diff options
Diffstat (limited to 'Grobs_Basic_Electronics_by_M_E_Schultz/Chapter33.ipynb')
-rwxr-xr-x | Grobs_Basic_Electronics_by_M_E_Schultz/Chapter33.ipynb | 1000 |
1 files changed, 1000 insertions, 0 deletions
diff --git a/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter33.ipynb b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter33.ipynb new file mode 100755 index 00000000..c663815f --- /dev/null +++ b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter33.ipynb @@ -0,0 +1,1000 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 33 : Operational Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_1 Page No. 1072" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Differential Voltage Gain =143.00\n", + "The Ac Output Voltage = 1.43 Volts(p-p)\n" + ] + } + ], + "source": [ + "# Calculate the differential voltage gain, Ad, and the ac output voltage, Vout.\n", + "\n", + "# Given data\n", + "\n", + "Vin = 10*10**-3# # Input voltage=10 mVolts(p-p)\n", + "Rc = 10*10**3# # Collector resistance=10 kOhms\n", + "Ie = 715.*10**-6# # Emitter current=715 uAmps\n", + "\n", + "re = (25*10**-3)/Ie#\n", + "\n", + "Ad = Rc/(2*re)#\n", + "print 'The Differential Voltage Gain =%0.2f'%Ad\n", + "\n", + "Av = Ad\n", + "\n", + "Vo = Av*Vin#\n", + "print 'The Ac Output Voltage = %0.2f Volts(p-p)'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_2 Page No. 1073" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Common-Mode Voltage Gain Acm = 0.50\n", + "The Commom-Mode Rejection Ratio = 49.12 dB\n" + ] + } + ], + "source": [ + "from math import log10\n", + "# calculate the common-mode voltage gain, ACM, and the CMRR (dB).\n", + "\n", + "# Given data\n", + "\n", + "Rc = 10*10**3# # Collector resistance=10 kOhms\n", + "Re = 10.*10**3# # Emitter resistance=10 kOhms\n", + "Ad = 142.86# # Differential gain=142.86\n", + "\n", + "Acm = Rc/(2*Re)#\n", + "print 'The Common-Mode Voltage Gain Acm = %0.2f'%Acm\n", + "\n", + "CMRR = 20*log10(Ad/Acm)#\n", + "print 'The Commom-Mode Rejection Ratio = %0.2f dB'%CMRR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_3 Page No. 1074" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Frequency = 7.96e+04 Hertz\n", + "i.e 79.6 kHz\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# Calculate fmax for an op amp that has an Sr of 5 V/u\u0002s and a peak output voltage of 10 V.\n", + "\n", + "# Given data\n", + "\n", + "Vpk = 10.# # Peak output voltage=10 Volts\n", + "Sr = 5./10**-6# # Slew rate=5 V/us\n", + "\n", + "\n", + "fo = Sr/(2*pi*Vpk)#\n", + "print 'The Output Frequency = %0.2e Hertz'%fo\n", + "print 'i.e 79.6 kHz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_4 Page No. 1075" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Closed-Loop Voltage Gain Acl =-10.00\n", + "The Output Voltage = 10.00 Volts(p-p)\n", + "The -ve sign indicates that input and output voltages are 180° out-of-phase\n" + ] + } + ], + "source": [ + "# calculate the closed-loop voltage gain, Acl, and the output voltage, Vout.\n", + "\n", + "# Given data\n", + "\n", + "Vin = 1.# # Input voltage=1 Volts(p-p)\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "\n", + "Acl = -(Rf/Ri)#\n", + "print 'The Closed-Loop Voltage Gain Acl =%0.2f'%Acl\n", + "\n", + "Vo = -Vin*Acl#\n", + "print 'The Output Voltage = %0.2f Volts(p-p)'%Vo\n", + "print 'The -ve sign indicates that input and output voltages are 180° out-of-phase'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_5 Page No. 1076" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Differential Input Voltage = 1.00e-04 Volts(p-p)\n", + "i.e 100 uVolts(p-p)\n" + ] + } + ], + "source": [ + "#If Avol equals 100,000, calculate the value of Vid.