summaryrefslogtreecommitdiff
path: root/Machine_Design_by_U.C._Jindal/Ch22.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Machine_Design_by_U.C._Jindal/Ch22.ipynb')
-rw-r--r--Machine_Design_by_U.C._Jindal/Ch22.ipynb598
1 files changed, 598 insertions, 0 deletions
diff --git a/Machine_Design_by_U.C._Jindal/Ch22.ipynb b/Machine_Design_by_U.C._Jindal/Ch22.ipynb
new file mode 100644
index 00000000..30ed5549
--- /dev/null
+++ b/Machine_Design_by_U.C._Jindal/Ch22.ipynb
@@ -0,0 +1,598 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b283e3fcd471f1cbe397d09e22017ed17e30966a86b52dc70653c73e3f5c2124"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ch:22 Friction clutches"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-1 - Page 588"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "from math import sqrt, pi\n",
+ "u=0.28 #(coefficient of friction)\n",
+ "N=300 #(Engine rpm)\n",
+ "I=7.2 \n",
+ "Pmax= 0.1# \n",
+ "R1=70#\n",
+ "R2=110#\n",
+ "n=2# #(Both sides of the plate are effective)\n",
+ "#Using Uniform Wear Theory\n",
+ "#Axial Force W\n",
+ "W=n*pi*Pmax*R1*(R2-R1)#\n",
+ "#Frictional Torque Tf\n",
+ "Tf=u*W*(R1+R2)/2*(10**-3)#\n",
+ "w=2*pi*N/60#\n",
+ "#Power P\n",
+ "P=Tf*w#\n",
+ "#Torque = Mass moment of inertia*angular acceleration\n",
+ "a=Tf/I#\n",
+ "t=w/a# \n",
+ "#Angle turned by driving shaft theta1 through which slipping takes place\n",
+ "theta1=w*t#\n",
+ "#angle turned by driven shaft theta2\n",
+ "theta2=a*(t**2)/2#\n",
+ "E=Tf*(theta1-theta2)#\n",
+ "print \"\\nThe force is %0.1f N\"%(W)#\n",
+ "print \"\\nThe Torque is %0.2f Nm\"%(Tf)#\n",
+ "print \"\\nThe Power is %0.0f W\"%(P)#\n",
+ "print \"\\nThe angular acceleration is %0.2f rad/sec**2\"%(a)#\n",
+ "print \"\\nThe time taken is %0.1f sec\"%(t)#\n",
+ "print \"\\nThe energy is %0.2f Nm\"%(E)#\n",
+ "\n",
+ "#The difference in the answer of energy 'E' is due to rounding-off of values."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The force is 1759.3 N\n",
+ "\n",
+ "The Torque is 44.33 Nm\n",
+ "\n",
+ "The Power is 1393 W\n",
+ "\n",
+ "The angular acceleration is 6.16 rad/sec**2\n",
+ "\n",
+ "The time taken is 5.1 sec\n",
+ "\n",
+ "The energy is 3553.06 Nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-2 - Page 589"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Power P\n",
+ "P=80*10**3# #(Watt)\n",
+ "N=3000# #(Engine rpm)\n",
+ "w=2*pi*3*10**3/60\n",
+ "Tf=8*10**4/w#\n",
+ "Rm=100##(mm)\n",
+ "p=0.2 #N/mm**2\n",
+ "u=0.22 \n",
+ "# let width b= (R1-R2). \n",
+ "#Axial force W=2*pi*Rm*b*p\n",
+ "#Torque T=u*W*Rm\n",
+ "b=Tf/(u*2*pi*(Rm**2)*p)#\n",
+ "b=50# \n",
+ "R2=Rm+b#\n",
+ "R1=Rm-b#\n",
+ "Di=2*R1# #inner diameter\n",
+ "W=2*pi*Rm*b*p#\n",
+ "n=8# #n is number of springs\n",
+ "#Axial force per spring W1\n",
+ "W1=W/n#\n",
+ "W1=W1+15#\n",
+ "#axial deflection del\n",
+ "Del=10# \n",
+ "#stiffness k\n",
+ "k=W1/Del#\n",
+ "# Spring index C\n",
+ "C=6#\n",
+ "#number of coils n1\n",
+ "n1=6# #Assumption\n",
+ "d=k*n*n1*(C**3)/(80*10**3)#\n",
