, we conclude that the Maxwell-Boltzmann statistics does not hold for electrons of silver.\n"
+ "The number of hydrogen atoms required is 1.5e+175 which weighs 3e+148 Kg\n",
+ "The value of temperature at which 1/10 atoms are in excited state in K is 3.3e+04\n"
]
}
],
- "prompt_number": 5
+ "prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 10.3, page no. 352"
+ "Example 10.4 Page 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
- " \n",
- "\n",
- "import math\n",
+ "#initiation of variable\n",
+ "from math import log\n",
+ "#theoretical part a\n",
+ "print'The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\\nThe ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)';\n",
+ "#partb\n",
+ "uB=5.79*10**-4; #for a typical atom\n",
+ "t=1.1;k=8.65*10**-5; #ratio and constant k\n",
"\n",
- "#Variable Declaration\n",
+ "#calculation\n",
+ "T=2*uB/(log(t)*k); #temperature\n",
"\n",
- "kB = 8.62 * 10 ** -5 #Boltzmann constant(eV/K)\n",
- "T1 = 3000 #Cavity walls temperature(K)\n",
- "T2 = 3.00 #Cavity walls temperature(K)\n",
- "hc = 1.24 * 10 ** -4 #product of planck's constant and speed of light (eV.cm)\n",
- "integration = 2.40 #value of integral(z^2/e^z-1,0,+inf)\n",
- "\n",
- "#Calculation\n",
+ "#result\n",
+ "print\"The value of temperature ar which the given ratio exists in K is\",round(T,3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\n",
+ "The ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)\n",
+ "The value of temperature ar which the given ratio exists in K is 140.46\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5 Page 313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import pi\n",
+ "p=0.971; A=6.023*10**23; m=23.0; # various given values and constants\n",
"\n",
- "NbyV_at_3000 = 8* math.pi * (kB * T1/hc)**3 * integration\n",
- "NbyV_at_3 = 8* math.pi * (kB * T2/hc)**3 * integration\n",
+ "#calculation\n",
+ "c= (p*A/m)*10**6; # atoms per unit volume\n",
+ "hc=1240.0; mc2=0.511*10**6; # hc=1240 eV.nm\n",
+ "E= ((hc**2)/(2*mc2))*(((3/(8*pi))*c)**(2.0/3)); #value of fermi energy\n",
"\n",
"#result\n",
- "\n",
- "print \"N/V at 3000K is\",round(NbyV_at_3000/10**11,2),\"X 10^11 photons/cm^3. Likewise N/V at 3.00 K is\",round(NbyV_at_3/10**2,2),\"X 10^2 photons/cm^3\"\n",
- "print \"Therefore the photon density decreases by a factor of\",round(NbyV_at_3000/NbyV_at_3/10**9),\" X 10^9 when the temperature drops from 3000K to 3.00K\""
+ "print\"The fermi energy for sodium is\",round(E*10**-18,4),\"eV\";#multiply by 10^-18 to convert metres^2 term to nm^2"
],
"language": "python",
"metadata": {},
@@ -200,12 +168,11 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "N/V at 3000K is 5.47 X 10^11 photons/cm^3. Likewise N/V at 3.00 K is 5.47 X 10^2 photons/cm^3\n",
- "Therefore the photon density decreases by a factor of 1.0 X 10^9 when the temperature drops from 3000K to 3.00K\n"
+ "The fermi energy for sodium is 3.1539 eV\n"
]
}
],
- "prompt_number": 7
+ "prompt_number": 12
}
],
"metadata": {}