\n", + "\n", + "# Given data\n", + "\n", + "Avol = 100000.# # Open loop voltage gain=100,000\n", + "Vo = 10.# # Output voltage=10 Volts(p-p)\n", + "\n", + "Vid = Vo/Avol#\n", + "print 'The Differential Input Voltage = %0.2e Volts(p-p)'%Vid\n", + "print 'i.e 100 uVolts(p-p)'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_6 Page No. 1078" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Input Impedence = 1.00e+03 Ohms\n", + "i.e 1 kOhms\n", + "The Closed Loop Output Impedence = 0.01 Ohms\n" + ] + } + ], + "source": [ + "# calculate Zin and Zout(CL). Assume AVOL is\u0004 100,000 and Zout(OL) is\u0004 75 Ohms.\n", + "\n", + "# Given data\n", + "\n", + "Avol = 100000.# # Open loop voltage gain=100,000\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "Zool = 75.# # Output impedence (open-loop)=75 Ohms\n", + "\n", + "Zi = Ri#\n", + "print 'The Input Impedence = %0.2e Ohms'%Zi\n", + "print 'i.e 1 kOhms'\n", + "\n", + "Beta = Ri/(Ri+Rf)#\n", + "\n", + "A = Avol*Beta#\n", + "\n", + "Zocl = Zool/(1+A)#\n", + "print 'The Closed Loop Output Impedence = %0.2f Ohms'%Zocl" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_7 Page No. 1083" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Frequency = 1.59e+04 Hertz\n", + "i.e 15.915 kHz\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# Calculate the 5-V power bandwidth.\n", + "\n", + "# Given data\n", + "\n", + "Vo = 10.# # Output voltage=10 Volts(p-p)\n", + "Sr = 0.5/10**-6# # Slew rate=0.5 V/us\n", + "\n", + "Vpk = Vo/2#\n", + "\n", + "fo = Sr/(2*pi*Vpk)#\n", + "print 'The Output Frequency = %0.2e Hertz'%fo\n", + "print 'i.e 15.915 kHz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_8 Page No. 1085" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Closed-Loop Voltage Gain Acl =11.00\n", + "The Output Voltage = 11.00 Volts(p-p)\n" + ] + } + ], + "source": [ + "# Calculate the closed-loop voltage gain, Acl, and the output voltage, Vout.\n", + "\n", + "# Given data\n", + "\n", + "Vin = 1# # Input voltage=1 Volts(p-p)\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "\n", + "Acl = 1+(Rf/Ri)#\n", + "print 'The Closed-Loop Voltage Gain Acl =%0.2f'%Acl\n", + "\n", + "Vo = Vin*Acl#\n", + "print 'The Output Voltage = %0.2f Volts(p-p)'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_9 Page No. 1089" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Input Impedence Closed-Loop = 1.82e+10 Ohms\n", + "i.e 18 GOhms\n", + "The Closed-Loop Output Impedence = 0.01 Ohms\n" + ] + } + ], + "source": [ + "# Calculate Zin(CL) and Zout(CL). Assume Rin is\u0004 2 MOhms\u0006, Avol is 100,000, and Zout(OL) is 75 Ohms.\n", + "\n", + "# Given data\n", + "\n", + "Avol = 100000.# # Open loop voltage gain=100,000\n", + "Ri = 2.*10**6# # Input resistance=2 MOhms\n", + "B = 0.0909# # Beta=0.0909\n", + "Zool = 75.# # Output impedence (open-loop)=75 Ohms\n", + "\n", + "Zicl = Ri*(1+Avol*B)#\n", + "print 'The Input Impedence Closed-Loop = %0.2e Ohms'%Zicl\n", + "print 'i.e 18 GOhms'\n", + "\n", + "A = Avol*B#\n", + "\n", + "Zocl = Zool/(1+A)#\n", + "print 'The Closed-Loop Output Impedence = %0.2f Ohms'%Zocl" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_10 Page No. 1090" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Input impedence closed-loop = 2.00e+11 Ohms\n", + "i.e 200 GOhms\n", + "The Closed loop Output Impedence = 0.001 Ohms\n" + ] + } + ], + "source": [ + "# Assume Rin is 2 MOhms, Avol is 100,000, and Zout(OL) is 75 Ohms. Calculate Zin(CL) and Zout(CL)\n", + "\n", + "# Given data\n", + "\n", + "Avol = 100000.