+ "d=11# # Rounding off to nearest standard value\n",
+ "D=C*d#\n",
+ "clearance=2#\n",
+ "FL=((n1+2)*d)+(2*Del)+clearance# # two end coils, therefore (2*del)\n",
+ "\n",
+ "print \"\\nThe Torque is %0.2f Nm\"%(Tf)#\n",
+ "print \"\\nThe width is %0.0f mm\"%(b)#\n",
+ "print \"\\nThe force is %0.0f N\"%(W)#\n",
+ "print \"\\nThe Axial force per spring is %0.0f N\"%(W1)#\n",
+ "print \"\\nThe Spring stiffness is %0.0f N/mm\"%(k)#\n",
+ "print \"\\nThe Spring wire diameter is %0.0f mm\"%(d)#\n",
+ "print \"\\nThe Mean coil diameter is %0.0f mm\"%(D)#\n",
+ "print \"\\nThe Free length is %0.0f mm\"%(FL)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The Torque is 254.65 Nm\n",
+ "\n",
+ "The width is 50 mm\n",
+ "\n",
+ "The force is 6283 N\n",
+ "\n",
+ "The Axial force per spring is 800 N\n",
+ "\n",
+ "The Spring stiffness is 80 N/mm\n",
+ "\n",
+ "The Spring wire diameter is 11 mm\n",
+ "\n",
+ "The Mean coil diameter is 66 mm\n",
+ "\n",
+ "The Free length is 110 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-3 - Page 589"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Power P\n",
+ "P=40*10**3 #Watt\n",
+ "n1=100# #rpm\n",
+ "n2=400# #rpm\n",
+ "#Speed factor Ks\n",
+ "Ks=0.9+0.001*n2#\n",
+ "#Clutch power Pc\n",
+ "Pc=P*n2/(n1*Ks)*10**-3#\n",
+ "print \"\\nThe Speed factor is %0.1f \"%(Ks)#\n",
+ "print \"\\nThe clutch poweris %0.0f KW\"%(Pc)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The Speed factor is 1.3 \n",
+ "\n",
+ "The clutch poweris 123 KW\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-4 - Page 590"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# plot Torque vs Ro/Ri\n",
+ "#x=Ro/Ri\n",
+ "#According to Uniform Wear theory\n",
+ "x=[0, 0.2, 0.4, 0.577, 0.6, 0.8, 1.0]#\n",
+ "n=len(x)#\n",
+ "Tf = range(0,n)\n",
+ "for i in range(0,n):\n",
+ " Tf[i]=(x[i]-(x[i]**3))#\n",
+ "\n",
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import plot, xlabel, ylabel, show, grid\n",
+ "plot (x,Tf)#\n",
+ "xlabel(' Ro/Ri ')#\n",
+ "ylabel('Tf')#\n",
+ "grid()#\n",
+ "show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UXGWV7/HvJiG6eIntC1c0oI2QQUCwEYx4gTWNyXBb\nmGWSyzgkF3EaFHMhcQwvA4IOIGsYDQqDaAjx5SYXGQ3Im+giBhAqojcEgqkEISGJ0kMSlIUgaBwd\nE3vfP041pyiqu09V13n/fdbqlXqqzql+sld3PV17n2eXuTsiIiKj2S3tCYiISD5owRARkUi0YIiI\nSCRaMEREJBItGCIiEokWDBERiSTWBcPM+sxso5ltNrOLRjjuvWa2y8xOafVcERFJRmwLhpmNA74K\n9AGHArPN7JBhjlsA/LDVc0VEJDlxvsOYAmxx9wF33wksA6Y3Oe6TwK3Ac22cKyIiCYlzwZgEbK0b\nb6vd9zIzm0SwECyq3TW07XzUc0VEJFlxLhhReo5cC3zag/4kVvuKeq6IiCRofIzPvR3Yv268P8E7\nhXpHAcvMDOBNwAfNbGfEczEzLSwiIm1wdxv9qFeK8x3GGmCymXWb2QTgVOCu+gPc/R3ufoC7H0BQ\nxzjb3e+Kcm7dc+jLncsuuyz1OWTlS7FQLBSLkb/aFds7DHffZWbzgBXAOOCb7r7BzObUHl/c6rlx\nzbUIBgYG0p5CZigWIcUipFiMXZwpKdx9ObC84b6mC4W7nzHauSIikh7t9C6I/v7+tKeQGYpFSLEI\nKRZjZ2PJZ6XNzDzP8xcRSYOZ4RkrekuCKpVK2lPIDMUipFiEFIuxi7WGISLx+cUv4Hvfgz32gNe/\nHrq6gn+Hbnd1pT1DKRqlpERyZs0auOoqeOABOOUUcIff/hZefDH4d+jrpZfg+ONh2TJ485vTnrVk\nSbspKb3DEMkBd1ixIlgotmyB886Db34T9t57+HP+8he44gp473vh1lthypTk5ivFpBpGQSg/GypS\nLHbuhJtugne/Gy68EM48M0hFzZ8/8mIBMG4cnHBCheuug7/9W1iyJJk5Z1WRfi7SoncYIhm0Ywd8\n4xtwzTUweTJ88Ytw4olgLScRYMYMOPjg4N9HH4V/+zfYfffOz1mKTzUMkQx59lm47jpYvBimToV/\n+ic4+ujOPPdLL8FHPhL8+93vqq5RZrqsViTHNm2COXPgkEOC4vXq1XDzzZ1bLABe97rgqqoTTgjq\nGg8/3LnnlnLQglEQys+G8hSL1auDK52OOw7e8hZ48klYuBAOPLAzz98Yi912g899jlLWNfL0c5FV\nqmGIJGxwEO6+O6hLPP00nH8+3Hgj7LlncnNQXUPaoRqGSEL+/Gf49reDheI1rwmuevq7v4PxKf7Z\nprpGOamGIZJRv/sdfOlL8I53BAvGl78c/FU/a1a6iwWoriGt0YJREMrPhrISi2eegU9/Gg44AH72\nM/j+9+Gee2DatPYuj21HlFiUpa6RlZ+LPNOCIdJhGzbAxz4G73oX/Od/Bq08vv1tOPLItGc2shkz\nYOVK+MIXYN68YNOgSD3VMEQ65Kc/DVp3PPRQ8IJ7zjnwxjemPavWqa5RfKphiKRgcDCoARx7LHz0\no9DXB089Bf/8z/lcLEB1DRmeFoyCUH42lEQs/uu/guZ/hx4K//IvQW+nTZvg7LODduNZ0W4siljX\n0O/I2MW6YJhZn5ltNLPNZnZRk8enm9k6M1trZo+a2QfqHhsws/W1x/Q3jmTCiy/CggVBIfu22+CG\nG4K/wD/84aDZX9GoriH1YqthmNk44ElgGrAdeASY7e4b6o7Z093/ULt9OHCHux9UGz8FHOXuL4zw\nPVTDkERs2wbXXhv8pX3yyXDBBXDEEWnPKjmqaxRLFmsYU4At7j7g7juBZcD0+gOGFouavYDfNDxH\nQhcfijT3859Df3+wOAwOwtq1wa7sMi0WoLqGBOJcMCYBW+vG22r3vYKZzTCzDcBy4B/rHnLgPjNb\nY2ZnxTjPQlB+NjTWWLjDj38c5O7/5m/gr/4q+AyKa66Bt72tM3NMSid/LvJe19DvyNjFuc80Uq7I\n3e8E7jSz44FvAQfXHjrW3X9lZvsA95rZRnd/MKa5ivCXv8CddwatO154IWgtfuut8NrXpj2zbFEf\nqvKKc8HYDuxfN96f4F1GU+7+oJmNN7M3uvvz7v6r2v3PmdkdBCmuVy0Y/f39dHd3A9DV1UVPTw+9\nvb1A+BdFGca9vb2Zmk+exu97Xy833ghXXFHhda+DK6/s5UMfggcfrPDQQ+nPb6zjIZ18/kMOgauv\nrnDllTB1ai/f/S5s2JCN/+9w46H7sjKfJMeVSoWlS5cCvPx62Y44i97jCYreU4FngId5ddH7QOCX\n7u5m9h7gu+5+oJntAYxz99+b2Z7APcDn3P2ehu+hore07YUXYNEi+MpXgrz8hRcGbcaTattRBIOD\nQZpqyRJ9bnieZK7o7e67gHnACuAJ4GZ332Bmc8xsTu2wU4DHzGwt8GVgVu3+fYEHzawKrAZ+0LhY\nyCs1/jVZZqPF4umn4dxz4aCDYMsW+NGPgj5Pxx9fvMUi7p+L3XJU19DvyNjF2ivT3ZcTFLPr71tc\nd/sq4Kom5/0S6IlzblI+69YF9Ynly+HMM2H9ethvv7RnVQyqa5SDeklJobnDAw8EPZ7Wrw92ZM+Z\nE1wmKp2n/Rr5kLmUlEiadu2CW24JahNz58Lf/33Q4+nCC7VYxEn7NYpNC0ZBKD8b+NOfYP78Cgcf\nHOTVL70UHn88SEG95jVpzy55afxcZLWuod+RsdNnekthDA7C7NlBUfvGG4MOspKe+rrGz34WbHxU\nXSPfVMOQwrjkEvjJT+C++2DChLRnI0NU18ge1TCk1L71LVi2LOggq8UiWxrrGo88kvaMpF1aMAqi\nzPnZVavg/PPhrrtgn33KHYtGWYlFfV3j5JOhtuk4UVmJRZ6phiG59h//AaecEhRW3/WutGcjo2nc\nr6G6Rr6ohiG5tWNH+NGo55+f9mykFaprpEs1DCmVwUE4/XQ4+mg477y0ZyOtUl0jn7RgFETZ8rOf\n/Sw8/3zQPLCx/1PZYjGSLMci6bpGlmORF6phSO4MXRG1erWuiCoC1TXyQzUMyZVVq2D6dLj/fhW5\ni0Z1jeSohiGFpyuiik11jezTglEQRc/P7tgBH/pQcDXUySePfGzRY9GKvMUizrpG3mKRRaphSObp\niqjyUV0jm1TDkMxTj6jyUl0jHqphSCGpR1S5qa6RLVowCqKI+dnGHlFRFTEW7SpCLDpV1yhCLNIW\n64JhZn1mttHMNpvZRU0en25m68xsrZk9amYfiHquFJuuiJJGM2bAypXw+c/DJz8JO3emPaPyia2G\nYWbjgCeBacB24BFgtrtvqDtmT3f/Q+324cAd7n5QlHNr56iGUUDqESUjUV1j7LJYw5gCbHH3AXff\nCSwDptcfMLRY1OwF/CbquVJMuiJKRqO6RnriXDAmAVvrxttq972Cmc0wsw3AcuAfWzlXQkXJz47U\nIyqqosSiE4oai3bqGkWNRZLi3IcRKVfk7ncCd5rZ8cC3zOydrXyT/v5+uru7Aejq6qKnp4fe3l4g\n/AHROB/jSy6psGQJrF/fy4QJ7T/fkLT/P1kYV6vVTM2n0+OuLli5spcZM+B736swdy5Mm9b8+Gq1\nmvp80xpXKhWW1lbVodfLdsRZwzgGuNzd+2rji4FBd18wwjm/IEhHTY5yrmoYxaEeUTIWqmu0Jos1\njDXAZDPrNrMJwKnAXfUHmNmBZkHiwczeA+Duz0c5V4pDV0TJWKmukYzYFgx33wXMA1YATwA3u/sG\nM5tjZnNqh50CPGZma4EvA7NGOjeuuRZBYzomL1rpERVVXmMRhzLFYrdR6hplikVcYu0l5e7LCYrZ\n9fctrrt9FXBV1HOlWHRFlMRBfajio15Skhr1iJI4qa4xvCzWMESGpR5RErfGusa6dWnPKP+0YBRE\nnvKz7faIiipPsYhb2WMxVNf4zGfgH/6hkvZ0ck8LhiRKV0RJGs48E7ZuhccfT3sm+aYahiRGPaIk\nTZdfDs89BwsXpj2T9LVbw9CCIYkYHAzeWbzhDfCNb7Tf9kOkXdu3w+GHw8AATJyY9mzSpaJ3yWU9\nV92JHlFRZT0WSVIsQps3V5g6FW66Ke2Z5JcWDImdroiSrJg7N0hJKTHRHqWkJFbqESVZ4h78HC5c\nCLUefaWklJRkjq6Ikqwxg3POgeuvT3sm+aQFoyCylquOo0dUVFmLRZoUi9BQLE4/Pegu8Mwz6c4n\nj7RgSMepR5Rk2cSJMGsWfO1rac8kf1TDkI5TjyjJuscfhxNPDC6xLWNjQtUwJBN0RZTkwWGHweTJ\ncOedac8kX7RgFEQWctVx94iKKguxyArFItQYi3PO0a7vVmnBkI54+mldESX5MnMmbNqk/lKtUA1D\nxmzHDjjuuKDQrR5Rkidl7S+lXlKSCvWIkjwra38pFb1LLq1cdZI9oqJS3j6kWISaxWLSJNRfqgWx\nLhhm1mdmG81ss5ld1OTx08xsnZmtN7OfmtkRdY8N1O5fa2YPxzlPac9NN+mKKMk/9ZeKLraUlJmN\nA54EpgHbgUeA2e6+oe6Y9wNPuPtLZtYHXO7ux9Qeewo4yt1fGOF7KCWVEvWIkqIoY3+pLKakpgBb\n3H3A3XcCy4Dp9Qe4+yp3f6k2XA3s1/AcGUlySD1dESVFov5S0cW5YEwCttaNt9XuG87HgLvrxg7c\nZ2ZrzOysGOZXKEnlqtPsERWV8vYhxSI0UizUXyqa8TE+d+RckZmdAJwJHFt397Hu/isz2we418w2\nuvuDjef29/fT3d0NQFdXFz09PfTW3lcO/YBo3Jnx/fdXuPRSOOqoXs47L/35DDcekpX5pDmuVquZ\nmk+a42q1OuzjEyfC8cdXuOQSWLo0G/Pt5LhSqbB06VKAl18v2xFnDeMYgppEX218MTDo7gsajjsC\nuB3oc/ctwzzXZcAOd7+64X7VMBKkHlFSZGXqL5XFGsYaYLKZdZvZBOBU4K76A8zsbQSLxUfqFwsz\n28PM9q7d3hM4EXgsxrnKKHRFlBSd+kuNLrYFw913AfOAFcATwM3uvsHM5pjZnNphlwKvBxY1XD67\nL/CgmVUJiuE/cPd74pprETSmYzpp1aqgTXnaPaKiijMWeaNYhKLEQv2lRhZnDQN3Xw4sb7hvcd3t\njwMfb3LeL4GeOOcm0eiKKCmTmTNh/vwgPXXYYWnPJnvUGkSGpR5RUkZl6C+lXlLSUeoRJWVVhv5S\nWSx6S4I6navOYo+oqJS3DykWoaixUH+p4WnBkFfRFVFSduov1ZxSUvIKQz2iHnhART8pr6L3l1JK\nSsas/oooLRZSZuov1ZwWjIIYa656qEfUBRdkt0dUVMrbhxSLUKuxUH+pV9OCIQwOBr8cRx0F556b\n9mxEsmHiRJg1C772tbRnkh2qYYh6RIkMo6j9pVTDkLboiiiR4am/1CtpwSiIdnLVQz2ivv/9fPSI\nikp5+5BiEWo3FuovFdKCUVK6IkokmpkzYdOmID1VdqphlNBQj6iPfjR4hyEiIytafyn1kpJI1CNK\npHVF6y+lonfJRc3P5rlHVFTK24cUi9BYYqH+UgEtGCWiK6JE2qf+UkpJlYZ6RImMTZH6SyklJcPS\nFVEiY6f+UlowCmO4/GyRekRFpbx9SLEIdSIWZe8vFeuCYWZ9ZrbRzDab2UVNHj/NzNaZ2Xoz+6mZ\nHRH1XBmdekSJdFbZ+0sNW8Mws2+5++lmNt/dr235ic3GAU8C04DtwCPAbHffUHfM+4En3P0lM+sD\nLnf3Y6KcWztfNYwRqEeUSOcVob9UHDWMo8zsrcCZZvaGxq8Izz0F2OLuA+6+E1gGTK8/wN1XuftL\nteFqYL+o58rIdEWUSDzK3F9qpAXjBuBHwMHAow1fayI89yRga914W+2+4XwMuLvNc0uvPj9b1B5R\nUSlvH1IsQp2MRVn7S40f4bEz3P0QM7vB3f93G88dOVdkZicAZwLHtnpuf38/3d3dAHR1ddHT00Nv\n7Zq3oR+QMo2ffRbOPbeXJUvguecqVCrZml8S4yFZmU+a42q1mqn5pDmuVqsde76ZM+HssyssWQJn\nnJGN/99I40qlwtKlSwFefr1sx0g1jLXufmTbT2x2DEFNoq82vhgYdPcFDccdAdwO9Ln7lhbPVQ2j\njnpEiSQnz/2lOt5Lysy2AdcAzZ7U3f2aUSY0nqBwPRV4BniYVxe93wbcD3zE3R9q5dzacVowatQj\nSiRZee4vFUfRexywN7BXk6+9R3tid98FzANWAE8AN7v7BjObY2ZzaoddCrweWGRma83s4ZHObfU/\nVyann14pfI+oqBpTU2WmWIQ6HYsy9pcaqYbxa3f/3Fie3N2XA8sb7ltcd/vjwMejnivN3X473H8/\nrF+vK6JEkjR3bvB19tnl+EMtthpGEpSSgpdegkMPhZtvDuoXIpKcvPaXiqOG8UZ3f37MM4uRFozg\nr5udO8u781QkbQsXwsqVcMstac8kuo7XMLK+WAg89FCQjvrCF5SrrqdYhBSLUFyxKFN/KTUfzKmd\nO2HOHLj66uDKKBFJR5n6S+nzMHLqi1+Ee++FFSvKUWwTybK89ZfS52GUyMAALFigS2hFsqIs/aW0\nYOSMe1DoPu88OPDA8H7lqkOKRUixCMUdizL0l9KCkTO33hq8w7jggrRnIiL1Zs6ETZuC9FRRqYaR\nI9pzIZJteekv1fF9GHlQtgVDey5Esi0v/aVU9C64+j0XzShXHVIsQopFKIlYFL2/lBaMHNCeC5H8\nmDs3SEkVMfmhlFQOaM+FSH7kob+UahgFNTAARx8Nq1e/8jJaEcmurPeXUg2jgIbbc9GMctUhxSKk\nWISSjEVR+0tpwcgw7bkQyaei9pdSSiqjtOdCJN+y3F9KKamCueQSOPlkLRYieVXE/lJaMDJotD0X\nzShXHVIsQopFKI1YFK2/VKwLhpn1mdlGM9tsZhc1efydZrbKzP5kZuc3PDZgZuvNbK2ZPRznPLNE\ney5EiqNo/aViq2GY2TjgSWAasB14BJjt7hvqjtkHeDswA/itu19d99hTwFHu/sII36NwNQztuRAp\nliz2l8piDWMKsMXdB9x9J7AMmF5/gLs/5+5rgJ3DPEepXjL1ORcixXPWWfCd78Dvfpf2TMYuzgVj\nErC1brytdl9UDtxnZmvM7KyOziyDWtlz0Yxy1SHFIqRYhNKKRZH6S42P8bnHmis61t1/VUtb3Wtm\nG939wcaD+vv76e7uBqCrq4uenh56a/vxh35A8jC+9VZ4/PEK8+cDpD+fPI+HZGU+aY6r1Wqm5pPm\nuFqtpvb9586F/v4KhxwCJ5yQ/PevVCosXboU4OXXy3bEWcM4Brjc3ftq44uBQXdf0OTYy4Ad9TWM\nKI8XpYahPRcixZa1/lJZrGGsASabWbeZTQBOBe4a5thXTNzM9jCzvWu39wROBB6Lca6p0p4LkWIz\nCy6xvf76tGcyNrEtGO6+C5gHrACeAG529w1mNsfM5gCY2b5mthU4F/ismT1tZnsB+wIPmlkVWA38\nwN3viWuuaWpnz0UzjemYMlMsQopFKO1YFKG/VJw1DNx9ObC84b7Fdbd/Dezf5NQdQE+cc8sC7bkQ\nKY/6/lKXX572bNqjXlIp0p4LkXLJSn+pLNYwZATacyFSPnnvL6UFIwVj3XPRTNr52SxRLEKKRSgr\nschzfyktGCnQ51yIlFee+0uphpEw7bkQkbT7S+kzvXNi7tzg6qiifRKXiES3fTscfniQaZg4Mfnv\nr6J3DnRqz0UzWcnPZoFiEVIsQlmKRV77S2nBSIj2XIhIvblzg5RUnpIkSkklRHsuRKRemv2lVMPI\nsIEBOPpoWL26c5fRikj+LVwIK1fCLbck+31Vw8ioOPZcNJOl/GzaFIuQYhHKYizy1l9KC0bMtOdC\nRIZT318qD5SSipH2XIjIaNLoL6WUVAbpcy5EZDR56i+lBSMmce65aCaL+dm0KBYhxSKU5Vjkpb+U\nFowYaM+FiLQiL/2lVMOIgfZciEirkuwvpX0YGaE9FyLSjiT7S6nonQFJ7bloJsv52aQpFiHFIpT1\nWOShv1SsC4aZ9ZnZRjPbbGYXNXn8nWa2ysz+ZGbnt3JuFmnPhYiMRdb7S8WWkjKzccCTwDRgO/AI\nMNvdN9Qdsw/wdmAG8Ft3vzrqubXjMpOS0p4LERmrpPpLZTElNQXY4u4D7r4TWAZMrz/A3Z9z9zXA\nzlbPzRrtuRCRsTILLrG9/vq0Z9JcnAvGJGBr3Xhb7b64z01c0nsumsl6fjZJikVIsQjlJRZZ7i81\nPsbnHkuuKPK5/f39dHd3A9DV1UVPTw+9tfdyQz8gcY537YLzz+/l6qth/fr4v5/Go4+HZGU+aY6r\n1Wqm5pPmuFqtZmo+I41nzYJLLqnQ39+Z56tUKixduhTg5dfLdsRZwzgGuNzd+2rji4FBd1/Q5NjL\ngB11NYxI52ahhqE9FyLSaXH3l8piDWMNMNnMus1sAnAqcNcwxzZOvJVzUzMwAAsWwKJFWixEpHOy\n2l8qtgXD3XcB84AVwBPAze6+wczmmNkcADPb18y2AucCnzWzp81sr+HOjWuu7Uhzz0UzjemYMlMs\nQopFKG+xyGJ/qThrGLj7cmB5w32L627/Gtg/6rlZMrTn4o470p6JiBTRzJkwf36QnjrssLRnE1Br\nkDZoz4WIJCGu/lLqJZWguXODjrR5+ZQsEcmnuPpLZbHoXUhZ2HPRTN7ys3FSLEKKRSiPschafykt\nGC3Q51yISNKy1F9KKakWaM+FiCQtjv5SqmHETJ9zISJpWbgQVq6EW27pzPOphhGjrO25aCaP+dm4\nKBYhxSKU51hkpb+UFowI9DkXIpKmiRNh1qz0r8xUSmoU2nMhIlnQyf5SSknFRJ9zISJZkIX+Ulow\nRpDVPRfN5Dk/22mKRUixCBUhFmn3l9KCMQztuRCRrJk5EzZtCtJTaVANYxjacyEiWdSJ/lLah9FB\n2nMhIlnVif5SKnp3SB72XDRThPxspygWIcUiVJRYpNlfSgtGg9tu054LEcm2tPpLKSVVR3suRCQP\nxtpfSimpDvjMZ7TnQkSyzyy4xPb665P9vrEuGGbWZ2YbzWyzmV00zDHX1R5fZ2ZH1t0/YGbrzWyt\nmT0c5zwhKHDfdls+9lw0U5T8bCcoFiHFIlS0WKTRXyq2BcPMxgFfBfqAQ4HZZnZIwzEnAQe5+2Tg\nE8Ciuocd6HX3I919SlzzhGDPxSc+oT0XIpIfafSXiq2GYWbvBy5z977a+NMA7v6FumNuAB5w95tr\n443AX7v7s2b2FHC0uz8/wvfoSA3jS1+Ce+7RngsRyZd2+0tlsYYxCdhaN95Wuy/qMQ7cZ2ZrzOys\nuCY5MBCkoRYt0mIhIvmSdH+pOBeMqH/6D/cyfZy7Hwl8EJhrZsd3ZlqhvO65aKZo+dmxUCxCikWo\nqLFIsr/U+Bifezuwf914f4J3ECMds1/tPtz9mdq/z5nZHcAU4MHGb9Lf3093dzcAXV1d9PT00Fu7\nzmzoB2S48RVXVHj8cbjjjmjHa5yP8ZCszCfNcbVazdR80hxXq9VMzadT45kze5k/H5YsqXDAAc2P\nr1QqLF26FODl18t2xFnDGA88CUwFngEeBma7+4a6Y04C5rn7SWZ2DHCtux9jZnsA49z992a2J3AP\n8Dl3v6fhe7Rdw9CeCxEpilb7S2Wyl5SZfRC4FhgHfNPdP29mcwDcfXHtmKErqf4AnOHuPzOzdwC3\n155mPPDv7v75Js/f9oIxbx78+c/pf4KViMhYtdpfKpMLRtzaXTBWr4YZM4IrDIpyGW2lUnn5rWjZ\nKRYhxSJU9Fh8+MNwwglBTWM0WbxKKpO050JEiiiJ/lKle4ehPRciUkSt9JdSSioCfc6FiBTZwoWw\nciXccsvIxyklNYoi7blopvGS0jJTLEKKRagMsYi7v1RpFgx9zoWIFF3c/aVKkZLSngsRKYso/aWU\nkhqBPudCRMoizv5ShV8w8v45F1GVIT8blWIRUixCZYpFXP2lCr1gaM+FiJTRzJmwaVOQnuqkQtcw\ntOdCRMpqpP5S2ofRQHsuRKTMRuovpaJ3naLvuWimTPnZ0SgWIcUiVLZYTJoEU6fCTTd17jkLuWBo\nz4WISOf7SxUuJaU9FyIigeH6SyklVaM9FyIiAbPgEtvrr+/M8xVqwSjLnotmypafHYliEVIsQmWN\nRSf7SxVmwdCeCxGRV+tkf6nC1DC050JEpLnG/lKlrmEMDARpqEWLtFiIiDTqVH+pWBcMM+szs41m\nttnMLhrmmOtqj68zsyNbORfKueeimbLmZ5tRLEKKRajssehEf6nYFgwzGwd8FegDDgVmm9khDcec\nBBzk7pOBTwCLop47RHsuAtVqNe0pZIZiEVIsQmWPRSf6S8X5DmMKsMXdB9x9J7AMmN5wzIeA/wvg\n7quBLjPbN+K5AHzqU7B4MUyYENd/Ix9efPHFtKeQGYpFSLEIlT0Wu+8eXBg0lktsx3duOq8yCdha\nN94GvC/CMZOAt0Y4F9CeCxGRqM46K+gv1a4432FEvfxqTGXqMu65aGZgYCDtKWSGYhFSLEKKRdhf\nql2xXVZrZscAl7t7X218MTDo7gvqjrkBqLj7stp4I/DXwAGjnVu7P7/XBIuIpKidy2rjTEmtASab\nWTfwDHAqMLvhmLuAecCy2gLzors/a2bPRzi3rf+wiIi0J7YFw913mdk8YAUwDvimu28wszm1xxe7\n+91mdpKZbQH+AJwx0rlxzVVEREaX653eIiKSnFzs9B7LBsCiGS0WZnZaLQbrzeynZnZEGvNMQtTN\nnWb2XjPbZWb/M8n5JSni70ivma01s5+bWSXhKSYmwu/Im8zsh2ZWrcWiP4Vpxs7M/o+ZPWtmj41w\nTGuvm+6e6S+ClNQWoBvYHagChzQccxJwd+32+4CH0p53irF4P/C62u2+Msei7rj7gR8Ap6Q97xR/\nLrqAx4H9auM3pT3vFGNxOfD5oTgAzwPj0557DLE4HjgSeGyYx1t+3czDO4x2NwC+OdlpJmLUWLj7\nKnd/qTYHBMjLAAAD3UlEQVRcDeyX8ByTEnVz5yeBW4HnkpxcwqLE4n8Bt7n7NgB3/03Cc0xKlFj8\nChj6lOuJwPPuvivBOSbC3R8EfjvCIS2/buZhwRhuc99oxxTxhTJKLOp9DLg71hmlZ9RYmNkkgheL\nRbW7ilqwi/JzMRl4g5k9YGZrzOz0xGaXrCix+DpwmJk9A6wDPpXQ3LKm5dfNOC+r7ZR2NwAW8cUh\n8v/JzE4AzgSOjW86qYoSi2uBT7u7m5kxxk2iGRYlFrsD7wGmAnsAq8zsIXffHOvMkhclFpcAVXfv\nNbMDgXvN7N3u/vuY55ZFLb1u5mHB2A7sXzfen2AlHOmY/Wr3FU2UWFArdH8d6HP3kd6S5lmUWBxF\nsMcHglz1B81sp7vflcwUExMlFluB37j7H4E/mtmPgXcDRVswosTivwNXArj7L8zsKeBggr1jZdLy\n62YeUlIvbwA0swkEm/gaf+HvAj4KL+8wf9Hdn012mokYNRZm9jbgduAj7r4lhTkmZdRYuPs73P0A\ndz+AoI5xdgEXC4j2O/I94DgzG2dmexAUOZ9IeJ5JiBKLjcA0gFrO/mDgl4nOMhtaft3M/DsMH8MG\nwKKJEgvgUuD1wKLaX9Y73X1KWnOOS8RYlELE35GNZvZDYD0wCHzd3Qu3YET8ufhXYImZrSP4o/lC\nd38htUnHxMy+Q9Bq6U1mthW4jCA12fbrpjbuiYhIJHlISYmISAZowRARkUi0YIiISCRaMEREJBIt\nGCIiEokWDBERiUQLhkiLzGyg1j6+amb3mdlbI5zzFjNbYWZvN7M/1rUZ/4aZ7VY75igz+3L8/wOR\n9mjBEGmdA73u3gP8BLg4wjl9wA9rt7e4+5HAEQSfXz8TwN0fdfeyNsKTHNCCITI2DwEHAtTaUdxf\n+zCa+8ysvk/P/wCWU9fszd0HgYfrzu81s+8nN3WR1mjBEGnP0At/H/Dz2u2vAEvc/d3AvwPXAZjZ\nOOBgd9/4iicwey1B64afI5IDme8lJZJRD5jZG4BdwLtq9x0DzKjdvgm4qnb7fQQfZjXkQDNbS5CO\n+pG7F/UzS6Rg9A5DpD29wNsJUlJn1d3f7DM3PkiQjhryi1oN40DgnWZ2dFyTFOkkLRgibXL3vwDz\ngfPNbC/g/wGzag+fBvy4dvsDwH1Nzn8e+AxB91SRzNOCIdK6l1s8u/uvCT5/ZC7B54efUWubfRrw\nKTPbB/iTu/9hmPPvBP6bmU2p3a/20ZJZam8uEiMzOw2Y5O5XjXqwSMZpwRARkUiUkhIRkUi0YIiI\nSCRaMEREJBItGCIiEokWDBERiUQLhoiIRKIFQ0REIvn/nx/g/9fIFs8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7fe9440af310>"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-5 - Page 591"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "n1=4#\n",
+ "n2=3#\n",
+ "n=(n1+n2-1)#\n",
+ "R2=80#\n",
+ "R1=50#\n",
+ "#According to Uniform Pressure Theory\n",
+ "#W=p*pi*((R2**2)-(R1**2)) T=n*2*u*W*((R2**3)-(R1**3))/(((R2**2)-(R1**2))*3)\n",
+ "P=15*10**3#\n",
+ "N=1400#\n",
+ "u=0.25#\n",
