summaryrefslogtreecommitdiff
path: root/Materials_science_and_engineering_an_introduction/CH6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Materials_science_and_engineering_an_introduction/CH6.ipynb')
-rw-r--r--Materials_science_and_engineering_an_introduction/CH6.ipynb342
1 files changed, 342 insertions, 0 deletions
diff --git a/Materials_science_and_engineering_an_introduction/CH6.ipynb b/Materials_science_and_engineering_an_introduction/CH6.ipynb
new file mode 100644
index 00000000..e04ca9e8
--- /dev/null
+++ b/Materials_science_and_engineering_an_introduction/CH6.ipynb
@@ -0,0 +1,342 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Mechanical Properties of Metal"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.1 Page No 140"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Elongation (Elastic) Computation\n",
+ "\n",
+ "E=110*10**3 #Young's modulus of Copper in MPa\n",
+ "sigma=276.0 #Applied stress in MPa\n",
+ "lo=305.0 #Original length in mm\n",
+ "\n",
+ "#Calculation\n",
+ "#Deformation\n",
+ "dl=sigma*lo/E\n",
+ "\n",
+ "#Result\n",
+ "print\"Elongation obtained is \",round(dl,2),\"mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Elongation obtained is 0.77 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.2 Page No 142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Computation of Load to Produce Specified Diameter Change\n",
+ "\n",
+ "#Given\n",
+ "del_d=-2.5*10**-3 #Deformation in dia in mm\n",
+ "d0=10.0 #Initial dia in mm\n",
+ "v=0.34 #Poisson ratio for brass\n",
+ "\n",
+ "#Calculation\n",
+ "ex=del_d/d0\n",
+ "ez=-ex/v\n",
+ "E=97*10**3 #Modulus of elasticity in MPa\n",
+ "sigma=ez*E\n",
+ "F=sigma*math.pi*(d0**2)/4.0\n",
+ "\n",
+ "#Result\n",
+ "print\"Applied force is \",round(F,0),\"N\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Applied force is 5602.0 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.3 Page No 146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#From draph in the question\n",
+ "#stress and strain can be obtained\n",
+ "\n",
+ "#Given\n",
+ "si2=150 # in MPa\n",
+ "si1=0\n",
+ "e2=0.0016\n",
+ "e1=0\n",
+ "d0=12.8*10**-3 #Initial Diameter in m\n",
+ "\n",
+ "#Calculation\n",
+ "#(a)Young's Modulus = stress/strain\n",
+ "E=(si2-si1)/(e2-e1)\n",
+ "\n",
+ "A0=math.pi*d0**2/4.0\n",
+ "sig=450*10**6 #tensile strength in MPa\n",
+ "F=sig*A0\n",
+ "#From stress-strain curve\n",
+ "#Strain corresponding to stress of 345 MPa is 0.06\n",
+ "l0=250 #Initial lengt in mm\n",
+ "e=0.06 #strain\n",
+ "dl=e*l0\n",
+ "\n",
+ "#Result\n",
+ "print\"Modulus of elasticity is \",round(E/10**3,1),\"GPa\"\n",
+ "print\"From the graph the Yield strength is\",l0,\"MPa\"\n",
+ "print\"Maximum load sustained is \",round(F,0),\"N/n\"\n",
+ "print\"Change in length is \",dl,\"mm\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Modulus of elasticity is 93.8 GPa\n",
+ "From the graph the Yield strength is 250 MPa\n",
+ "Maximum load sustained is 57906.0 N/n\n",
+ "Change in length is 15.0 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.4 Page No 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Ductility\n",
+ "\n",
+ "#Given\n",
+ "di=12.8 #Initial dia in mm\n",
+ "df=10.7 #Final dia in mm\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "#Ductility in terms of Reduction Area \n",
+ "RA = ((di**2-df**2)/di**2)*100\n",
+ "#True-Stress-At-Fracture Computations\n",
+ "Ao=math.pi*di**2*10**-6/4.0\n",
+ "sig=460*10**6 #Tensile strength\n",
+ "\n",
+ "F=sig*Ao\n",
+ "\n",
+ "Af=math.pi*df**2/4.0\n",
+ "sig_t=F/Af\n",
+ "\n",
+ "#Result\n",
+ "print\"percent reduction in area is \",round(RA,0),\"%\"\n",
+ "print\"True stress is \",round(sig_t,1),\"MPa\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "percent reduction in area is 30.0 %\n",
+ "True stress is 658.3 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.5 Page No 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculation of Strain-Hardening Exponent\n",
+ "\n",
+ "sig_t=415 #True stress in MPa\n",
+ "et=0.1 #True strain\n",
+ "K=1035.0 # In MPa\n",
+ "\n",
+ "#Calculation\n",
+ "n=(math.log(sig_t)-math.log(K))/math.log(et)\n",
+ "\n",
+ "#Result\n",
+ "print\"Strain - hardening coefficient is \",round(n,2)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Strain - hardening coefficient is 0.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.6 Page No 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Average Computations\n",
+ "\n",
+ "#Tensile strength at 4 points\n",
+ "n=4.0 #No of points\n",
+ "T1=520\n",
+ "T2=512\n",
+ "T3=515\n",
+ "T4=522\n",
+ "\n",
+ "#Calculation\n",
+ "Tav=(T1+T2+T3+T4)/n\n",
+ "s=(((T1-Tav)**2+(T2-Tav)**2+(T3-Tav)**2+(T4-Tav)**2)/(n-1))**(0.5)\n",
+ "\n",
+ "#Result\n",
+ "print\"The average Tensile strength is\",round(Tav,0),\"MPa\"\n",
+ "print\"The standard deviation is\",round(s,1),\"MPa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average Tensile strength is 517.0 MPa\n",
+ "The standard deviation is 4.6 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Design Example 6.1 ,Page No 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Specification of Support Post Diameter\n",
+ "\n",
+ "#Given\n",
+ "sig_y=310.0 #Minimum yield strength in MPa\n",
+ "N=5.0 # Conservative factor of safety\n",
+ "\n",
+ "#Calculation\n",
+ "F=220000/2.0 #Two rods must support half of the total force\n",
+ "sig_w=sig_y/N\n",
+ "d=2*math.sqrt(F/(math.pi*sig_w))\n",
+ "\n",
+ "#Result\n",
+ "print\"Diameter of each of the two rods is \",round(d,1),\"mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of each of the two rods is 47.5 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file