# # Open loop voltage gain=100,000\n", + "Ri = 2.0*10**6# # Input resistance=2 MOhms\n", + "B = 1.0# # Beta=1\n", + "Zool = 75.# # Output impedence (open-loop)=75 Ohms\n", + "\n", + "Zicl = Ri*(1+Avol*B)#\n", + "print 'The Input impedence closed-loop = %0.2e Ohms'% Zicl\n", + "print 'i.e 200 GOhms'\n", + "\n", + "A = Avol*B#\n", + "\n", + "Zocl = Zool/(1+A)#\n", + "print 'The Closed loop Output Impedence = %0.3f Ohms'%Zocl" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_11 Page No. 1091" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Closed-Loop Voltage Gain Acl =-10.00\n", + "The Output Voltage = 7.50 Volts\n" + ] + } + ], + "source": [ + "# Calculate the closed-loop voltage gain, Acl, and the dc voltage at the op-amp output terminal.\n", + "\n", + "# Given data\n", + "\n", + "V = 15.# # Voltage at +ve terminal of op-amp=15 Volts\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "R1 = 10.*10**3# # Resistance1=10 kOhms\n", + "R2 = 10.*10**3# # Rsistance2=10 kOhms\n", + "\n", + "Acl = -(Rf/Ri)#\n", + "print 'The Closed-Loop Voltage Gain Acl =%0.2f'%Acl\n", + "\n", + "Vo = V*(R2/(R1+R2))#\n", + "print 'The Output Voltage = %0.2f Volts'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_12 Page No. 1095" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Voltage 1 Volts\n" + ] + } + ], + "source": [ + "# Calculate the output voltage, Vout.\n", + "\n", + "# Given data\n", + "\n", + "V1 = 1# # Input voltage1=1 Volts\n", + "V2 = -5# # Input voltage2=-5 Volts\n", + "V3 = 3# # Input voltage3=3 Volts\n", + "\n", + "Vo = -(V1+V2+V3)#\n", + "print 'The Output Voltage %0.f Volts'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_13 Page No. 1097" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Voltage = 3.00 Volts\n" + ] + } + ], + "source": [ + "# Calculate the output voltage, Vout.\n", + "\n", + "# Given data\n", + "\n", + "V1 = 0.5# # Input voltage1=0.5 Volts\n", + "V2 = -2.0# # Input voltage2=-2 Volts\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "R1 = 1.*10**3# # Resistance1=1 kOhms\n", + "R2 = 2.5*10**3# # Rsistance2=2.5 kOhms\n", + "\n", + "A = Rf/R1#\n", + "B = Rf/R2#\n", + "\n", + "Vo = -(A*V1+B*V2)#\n", + "print 'The Output Voltage = %0.2f Volts'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_14 Page No. 1101" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Voltage of Case A = -12.50 Volts\n", + "The Output Voltage of Case B = 10.00 Volts\n", + "The Output Voltage of Case C = -0.00 Volts\n" + ] + } + ], + "source": [ + "# Calculate the output voltage, Vout, if (a) Vx is 1 Vdc and Vy is -0.25 Vdc, (b) -Vx is 0.5 Vdc and Vy is 0.5 Vdc, (c) Vx is 0.3 V and Vy is 0.3 V.\n", + "\n", + "# Given data\n", + "\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "R1 = 1.*10**3# # Resistance1=1 kOhms\n", + "Vx1 = 1.# # Input voltage Vx1 at -ve terminal of op-amp=1 Volts\n", + "Vy1 = -0.25# # Input voltage Vy1 at +ve terminal of op-amp=-0.25 Volts\n", + "Vx2 = -0.5# # Input voltage Vx2 at -ve terminal of op-amp=-0.5 Volts\n", + "Vy2 = 0.5# # Input voltage Vy2 at +ve terminal of op-amp=0.5 Volts\n", + "Vx3 = 0.3# # Input voltage Vx3 at -ve terminal of op-amp=0.3 Volts\n", + "Vy3 = 0.3# # Input voltage Vy3 at +ve terminal of op-amp=0.3 Volts\n", + "\n", + "A = -Rf/R1#\n", + "\n", + "# Case A\n", + "\n", + "Voa = A*(Vx1-Vy1)#\n", + "print 'The Output Voltage of Case A = %0.2f