+ "w=2*pi*N/60#\n",
+ "T=P/w#\n",
+ "W=T*3*((R2**2)-(R1**2))/(n*2*u*((R2**3)-(R1**3)))*10**3#\n",
+ "p=W/(pi*((R2**2)-(R1**2)))#\n",
+ "print \"\\nThe angular speed is %0.2f rad/sec\"%(w)#\n",
+ "print \"\\nThe Torque is %0.3f Nm\"%(T)#\n",
+ "print \"\\nThe uniform pressure is %0.3f N/mm**2\"%(p)#\n",
+ "print \"\\nThe Force is %0.1f N\"%(W)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The angular speed is 146.61 rad/sec\n",
+ "\n",
+ "The Torque is 102.314 Nm\n",
+ "\n",
+ "The uniform pressure is 0.084 N/mm**2\n",
+ "\n",
+ "The Force is 1031.1 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-6 - Page 592"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "P=5*10**3#\n",
+ "N=1000#\n",
+ "w=2*pi*N/60#\n",
+ "Rm=50#\n",
+ "pm=0.3#\n",
+ "Tf=P/w#\n",
+ "u=0.1#\n",
+ "R2=50*2/(0.6+1)#\n",
+ "R1=0.6*R2#\n",
+ "#According to uniform Wear theory\n",
+ "W=pm*Rm*(R2-R1)*2*pi#\n",
+ "n=Tf*(10**3)/(u*W*Rm)#\n",
+ "pmax=pm*Rm/R1#\n",
+ "print \"\\nThe angular speed is %0.2f rad/sec\"%(w)#\n",
+ "print \"\\nThe Torque is %0.3f Nm\"%(Tf)#\n",
+ "print \"\\nThe Inner radius is %0.1f mm\"%(R1)#\n",
+ "print \"\\nThe Outer radius is %0.1f mm\"%(R2)#\n",
+ "print \"\\nThe number of contacting surfaces is %0.0f \"%(n)#\n",
+ "print \"\\nThe max. pressure is %0.1f N/mm**2\"%(pmax)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The angular speed is 104.72 rad/sec\n",
+ "\n",
+ "The Torque is 47.746 Nm\n",
+ "\n",
+ "The Inner radius is 37.5 mm\n",
+ "\n",
+ "The Outer radius is 62.5 mm\n",
+ "\n",
+ "The number of contacting surfaces is 4 \n",
+ "\n",
+ "The max. pressure is 0.4 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-7 - Page 593"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "P=12*10**3#\n",
+ "N=750 #Speed=N\n",
+ "w=2*pi*N/60#\n",
+ "Tf=P/w#\n",
+ "p1=0.12#\n",
+ "a=12.5##Semi-cone angle\n",
+ "u=0.3#\n",
+ "k=u*0.18246*1.121/0.21644#\n",
+ "R1=(Tf*(10**3)/k)**(1/3)#\n",
+ "R2=R1*1.242#\n",
+ "Rm=1.121*R1#\n",
+ "W=2*pi*p1*R1*(R2-R1)#\n",
+ "print \"\\nThe angular speed is %0.2f rad/sec\"%(w)#\n",
+ "print \"\\nThe Torque is %0.1f Nm\"%(Tf)#\n",
+ "print \"\\nThe Inner radius is %0.1f mm\"%(R1)#\n",
+ "print \"\\nThe Outer radius is %0.1f mm\"%(R2)#\n",
+ "print \"\\nThe mean radius is %0.2f mm\"%(Rm)#\n",
+ "print \"\\nThe axial force is %0.0f N\"%(W)#\n",
+ "\n",
+ "#The difference in the answer is due to rounding-off of values."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The angular speed is 78.54 rad/sec\n",
+ "\n",
+ "The Torque is 152.8 Nm\n",
+ "\n",
+ "The Inner radius is 81.4 mm\n",
+ "\n",
+ "The Outer radius is 101.1 mm\n",
+ "\n",
+ "The mean radius is 91.23 mm\n",
+ "\n",
+ "The axial force is 1208 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-8 - Page 594"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sin\n",
+ "#semi-cone angle is given as 15 degree\n",
+ "k=sin(15*pi/180)#\n",
+ "u=0.3#\n",
+ "W=300#\n",
+ "Rm=90/2#\n",
+ "Tf=u*W*Rm/k#\n",
+ "Tf=Tf*(10**-3)#\n",
+ "I=0.4#\n",
+ "a=Tf/I#\n",
