diff options
Diffstat (limited to 'Fundamentals_of_Electrical_Drives/Chapter6.ipynb')
-rwxr-xr-x | Fundamentals_of_Electrical_Drives/Chapter6.ipynb | 1817 |
1 files changed, 1817 insertions, 0 deletions
diff --git a/Fundamentals_of_Electrical_Drives/Chapter6.ipynb b/Fundamentals_of_Electrical_Drives/Chapter6.ipynb new file mode 100755 index 00000000..8ac325e6 --- /dev/null +++ b/Fundamentals_of_Electrical_Drives/Chapter6.ipynb @@ -0,0 +1,1817 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6: Induction Motor Drives" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.1,Page No:147" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the Y-connected induction motor \n", + "f=50 # frequency in HZ\n", + "Vl=440 #line voltage in V\n", + "P=6 # number of poles\n", + "N=950 #speed in rpm\n", + "\n", + "#parameters referred to the stator\n", + "Xr_=1.2 # rotor winding reactance in ohm\n", + "Rr_=0.4 # resistance of the rotor windings in ohm\n", + "Rs=0.5 # resistance of the stator windings in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Xm=50 # no load reactance\n", + " \n", + "#calculation\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "s=(Ns-N)/Ns #full load slip\n", + "x=math.sqrt((Rs+Rr_/s)**2+(Xs+Xr_)**2) #total impedance\n", + "Ir_=(Vl/math.sqrt(3))/x #full load rotor current\n", + "angle=-math.atan((Xs+Xr_)/(Rs+Rr_/s)) #angle in radian\n", + "Ir_=cmath.rect(Ir_,angle) #full load rotor current in rectangular form\n", + "Im=Vl/math.sqrt(3)/Xm*(-1j) #magnetizing current\n", + "Is=Ir_+Im #full load current\n", + "\n", + "Zf=Rs+Xs*1j+1j*Xm*(Rr_/s+1j*Xr_)/(Rr_/s+1j*(Xr_+Xm))\n", + "Zb=Rs+Xs*1j+1j*Xm*(Rr_/(2-s)+1j*Xr_)/(Rr_/(2-s)+1j*(Xr_+Xm))\n", + "Z=Zf+Zb\n", + "I=(Vl/math.sqrt(3))/abs(Z) #motor current\n", + "Wms=2*math.pi*Ns/60\n", + "\n", + "#torque due to positive sequence\n", + "Tp=(1/Wms)*(3*I**2*Xm**2*Rr_/s)/((Rr_/s)**2+(Xr_+Xm)**2)\n", + "#torque due to negative sequence\n", + "Tn=-(1/Wms)*(3*I**2*Xm**2*Rr_/(2-s))/((Rr_/(2-s))**2+(Xr_+Xm)**2)\n", + "T=Tp+Tn #net torque\n", + "Wm=Wms*(1-s) #rated speed in in rad/sec\n", + "Tl=0.0123*Wm**2 #required torque of the load\n", + "\n", + "#results\n", + "print\"Full load motor current Is:\",round(abs(Is),1),round(math.degrees(cmath.phase(Is))),\"\u00b0\",\"A\"\n", + "print\"Tp:\",round(Tp,2),\"N-m\"\n", + "print\"Tn:\",round(Tn,3),\"N-m\"\n", + "print\"\\nSince I:\",round(I,2),\"A and N:\",N,\"rpm\"\n", + "print\"And I:\",round(I,2),\"A <\",\"Is:\",round(abs(Is),2),\"A, the motor will run safely\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Full load motor current Is: 30.5 -25.0 \u00b0 A\n", + "Tp: 125.61 N-m\n", + "Tn: -3.299 N-m\n", + "\n", + "Since I: 24.26 A and N: 950 