Volts'%Voa\n", + "\n", + "# Case B\n", + "\n", + "Voa = A*(Vx2-Vy2)#\n", + "print 'The Output Voltage of Case B = %0.2f Volts'%Voa\n", + "\n", + "# Case C\n", + "\n", + "Voa = A*(Vx3-Vy3)#\n", + "print 'The Output Voltage of Case C = %0.2f Volts'%Voa" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_15 Page No. 1102" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output of Differential Amplifier = 5.00 Volts\n" + ] + } + ], + "source": [ + "# Assume that Rd increases to 7.5 k\u0006 due to an increase in the ambient temperature. Calculate the output of the differential amplifier. Note: Rb is 5 kOhms\u0006.\n", + "\n", + "# Given data\n", + "\n", + "Vi = 5.# # Voltage input=5 Volts(dc)\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "R1 = 1.*10**3# # Resistance1=1 kOhms\n", + "Ra = 5.*10**3# # Resistance A at wein bridge=5 kOhms\n", + "Rb = 10.*10**3# # Resistance B at wein bridge=10 kOhms\n", + "Rc = 5.*10**3# # Resistance C at wein bridge=5 kOhms\n", + "Rd = 7.5*10**3# # Resistance D at wein bridge=7.5 kOhms\n", + "\n", + "Vx = Vi*(Ra/Rb)#\n", + "Vy = Vi*(Rd/(Rd+Rc))#\n", + "A = -Rf/R1\n", + "\n", + "Vo = A*(Vx-Vy)#\n", + "print 'The Output of Differential Amplifier = %0.2f Volts'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_16 Page No. 1103" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Cutoff Frequency = 1.59e+03 Hertz\n", + "i.e 1.591 kHz\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# Calculate the cutoff frequency, fc.\n", + "\n", + "# Given data\n", + "\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "Cf = 0.01*10**-6# # Feedback capacitance=0.01 uFarad\n", + "\n", + "fc = 1./(2.*pi*Rf*Cf)#\n", + "print 'The Cutoff Frequency = %0.2e Hertz'%fc\n", + "print 'i.e 1.591 kHz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_17 Page No. 1104" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Closed-Loop Voltage Gain at 0 Hz =-10.00\n", + "The Closed-Loop Voltage Gain at 1 MHz =-0.02\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "# Calculate the Voltage gain, Acl at (a)0 Hz and (b) 1 MHz\n", + "\n", + "# Given data\n", + "\n", + "f1 = 1.*10**6# # Frequency=1 MHertz\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "R1 = 1.*10**3# # Resistance1=1 kOhms\n", + "Cf = 0.01*10**-6# # Feedback capacitance=0.01 uFarad\n", + "\n", + "# At 0 Hz, Xcf = infinity ohms, So, Zf=Rf \n", + "\n", + "Acl = -Rf/R1#\n", + "print 'The Closed-Loop Voltage Gain at 0 Hz =%0.2f'%Acl\n", + "\n", + "# At 1 MHz\n", + "\n", + "Xcf = 1/(2*pi*f1*Cf)#\n", + "\n", + "A = (Rf*Rf)#\n", + "B = (Xcf*Xcf)#\n", + "\n", + "Zf = ((Xcf*Rf)/sqrt(A+B))#\n", + "\n", + "Acl1 = -Zf/R1#\n", + "print 'The Closed-Loop Voltage Gain at 1 MHz =%0.2f'%Acl1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_18 Page No. 1105" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Voltage Gain at 0 Hz = 20.00 dB\n", + "The Voltage Gain at 1.591 kHz = 16.99 dB\n", + "approx 17dB\n" + ] + } + ], + "source": [ + "from math import log10,pi,sqrt\n", + "# Calculate the dB voltage gain, at (a)0 Hz and (b) 1.591 kHz\n", + "\n", + "# Given data\n", + "\n", + "f1 = 1.591*10**3# # Frequency=1.591 kHertz\n", + "Rf = 10.