+ "N=1440#\n",
+ "w=2*pi*N/60#\n",
+ "t=w/a#\n",
+ "#During Slipping\n",
+ "theta1=w*t#\n",
+ "theta2=theta1/2#\n",
+ "U=Tf*(theta1-theta2)#\n",
+ "print \"\\nThe Torque is %0.3f Nm\"%(Tf)#\n",
+ "print \"\\nThe angular acceleration is %0.3f rad/sec**2\"%(a)#\n",
+ "print \"\\nThe angular speed is %0.1f rad/sec\"%(w)#\n",
+ "print \"\\nThe time taken is %0.2f sec\"%(t)#\n",
+ "print \"\\nThe Energy lost in friction is %0.0f Nm\"%(U)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The Torque is 15.648 Nm\n",
+ "\n",
+ "The angular acceleration is 39.120 rad/sec**2\n",
+ "\n",
+ "The angular speed is 150.8 rad/sec\n",
+ "\n",
+ "The time taken is 3.85 sec\n",
+ "\n",
+ "The Energy lost in friction is 4548 Nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-9 - Page 595"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "P=15*10**3#\n",
+ "Ka=1.25#\n",
+ "N=1500#\n",
+ "w=2*pi*N/60#\n",
+ "Tf=P/w#\n",
+ "d=(Tf*16/(50*pi))**(1/3)#\n",
+ "d=25#\n",
+ "Rm=5*d#\n",
+ "Pav=0.12#\n",
+ "u=0.22#\n",
+ "b=Tf/(pi*u*Pav*(Rm**2))#\n",
+ "b=40#\n",
+ "R1=Rm-(b*sin(15*pi/180)/2)#\n",
+ "R2=Rm+(b*sin(15*pi/180)/2)#\n",
+ "print \"\\nThe Torque is %0.2f Nm\"%(Tf)#\n",
+ "print \"\\nThe shaft diameter is %0.0f mm\"%(d)#\n",
+ "print \"\\nThe width is %0.0f mm\"%(b)#\n",
+ "print \"\\nThe Inner radius is %0.1f mm\"%(R1)#\n",
+ "print \"\\nThe Outer radius is %0.1f mm\"%(R2)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The Torque is 95.49 Nm\n",
+ "\n",
+ "The shaft diameter is 25 mm\n",
+ "\n",
+ "The width is 40 mm\n",
+ "\n",
+ "The Inner radius is 119.8 mm\n",
+ "\n",
+ "The Outer radius is 130.2 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "exa 22-10 - Page 596"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "w2=2*pi*1400/60#\n",
+ "w1=0.8*w2#\n",
+ "P=40*10**3#\n",
+ "T=P/w2#\n",
+ "n=4#\n",
+ "T1=T/4#\n",
+ "R=0.16##Inner radius of drum\n",
+ "r=0.13##radial distance of each shoe from axis of rotation\n",
+ "u=0.22##coefficient of friction\n",
+ "x=u*r*R*((w2**2)-(w1**2))\n",
+ "m =T1/x#\n",
+ "l=R*pi/3#\n",
+ "N=T1/(R*u)#\n",
+ "p=1*10**5#\n",
+ "b=N/(p*l)*10**3#\n",
+ "print \"\\nThe full speed is %0.1f rad/sec\"%(w2)#\n",
+ "print \"\\nThe engagement speed is %0.2f rad/sec\"%(w1)#\n",
+ "print \"\\nThe number of shoes is %0.0f \"%(n)#\n",
+ "print \"\\nThe Torque is %0.1f Nm\"%(T)#\n",
+ "print \"\\nThe Torque per shoe is %0.1f Nm\"%(T1)#\n",
+ "print \"\\nThe mass per shoe is %0.2f kg\"%(m)#\n",
+ "print \"\\nThe length of friction lining is %0.5f m\"%(l)#\n",
+ "print \"\\nThe width is %0.1f mm\"%(b)#"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "The full speed is 146.6 rad/sec\n",
+ "\n",
+ "The engagement speed is 117.29 rad/sec\n",
+ "\n",
+ "The number of shoes is 4 \n",
+ "\n",
+ "The Torque is 272.8 Nm\n",
+ "\n",
+ "The Torque per shoe is 68.2 Nm\n",
+ "\n",
+ "The mass per shoe is 1.93 kg\n",
+ "\n",
+ "The length of friction lining is 0.16755 m\n",
+ "\n",
+ "The width is 115.7 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file