rpm\n", + "And I: 24.26 A < Is: 30.54 A, the motor will run safely\n" + ] + } + ], + "prompt_number": 197 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.2,Page No:156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the Delta connected Induction motor\n", + "f=50 #frequency in HZ\n", + "Vl=2200 #line voltage in V\n", + "P=8 #number of poles\n", + "N=735 #rated speed in rpm\n", + "#parameters referred to the stator\n", + "Xr_=0.55 # rotor winding reactance in ohm\n", + "Xs=0.45 # stator winding reactance in ohm\n", + "Rr_=0.1 # resistance of the rotor windings in ohm\n", + "Rs=0.075 # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "s=(Ns-N)/Ns #full load slip\n", + "x=math.sqrt((Rs+Rr_/s)**2+(Xs+Xr_)**2) #total impedance\n", + "Ip=(Vl)/x #full load phase current\n", + "Il=math.sqrt(3)*Ip #full load line current\n", + "Wms=2*math.pi*Ns/60 \n", + "Tl=(1/Wms)*(3*Ip**2*Rr_/s) #full load torque\n", + "\n", + "#(i)if the motor is started by star-delta switching\n", + "y=math.sqrt((Rs+Rr_)**2+(Xs+Xr_)**2)\n", + "Ist=(Vl/math.sqrt(3))/y #Maximum line current during starting\n", + "Tst=(1/Wms)*(3*Ist**2*Rr_) #Starting torque\n", + "ratio1=Tst/Tl #ratio of starting torque to full load torque\n", + "z=Rs+math.sqrt(Rs**2+(Xs+Xr_)**2)\n", + "Tmax=3/(2*Wms)*(Vl/math.sqrt(3))**2/z #maximum torque\n", + "ratio2=Tmax/Tl #ratio of maximum torque to full load torque\n", + "\n", + "#(ii) If the motor is started using auto transformer\n", + "y=math.sqrt((Rs+Rr_)**2+(Xs+Xr_)**2)\n", + "Ist1=Vl*math.sqrt(3)/y #starting current direct online\n", + "aT=math.sqrt(2*Il/Ist1) #transofrmation ratio\n", + "Ilst=2*Il/aT #starting motor line current\n", + "Ipst=Ilst/math.sqrt(3) #starting motor phase current\n", + "Tst1=(1/Wms)*(3*Ipst**2*Rr_) #starting torque\n", + "\n", + "#(iii) If motor is started using part winding method\n", + "Rs_=2*Rs\n", + "Xs_=2*Xs\n", + "y=math.sqrt((Rs_+Rr_)**2+(Xs_+Xr_)**2)\n", + "Ist2=(Vl*math.sqrt(3))/y #starting line current \n", + "Ip=Ist2/math.sqrt(3) #starting phase current\n", + "Tst2=(1/Wms)*(3*Ip**2*Rr_) #starting torque\n", + "\n", + "#(iv) motor is started using series reactors in line\n", + "Rs_=Rs/3 ; Rr_=Rr_/3\n", + "Xs_=Xs/3 ; Xr_=Xr_/3\n", + "Il=2*Il #line current at start\n", + "x=(Vl/math.sqrt(3))**2/(Il**2) #x=(Rs_+Rr_)**2+(Xs_+Xr_+Xe)**2\n", + "y=x-(Rs_+Rr_)**2 #y=(Xs_+Xr_+Xe)**2\n", + "z=math.sqrt(y) #z=(Xs_+Xr_+Xe)\n", + "Xe=z-Xs_-Xr_\n", + "\n", + "\n", + "#results\n", + "print\"(i)Maximum value of line current during starting Ist:\",round(Ist),\"A\"\n", + "print\" Ratio of starting torque to full load torque :\",round(ratio1,3)\n", + "print\" Ratio of maximum torque to full load torque :\",round(ratio2,2)\n", + "print\"\\n(ii)transofrmation