*10**3# # Feedback resistance=10 kOhms\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "Cf = 0.01*10**-6# # Feedback capacitance=0.01 uFarad\n", + "\n", + "# At 0 Hz, Xcf = infinity ohms, So, Zf=Rf \n", + "\n", + "A = Rf/Ri\n", + "\n", + "Acl = 20*log10(A)#\n", + "print 'The Voltage Gain at 0 Hz = %0.2f dB'%Acl\n", + "\n", + "# At 1.591 kHz\n", + "\n", + "Xcf = 1/(2*pi*f1*Cf)#\n", + "B = (Rf*Rf)#\n", + "C = (Xcf*Xcf)#\n", + "Zf = (Xcf*Rf/sqrt(B+C))#\n", + "D = Zf/Ri#\n", + "\n", + "Acl1 = 20*log10(D)#\n", + "print 'The Voltage Gain at 1.591 kHz = %0.2f dB'%Acl1\n", + "print 'approx 17dB'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_19 Page No. 1106" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Cutoff Frequency = 1591.55 Hertz\n", + "i.e 1.591 kHz\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# Calculate the cutoff frequency, fc.\n", + "\n", + "# Given data\n", + "\n", + "Ri = 1.*10**3# # Input resistance=10 kOhms\n", + "Ci = 0.1*10**-6# # Input capacitance=0.01 uFarad\n", + "\n", + "fc = 1/(2*pi*Ri*Ci)#\n", + "print 'The Cutoff Frequency = %0.2f Hertz'%fc\n", + "print 'i.e 1.591 kHz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_20 Page No. 1118" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Current = 5.00e-03 Amps\n", + "i.e 5 mAmps\n" + ] + } + ], + "source": [ + "# Vin is 5 V, R is 1 kOhms , and Rl is 100 Ohms . Calculate the output current, Iout.\n", + "\n", + "# Given data\n", + "\n", + "Vin = 5.# # Input votage=5 Volts\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "Rl = 100.# # Load resistance=100 Ohms\n", + "\n", + "Io = Vin/Ri#\n", + "print 'The Output Current = %0.2e Amps'%Io\n", + "print 'i.e 5 mAmps'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_21 Page No. 1120" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Output Voltage = 1.50 Volts\n" + ] + } + ], + "source": [ + "# Iin is 1.5 mA, R is 1 kOhms, and Rl is 10 kOhms. Calculate Vout.\n", + "\n", + "# Given data\n", + "\n", + "Iin = 1.5*10**-3# # Input votage=5 Volts\n", + "Ri = 1.*10**3# # Input resistance=1 kOhms\n", + "Rl = 100.# # Load resistance=100 Ohms\n", + "\n", + "Vo = Iin*Ri#\n", + "print 'The Output Voltage = %0.2f Volts'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_22 Page No. 1121" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Upper Trigger Point = 0.129 Volts\n", + "i.e 128.7 mVolts\n", + "The Lower Trigger Point = -0.129 Volts\n", + "i.e -128.7 mVolts\n", + "The Hysterisis Voltage = 0.257 Volts\n", + "i.e 257.4 mVolts\n" + ] + } + ], + "source": [ + "# R1 is 1 kOhms and R2 is 100 kOhms . Calculate UTP, LTP, and VH.\n", + "\n", + "# Given data\n", + "\n", + "R1 = 1.*10**3# # Resistance1=1 kOhms\n", + "R2 = 100.*10**3# # Resistance2=100 kOhms\n", + "Vcc = 15.# # Applied votage=15 Volts\n", + "Vsat = 13.# # Assume Saturation voltage=13 Volts\n", + "\n", + "Beta = R1/(R1+R2)#\n", + "\n", + "Utp = Beta*Vsat#\n", + "print 'The Upper Trigger Point = %0.3f Volts'%Utp\n", + "print 'i.e 128.7 mVolts'\n", + "\n", + "Ltp = -Beta*Vsat#\n", + "print 'The Lower Trigger Point = %0.3f Volts'%Ltp\n", + "print 'i.e -128.7 mVolts'\n", + "\n", + "Vh = Utp-Ltp#\n", + "print 'The Hysterisis Voltage = %0.3f Volts'%Vh\n", + "print 'i.e 257.4 mVolts'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 33_23 Page No. 1124" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Minimum value of required Capacitor = 1.00e-04 Farads\n", + "i.e 100 uFarad\n" + ] + } + ], + "source": [ + "# Rl is 1 kOhms and the frequency of the input voltage equals 100 Hz. Calculate the minimum value of C required.\n", + "\n", + "# Given data\n", + "\n", + "f = 100.# # Applied frequency=100 Hertz\n", + "Rl = 1.*10**3# # Load resistance=1 kOhms\n", + "\n", + "T = 1./f#\n", + "\n", + "C = (10*T)/Rl#\n", + "print 'The Minimum value of required Capacitor = %0.2e Farads'%C\n", + "print 'i.e 100 uFarad'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |