summaryrefslogtreecommitdiff
path: root/Introduction_To_Chemical_Engineering/ch5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_To_Chemical_Engineering/ch5.ipynb')
-rw-r--r--Introduction_To_Chemical_Engineering/ch5.ipynb67
1 files changed, 0 insertions, 67 deletions
diff --git a/Introduction_To_Chemical_Engineering/ch5.ipynb b/Introduction_To_Chemical_Engineering/ch5.ipynb
index b8695b88..6af51e50 100644
--- a/Introduction_To_Chemical_Engineering/ch5.ipynb
+++ b/Introduction_To_Chemical_Engineering/ch5.ipynb
@@ -27,22 +27,18 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the rate of heat loss\n",
"\n",
"import math \n",
- "# Variables\n",
"A=5.*4 #in m2\n",
"T1=100.; #in K\n",
"T2=30.; #in K\n",
"\n",
- "# Calculations\n",
"delta_T=T1-T2;\n",
"\n",
"x=0.25 #in m\n",
"k=0.70 #in W/mK\n",
"Q=k*A*(delta_T/x);\n",
"\n",
- "# Results\n",
"print \"rate of heat loss = %f W\"%(Q)\n"
],
"language": "python",
@@ -70,15 +66,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the heat loss\n",
"\n",
"import math \n",
- "# Variables\n",
"d1=0.15 #in m\n",
"d2=0.16 #in m\n",
"l=1. #in m\n",
"\n",
- "# Calculations\n",
"A1=3.14*d1*l;\n",
"A2=3.14*d2*l\n",
"Am=(A1-A2)/math.log (A1/A2);\n",
@@ -91,7 +84,6 @@
"k=50. #in W/mK\n",
"Q=k*Am*(delta_T/x);\n",
"\n",
- "# Results\n",
"print \"rate of heat loss per unit length = %f W/m\"%(Q)\n"
],
"language": "python",
@@ -119,16 +111,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the rate of heat loss\n",
"\n",
"import math \n",
- "# Variables\n",
"ri=0.5 #in m\n",
"ro=0.6; #in m\n",
"A1=4*3.14*ri**2;\n",
"A2=4*3.14*ro**2;\n",
"\n",
- "# Calculations\n",
"Am=(A1*A2)**0.5;\n",
"\n",
"Ti=140.; #in K\n",
@@ -139,7 +128,6 @@
"\n",
"Q=k*Am*(delta_T/x);\n",
"\n",
- "# Results\n",
"print \"Heat loss through sphere = %f W\"%(Q)\n"
],
"language": "python",
@@ -167,17 +155,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the heat loss from composite wall\n",
"\n",
"import math \n",
- "# Variables\n",
"x1=0.250; #in m\n",
"k1=0.7; #in W/mK\n",
"A1=1.; #in m2\n",
"R1=x1/(k1*A1); #in K/W\n",
"\n",
- "# Calculations and Results\n",
- "#for the felt layer\n",
"x2=0.020; #in m\n",
"k2=0.046; #in W/mK\n",
"A2=1.; #in m2\n",
@@ -217,10 +201,8 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the rate of heat loss through pipeline\n",
"\n",
"import math \n",
- "# Variables\n",
"d1=0.15 #in m\n",
"d2=0.16 #in m\n",
"l=1. #in m\n",
@@ -231,8 +213,6 @@
"k1=50. #in W/mK\n",
"R1=x1/(k1*Am1);\n",
"\n",
- "# Calculations and Results\n",
- "#resistance by insulation\n",
"d2=0.16 #in m\n",
"d3=0.26 #in m\n",
"l=1. #in m\n",
@@ -279,10 +259,8 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the increase in heat transfer rate\n",
"\n",
"import math \n",
- "# Variables\n",
"x1=0.1; #in m\n",
"x2= 0.25; #in m\n",
"k_rb=0.93; #in W/mK\n",
@@ -290,8 +268,6 @@
"k_al=203.6 #in W/mK\n",
"A=0.1 #in m2\n",
"\n",
- "# Calculations and Results\n",
- "#to find resistance without rivets\n",
"R=(1/A)*((x1/k_rb)+(x2/k_ib));\n",
"T1=225 #in K\n",
"T2=37 #in K\n",
@@ -299,7 +275,6 @@
"Q=delta_T/R;\n",
"print \"heat transfer rate = %f W\"%(Q)\n",
"\n",
- "#to find resistance with rivet\n",
"d=0.03 #in m\n",
"rivet_area= (3.14/4)*d**2;\n",
"R_r=(x1+x2)/(k_al*rivet_area);\n",
@@ -347,14 +322,12 @@
"\n",
"import math\n",
"\n",
- "# variables\n",
"Cp = 4.178 # kJ/kg K for water\n",
"q = 1838. # rate at which heat is transfered\n",
"A = .1005 # heat transfer area\n",
"dt1 = 80. - 24 # temperature diffference at hot end\n",
"dt2 = 36.-24 # temperature difference at cold end\n",
"\n",
- "# Calculations and Results\n",
"dtm = (56 + 12)/2.0\n",
"h = q/(A*dtm)\n",
"print \"Heat transfer coefficient, h = %.0f W/m**2 K\"%h\n",
@@ -390,11 +363,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the heat transfer coefficient\n",
"\n",
"import math \n",
"\n",
- "# Variables\n",
"density=984.1 #in kg/cubic meter\n",
"v=3. #in m/s\n",
"viscosity=485*10**-6; #in Pa-s\n",
@@ -402,15 +373,12 @@
"cp=4178. #in J/kg K\n",
"d=0.016 #in m\n",
"\n",
- "# Calculations and Results\n",
"Re=(density*v*d)/viscosity;\n",
"Pr=(cp*viscosity)/k;\n",
"\n",
- "#dittus boelter equation\n",
"h=0.023*Re**0.8*Pr**0.3*(k/d);\n",
"print \"heat transfer coefficient = %f W/sq meter K\"%(h)\n",
"\n",
- "#Sieder Tate equation\n",
"viscosity_w=920*10**-6.\n",
"h1=0.023*Re**0.8*Pr**(1./3)*(k/d)*(viscosity/viscosity_w)**0.14;\n",
"print \"heat transfer coefficient = %f W/sq meter K\"%(h1)\n"
@@ -441,18 +409,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the surface temperature of earth\n",
"\n",
"import math \n",
- "# Variables\n",
"T_sun = 5973 #in degree C\n",
"d = 1.5*10**13 #in cm\n",
"R = 7.1*10**10; #in cm\n",
"\n",
- "# Calculations\n",
"T_earth = ((R/(2*d))**0.5)*T_sun;\n",
"\n",
- "# Results\n",
"print \"Temperature of earth = %f C\"%(T_earth-273) \n"
],
"language": "python",
@@ -480,18 +444,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find temperature of earth\n",
"\n",
"import math \n",
- "# Variables\n",
"R=7*10**10; #in cm\n",
"Ts=6000; #in K\n",
"\n",
- "# Calculations\n",
"l=1.5*10**13; #in m\n",
"To=((R**2/(4*l**2))**0.25)*Ts;\n",
"\n",
- "# Results\n",
"print \"temperature of earth = %f K\"%(To)\n"
],
"language": "python",
@@ -519,18 +479,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the equilibrium temperature\n",
"\n",
"import math \n",
- "# Variables\n",
"R=6.92*10**5 #in km\n",
"l=14.97*10**7 #in km\n",
"Ts=6200; #in K\n",
"\n",
- "# Calculations\n",
"To=(R**2/l**2)**0.25*Ts;\n",
"\n",
- "# Results\n",
"print \"Equilibrium temperature = %f K\"%(To)\n"
],
"language": "python",
@@ -558,19 +514,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the equilibrium temperature\n",
"\n",
"import math \n",
- "# Variables\n",
"view_factor=0.5;\n",
"R=6.92*10**5 #in km\n",
"l=14.97*10**7 #in km\n",
"Ts=6200; #in K\n",
"\n",
- "# Calculations\n",
"To=(view_factor*(R**2/l**2))**0.25*Ts;\n",
"\n",
- "# Results\n",
"print \"Equilibrium temperature = %f K\"%(To)\n",
"\n",
"\n"
@@ -600,10 +552,8 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the surface temperature\n",
"\n",
"import math \n",
- "# Variables\n",
"view_factor=0.25;\n",
"R=7.1*10**10 #in cm\n",
"l=1.5*10**13 #in cm\n",
@@ -611,12 +561,10 @@
"alpha=0.2;\n",
"epsilon=0.1;\n",
"\n",
- "# Calculations\n",
"ratio=alpha/epsilon;\n",
"To=(ratio*view_factor*(R**2/l**2))**0.25*Ts;\n",
"\n",
"\n",
- "# Results\n",
"print \"Equilibrium temperature = %f K\"%(To)\n"
],
"language": "python",
@@ -644,19 +592,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the solar constant\n",
"\n",
"import math \n",
- "# Variables\n",
"R=7*10**10; #in cm\n",
"l=1.5*10**13; #in cm\n",
"sigma=5.3*10**-5; #in erd/s(cm2)(K)4\n",
"T=6000; #in K\n",
"\n",
- "# Calculations\n",
"S=(R/l)**2*(sigma)*(T**4)*60;\n",
"\n",
- "# Results\n",
"print \"solar constant = %f J/sq cm min\"%(S/10**7)\n"
],
"language": "python",
@@ -684,15 +628,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the amount of vapor and liquid and amount of heat transfer\n",
"\n",
"import math \n",
- "# Variables\n",
"F = 5000. #in kg/hr\n",
"xF = 0.01\n",
"xL = 0.02;\n",
"\n",
- "# Calculations and Results\n",
"L = F*xF/xL;\n",
"V = F-L;\n",
"print \"L = %f Kg/hr V = %f kg/hr\"%(L,V)\n",
@@ -741,19 +682,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the amount of liquid and vapor leaving and outlet concentration\n",
"\n",
"import math \n",
"from numpy import *\n",
- "# Variables\n",
"b1 = 6000*125.79+3187.56*2691.5-3187.56*461.30; #data from previous problem\n",
"b2 = 6000;\n",
"A = array([[419.04, 2676.1],[1, 1]])\n",
"\n",
- "# Calculations and Results\n",
"b = array([[b1],[b2]]);\n",
"x = linalg.solve(A,b)\n",
- "#x = x*b\n",
"L = x[0];\n",
"V = x[1];\n",
"\n",
@@ -790,14 +727,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the change in heat trnasfer area\n",
"\n",
"import math \n",
- "# Variables\n",
"Hv=2635.3 #kJ/kg\n",
"hL=313.93 #in kJ/kg\n",
"\n",
- "# Calculations and Results\n",
"S=(2500*313.93+2500*2635.3-5000*125.79)/(2691.5-461.30);\n",
"print \"steam flow rate = %f kg steam/hr\"%(S)\n",
"\n",
@@ -810,7 +744,6 @@
"print \"Area = %f sq meter\"%(A)\n",
"print \"in this case a condensor and vaccum pump should be used\"\n",
"\n",
- "# Note : there is mistake in calculation in Book. Please calculate manually."
],
"language": "python",
"metadata": {},