ratio aT:\",round(aT,3)\n", + "print\" starting torque :\",round(Tst1),\"N-m\"\n", + "#answer for the starting torque in the book is wrong due to accuracy\n", + "print\"\\n(iii)maixmum line current during starting :\",round(Ist2),\"A\"\n", + "print\" Starting torque :\",round(Tst2),\"N-m\"\n", + "#answer for the starting torque in the book is wrong due to accuracy\n", + "print\"\\n(iv)value of the reactor Xe:\",round(Xe,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Maximum value of line current during starting Ist: 1251.0 A\n", + " Ratio of starting torque to full load torque : 0.173\n", + " Ratio of maximum torque to full load torque : 0.83\n", + "\n", + "(ii)transofrmation ratio aT: 0.627\n", + " starting torque : 7041.0 N-m\n", + "\n", + "(iii)maixmum line current during starting : 2590.0 A\n", + " Starting torque : 8539.0 N-m\n", + "\n", + "(iv)value of the reactor Xe: 0.527 ohm\n" + ] + } + ], + "prompt_number": 199 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.3,Page No:159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor\n", + "f=50 # frequency in HZ\n", + "Vl=400 # line voltage in V\n", + "P=6 # number of poles\n", + "#parameters referred to the stator\n", + "Xr_=2 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=1 # resistance of the rotor windings in ohm\n", + "Rs=Rr_ # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "Wms=2*math.pi*Ns/60 \n", + "\n", + "#(i)\n", + "Sm=-Rr_/math.sqrt(Rs**2+(Xs+Xr_)**2) #slip at maximum torque\n", + "x=math.sqrt((Rs+Rr_/Sm)**2+(Xs+Xr_)**2)\n", + "Ir_=(Vl/math.sqrt(3))/x #current at maximum torque \n", + "Tmax=(1/Wms)*3*Ir_**2*Rr_/Sm #maximum torque\n", + "N=(1-Sm)*Ns #range of speed\n", + "\n", + "#(ii)an overhauling torque of 100Nm\n", + "Tl=100 #overhauling torque in Nm\n", + "# Tl=(3/Wms)*(Vl**2*Rr_/s)/y\n", + "# where y=(Rs+Rr_/s)**2+(Xs+Xr_)**2\n", + "a=(1/Wms)*(Vl**2*Rr_)/(-Tl) #a=s*(Rs+Rr_/s)**2+(Xs+Xr_)**2\n", + "a = 17\n", + "b = 17.3\n", + "c = 1\n", + "# calculate the discriminant\n", + "d = (b**2) - (4*a*c)\n", + "# find two solutions\n", + "s1 = (-b-cmath.sqrt(d))/(2*a)\n", + "s2 = (-b+cmath.sqrt(d))/(2*a)\n", + "\n", + "N2=(1-s2)*Ns #motor speed and we neglect s1 \n", + "\n", + "#slight difference in the answer due to accuracy\n", + "\n", + "#(iii)when a capacitive reactance of 2 ohm is inserted in each phase stator\n", + "Xc=2 #reactance of the capacitor\n", + "Sm=-Rr_/math.sqrt(Rs**2+(Xs+Xr_-Xc)**2) #slip at maximum torque \n", + "x=math.sqrt((Rs+Rr_/Sm)**2+(Xs+Xr_-Xc)**2)\n", + "Ir_=(Vl/math.sqrt(3))/x #current at maximum torque \n", + "Tmax_=(1/Wms)*3*Ir_**2*Rr_/Sm #maximum overhauling torque with capacitor\n", + "ratio=Tmax_/Tmax\n", + "\n", + "\n", + "#results\n", + "print\"(i)Maximum overhauling torque that the motor can hold is:\",round(abs(Tmax),1),\"N-m\"\n", + "print\" Range of speed is from \",Ns,\"to\",round(N),\"rpm\"\n", + "print\"\\n(ii)Now s*(1+1/s)**2+16s=\",a\n", + "print\" Or 17s**s+17.3s+1=0\"\n", + "print\"The solution for s are \",round(s1.real,3),\"and\",round(s2.real,3)\n", + "print\"\\nTherefore Motor speed is: \",round(abs(N2)),\"rpm\"\n", + "print\"Note :There is a slight difference in the answer due to the decimal place\"\n", + "print\"\\n(iii) Ratio of maximum torque with capacitor and to maximum torque without capacitor is:\",round(ratio,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Maximum overhauling torque that the motor can hold is: 244.6 N-m\n", + " Range of speed is from 1000.0 to 1243.0 rpm\n", + "\n", + "(ii)Now s*(1+1/s)**2+16s= 17\n", + " Or 17s**s+17.3s+1=0\n", + "The solution for s are -0.956 and -0.062\n", + "\n", + "Therefore Motor speed is: 1062.0 rpm\n", + "Note :There is a slight difference in the answer due to the decimal place\n", + "\n", + "(iii) Ratio of maximum torque with capacitor and to maximum torque without capacitor is: 2.53\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.4,Page No:162\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the motor is same as that of Ex-6.3\n", + "f=50 # frequency in HZ\n", + "Vl=400 #line voltage in V\n", + "P=6 # number of poles\n", + "#parameters referred to the stator\n", + "Xr_=2 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=1 # resistance of the rotor windings in ohm\n", + "Rs=Rr_ # resistance of the stator windings in ohm\n", + "N=950 #full load speed in rpm\n", + "SR=2.3 #stator to rotor turns ratio\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "Wms=2*math.pi*Ns/60 \n", + "s=(Ns-N)/Ns #full load slip\n", + "x=math.sqrt((Rs+Rr_/s)**2+(Xs+Xr_)**2)\n", + "Irf_=(Vl/math.sqrt(3))/x #full load current\n", + "Tf=(1/Wms)*3*Irf_**2*Rr_/s #full load torque\n", + "\n", + "#(i)initial braking current and torque\n", + "S=2-s #during plugging at 950rpm\n", + "y=math.sqrt((Rs+Rr_/S)**2+(Xs+Xr_)**2)\n", + "Ir_=(Vl/math.sqrt(3))/y #initial braking current\n", + "ratio1=Ir_/Irf_\n", + "T=(1/Wms)*3*Ir_**2*Rr_/S #initial braking torque\n", + "ratio2=T/Tf\n", + "\n", + "#(ii)when an external resistance is connected such \n", + "#that maximum braking current is 1.5 times the full load current\n", + "Ir_=1.5*Irf_\n", + "x=(Vl/math.sqrt(3))/Ir_ #x=math.sqrt((Rs+(Rr_+Re_)/S)**2+(Xs+Xr_)**2)\n", + "y=x**2 #y=(Rs+(Rr_+Re_)/S)**2+(Xs+Xr_)**2\n", + "z=y-(Xs+Xr_)**2 #z=(Rs+(Rr_+Re_)/S)**2\n", + "a=math.sqrt(z) #a=(Rs+(Rr_+Re_)/S)\n", + "b=(a-Rs)*S #b=(Rr_+Re_)\n", + "Re_=b-Rs\n", + "Re=Re_/SR**2\n", + "T=(1/Wms)*3*Ir_**2*(Rr_+Re_)/S #initial braking torque\n", + "ratio=T/Tf\n", + "\n", + "\n", + "#results\n", + "print\"(i)Ratio of initial braking current to full load current is:\",round(ratio1)\n", + "print\" Ratio of initial braking torque to full load torque is:\",round(ratio2,2)\n", + "print\"\\n(ii)Ratio of initial braking torque to full load torque when the resistance is added is:\",round(ratio,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Ratio of initial braking current to full load current is: 5.0\n", + " Ratio of initial braking torque to full load torque is: 0.64\n", + "\n", + "(ii)Ratio of initial braking torque to full load torque when the resistance is added is: 1.426\n" + ] + } + ], + "prompt_number": 203 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.5,Page No:165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor\n", + "f=50 # frequency in HZ\n", + "Vl=440 # line voltage in V\n", + "P=6 # number of poles\n", + "Vp=Vl/math.sqrt(3) #phase voltage\n", + "#parameters referred to the stator\n", + "Xr_=1.2 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=0.4 # resistance of the rotor windings in ohm\n", + "Rs=0.5 # resistance of the stator windings in ohm\n", + "Xm=50 # no load reactance\n", + "N=950 # full load speed\n", + "Sm=2 # slip at maximum torque\n", + "\n", + "#calculation\n", + "Rr_=Sm*math.sqrt(Rs**2+(Xs+Xr_)**2) #Since Sm=Rr_/math.sqrt(Rs**2+(Xs+Xr_)**2)\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "Wms=2*math.pi*Ns/60 \n", + "s=(Ns-N)/Ns #slip at 950 rpm\n", + "\n", + "x=1j*Xm*(Rr_/s+1j*Xr_)\n", + "y=Rr_/s+1j*(Xr_+Xm)\n", + "Zp=Rs+1j*Xs+x/y\n", + "Ip=Vp/math.sqrt(3)/Zp #In the book the value of Ip is wrong which leads to other subsequent wrong answers in the book\n", + "Irp_=Ip*(1j*Xm)/(Rr_/s+1j*(Xr_+Xm))\n", + "Tp=(1/Wms)*3*abs(Irp_)**2*Rr_/s\n", + "x=1j*Xm*(Rr_/(2-s)+1j*Xr_)\n", + "y=Rr_/(2-s)+1j*(Xr_+Xm)\n", + "Zn=Rs+1j*Xs+x/y\n", + "In=Vp/math.sqrt(3)/Zn\n", + "Irn_=In*(1j*Xm)/(Rr_/(2-s)+1j*(Xr_+Xm))\n", + "Tn=-(1/Wms)*3*abs(Irn_)**2*Rr_/(2-s) #In the book the value of In is wrong\n", + "\n", + "T=Tp-Tn\n", + "I=abs(Ip)+abs(In)\n", + "Rr_=0.4 # from the parameters of the motor referred to the stator\n", + "x=math.sqrt((Rs+Rr_/s)**2+(Xs+Xr_)**2)\n", + "If=(Vl/math.sqrt(3))/x #full load current\n", + "Tf=(1/Wms)*3*If**2*Rr_/s #full load torque\n", + "\n", + "ratio1=I/If\n", + "ratio2=abs(T)/Tf\n", + "\n", + "#results\n", + "print\"Ratio of braking current to full load current is:\",round(ratio1,3)\n", + "print\"Ratio of braking torque to full load torque is:\",round(ratio2,3)\n", + "#answer in the book is wrong\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ratio of braking current to full load current is: 1.448\n", + "Ratio of braking torque to full load torque is: 0.565\n" + ] + } + ], + "prompt_number": 204 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.6,Page No:171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "from array import array\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.cbook as cbook\n", + "%matplotlib inline\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor which operates under dynamic braking\n", + "f=50 # frequency in HZ\n", + "P=4 # number of poles\n", + "#parameters referred to the stator\n", + "Xr_=3.01 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=4.575 # resistance of the rotor windings in ohm\n", + "Rs=1.9 # resistance of the stator windings in ohm\n", + "J=0.1 # moment of inertia of the motor load system in kg-m2\n", + "Id=12 # given DC current\n", + "\n", + "N=1500 #given asynchronous speed\n", + "#magnetization chacrateristic at the given asynchronous speed\n", + "Im=[0.13,0.37,0.6,0.9,1.2,1.7,2.24,2.9,3.9,4.9,6,8,9,9.5] #magnetization current\n", + "E=[12.8,32,53.8,80,106,142,173,200,227,246,260,280,288,292] #back emf\n", + "\n", + "#calculation\n", + "torque=[]\n", + "speed=[]\n", + "temp=[]\n", + "Is=math.sqrt(2/3)*Id #value of stator current for two lead connection\n", + "Wms=2*math.pi*N/60\n", + "for i in range (1,14,1):\n", + " x=(Is**2-Im[i]**2)/(1+2*Xr_*Im[i]/E[i]) #x=Ir_**2\n", + " Ir_=math.sqrt(x) #required rotor current\n", + " y=(E[i]/Ir_)**2-Xr_**2\n", + " S=Rr_/math.sqrt(y) #required slip\n", + " N=S*Ns #required speed\n", + " T=(3/Wms)*(Ir_)**2*Rr_/S #required torque\n", + " speed.append(round(N))\n", + " torque.append(round(T,1))\n", + " temp.append(round(T,1))\n", + "print\"Hence the magnetizatioin curve is\"\n", + "print\"Speed :\",speed,\"rpm\"\n", + "for i in range(0,13,1):\n", + " torque[i]=-1*torque[i]\n", + "print\"Braking torque is :\",torque,\"N-m\"\n", + "\n", + "#results\n", + "#plot of of torque vs speed\n", + "plt.figure(1)\n", + "plt.plot(torque,speed)\n", + "plt.xlabel('Torque, N-m') \n", + "plt.ylabel('Speed, rpm')\n", + "plt.title('Torque vs Speed')\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n", + "#plot of Wm vs J/T\n", + "inertia_over_torque=[]\n", + "for i in range(2,13,1):\n", + " J_T=1000*J/temp[i]\n", + " inertia_over_torque.append(round(J_T,4))\n", + "print\"J/t :\",inertia_over_torque \n", + "\n", + "Wm=[1,4,8,12,16,20,25,55,95,125,160] \n", + "#the values of Wm are taken for the angular frequency with maximum value of Wms=50*pi rad/s\n", + "plt.figure(2)\n", + "plt.plot(Wm,inertia_over_torque)\n", + "plt.xlabel(r'Angular speed $\\omega_m$') \n", + "plt.ylabel(' $J/T,1*10^-2$')\n", + "plt.title(r'$J/T vs \\omega_m$')\n", + "plt.grid(True)\n", + "x=[6.5,6.5]\n", + "y=[2,4.5]\n", + "plt.plot(x,y,'blue')\n", + "plt.annotate('A',xy=(8,2), xytext=(8,2.1), arrowprops=dict(facecolor='black', shrink=0),)\n", + "plt.annotate('B',xy=(8,4.5), xytext=(8,4.6), arrowprops=dict(facecolor='black', shrink=0),)\n", + "plt.annotate('C',xy=(80,3.4), xytext=(80,3.5), arrowprops=dict(facecolor='black', shrink=0),)\n", + "plt.annotate('D',xy=(157,8.3), xytext=(157,8.4), arrowprops=dict(facecolor='black', shrink=0),)\n", + "plt.annotate('E',xy=(157,2), xytext=(157,2.1), arrowprops=dict(facecolor='black', shrink=0),)\n", + "plt.show()\n", + "\n", + "print\"Hence from the plot the area ABCDEA between the curve and the speed axis for speed change \"\n", + "print\"for synchronous to 0.02 times synchrnous speed is the stopping time is which equal to: 9.36 sec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hence the magnetizatioin curve is\n", + "Speed : [2975.0, 949.0, 578.0, 421.0, 306.0, 246.0, 207.0, 174.0, 150.0, 128.0, 86.0, 56.0, 34.0] rpm\n", + "Braking torque is : [-2.6, -8.3, -13.5, -18.4, -24.8, -30.0, -34.0, -36.9, -37.5, -35.9, -27.9, -19.5, -12.2] N-m\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEaCAYAAACrcqiAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xtc1FX+x/HXcDE1NbyiMtIokAiooC7pthWu13RFzV0I\nU8G0Ld2uuqVu6671SGE33VLLrd201N3Cy68VyyKzxDYzNMXVJBdSQLnoek1NBIHz+2NiBAUZcWa+\nc+DzfDzmwXy/zOU9J5sP33PO93xNSimFEEII4YY8jA4ghBBC1EaKlBBCCLclRUoIIYTbkiIlhBDC\nbUmREkII4bakSAkhhHBbUqSEEE4zb948Jk6caHQMoTEpUqJBa9GiBS1btqRly5Z4eHjQvHlz2/a7\n775rdDynyc/PZ9y4cbRv3x4fHx969uzJypUrXZ7DZDK5/D1Fw+JldAAhnOnChQu2+127dmX58uX8\n/Oc/v6HXKCsrw8tLr/9VJk6cSEREBEeOHOGWW25h3759HDt2zOhYQtwwOZISjVJJSQlPPfUUfn5+\n+Pn58fTTT1NaWgpAWloaZrOZP//5z3Tq1IkpU6Zw6dIlEhISaNOmDaGhobz00kt06dLF9noeHh4c\nPnzYtp2QkMDcuXNt2x988AHh4eG0bt2au+66i/3799eYa9q0aTzzzDPV9o0ePZpXXnkFgD/96U+Y\nzWZatWpFcHAwn332WY2v8/XXX5OQkECzZs3w8PAgPDyc4cOHA5Cbm4uHhwd///vf8fPzo3Pnzixa\ntMj2XKUUSUlJBAYG0q5dO2JjYzlz5ozt91999RU//elPad26NeHh4Wzbts32u5ycHO69915atWrF\n0KFDOXny5PX/QwhRFyVEI2GxWNSnn36qlFJq7ty5asCAAerEiRPqxIkT6qc//amaO3euUkqprVu3\nKi8vLzV79mxVWlqqiouL1axZs9Q999yjzpw5o44ePapCQ0NVly5dbK9tMpnUoUOHbNsJCQm219uz\nZ4/q0KGD2rlzp6qoqFArV65UFotFlZSUXJPx888/r/a6p0+fVs2aNVNFRUXq4MGDqkuXLqqoqEgp\npVReXl6196xq8ODB6q677lLJyckqLy+v2u9ycnKUyWRS48ePVxcvXlT79+9X7du3V1u2bFFKKfXK\nK6+oAQMGqIKCAlVaWqoeeeQRFRcXp5RSKj8/X7Vt21Z99NFHSimlPvnkE9W2bVt18uRJpZRS/fv3\nVzNnzlSlpaXq888/Vy1btlQTJ0609z+RENeQIiUajapFKiAgwPZFq5RSH3/8sbJYLEopa5Fq0qRJ\ntSLSrVs39fHHH9u2//a3vymz2Wzbvl6RevTRR233K3Xv3l1t27btmowVFRXK399fff7557b3GTRo\nkFJKqezsbNWhQwe1ZcsWVVpaet3PeubMGTV79mwVGhqqPD09VXh4uNq1a5dS6kqR+u9//2t7/LPP\nPqumTJmilFIqODjY1k5KKVVYWKi8vb1VWVmZSkpKuqboDBs2TK1cuVLl5eUpLy8vdfHiRdvvxo8f\nryZMmHDdrEJcj3T3iUapsLCQ22+/3bbt7+9PYWGhbbt9+/Y0adKk2uOrdu/5+/vb/V55eXksWrSI\n1q1b2275+fkUFRVd81iTycQDDzxgm9Txzjvv8OCDDwIQGBjIK6+8wrx58/D19SUuLq7G1wDw8fEh\nMTGRb775huPHjxMeHs6YMWOqPebqz1P5+fPy8hg7dqwta0hICF5eXhw/fpy8vDzWrVtX7bNs376d\nY8eOUVhYSOvWrWnWrJntdau2sRD1IUVKNEqdO3cmNzfXtn3kyBE6d+5s2756VlqnTp04cuRItcdX\n1bx5cy5evGjbrlo8/P39ee655zhz5oztduHCBWJjY2vMFhcXx/r168nLy2Pnzp2MGzeu2u/+/e9/\nk5eXh8lkYtasWXV+1rZt2zJz5kwKCwurjS1d/Xn8/PxseVNTU6vlvXjxIp07d8bf35+JEydW+935\n8+d59tln6dSpk+2xlSpzClFfUqREoxQXF8eLL77IyZMnOXnyJC+88MJ1z+eJiYkhMTGRs2fPkp+f\nz9KlS6t9+YaHh/PPf/6T8vJyUlNT+fzzz22/e/jhh3n99dfZuXMnSil++OEHNm3aVG3mYVXh4eG0\na9eOqVOnMnz4cFq1agVAVlYWn332GSUlJdxyyy00bdoUT0/PGl9j1qxZHDhwgLKyMs6fP89f//pX\ngoKCaN26te0xL774IsXFxRw4cIC3337bVjQfffRRfve739mK2IkTJ9i4cSMAEyZM4P3332fz5s2U\nl5dz6dIl0tLSKCgo4Pbbb6dfv3788Y9/5PLly3zxxRd88MEH9vznEKJWUqREo/T73/+efv360atX\nL3r16kW/fv34/e9/b/v91X/9//GPf+T222+na9euDB8+nEmTJqGqXIpt8eLFvP/++7Ru3Zp33nmH\nsWPH2n7Xt29f/v73v/PYY4/Rpk0bgoKCWLVq1XXzjR8/ns8++4zx48fb9pWUlDBnzhzat29Pp06d\nOHnyJImJiTU+v7i42NZlFxAQwNGjR22FptK9995LYGAggwcP5plnnmHw4MEAPPnkk0RHRzN06FBa\ntWrFgAED2LlzJwBms5mUlBQWLFhAhw4d8Pf3Z9GiRVRUVADW7sn09HTatGnDCy+8QHx8/HU/pxB1\nMSnlnIseXrp0iXvvvZeSkhJKS0sZPXo0iYmJnD59mtjYWPLy8rBYLKxduxYfHx8AEhMTWbFiBZ6e\nnixZsoShQ4cCsHv3bhISErh06RIjRoxg8eLFzogshN3S0tKYOHEiR48eNTrKDcvNzaVbt26UlZXh\n4SF/pwr35rR/oU2bNmXr1q3s3buXffv2sXXrVr744guSkpIYMmQIWVlZDBo0iKSkJAAyMzNZs2YN\nmZmZpKamMn36dNtfqtOmTWP58uVkZ2eTnZ1Namqqs2ILIYRwI079M6p58+YAlJaWUl5eTuvWrdm4\ncaOtCyA+Pp4NGzYAkJKSQlxcHN7e3lgsFgIDA0lPT6eoqIjz588TGRkJwKRJk2zPEcJIOk8I0Dm7\naFycWqQqKioIDw/H19eXgQMHEhoayvHjx/H19QXA19eX48ePA9Ypvmaz2fZcs9lMQUHBNfv9/Pwo\nKChwZmwh6hQVFXXNDD9dWCwWysvLpatPaMGpC5J5eHiwd+9evv/+e4YNG8bWrVur/d5kMjnsL7p2\n7dpx6tQph7yWEEII5wsICOC777677mNc8qfUbbfdxsiRI9m9eze+vr62hS6Lioro0KEDYD1CqjoI\nnZ+fj9lsxs/Pj/z8/Gr7K8/nqOrUqVMo6woaWt3i4+MNz9BYcuuYWXJLbqMyFxUpvvjCubkPHTpU\nZ/1wWpE6efIkZ8+eBazTYT/55BMiIiKIjo62XTJg5cqVtrPgo6OjSU5OprS0lJycHLKzs4mMjKRj\nx460atWK9PR0lFKsXr36mjPndWaxWIyOUC865tYxM0huV9MxtzMyr14NdZwp4RJO6+4rKioiPj6e\niooKKioqmDhxIoMGDSIiIoKYmBiWL19um4IOEBISQkxMjG0JlmXLltm6ApctW0ZCQgLFxcWMGDHC\ntpqzEEII50hOhoULjU7hxCLVs2dP9uzZc83+Nm3asGXLlhqf87vf/Y7f/e531+zv27dvrZc20F3l\nOWK60TG3jplBcruajrkdnTkrCwoL4Z57HPqy9SLTewwWHh5udIR60TG3jplBcruajrkdnXnNGoiJ\ngVpW3XIpp6044Womk4kG8lGEEMIwSkFoKCxfDgMGOPe97PneliMpIYQQNt98AxcvQv/+RiexkiJl\nsLS0NKMj1IuOuXXMDJLb1XTM7cjMyckQGwvusiiJU0/mFUIIoQ+lrEVq/Xqjk1whY1JCCCEA2LUL\nJkyAgwddcyQlY1JCCCHslpwMDzzgPl19IEXKcDr2f4OeuXXMDJLb1XTM7YjMFRXWqec/XqDZbUiR\nEkIIwfbt0LYthIQYnaQ6GZMSQgjBb34DZjPMmeO697Tne1uKlBBCNHJlZeDnBzt2QLdurntfmTih\nAR37v0HP3DpmBsntajrmvtnMW7eCxeLaAmUvKVJCCNHIVc7qc0fS3SeEEI1YSQl07gz79lm7/FxJ\nuvuEEEJc1+bNEBbm+gJlLylSBtOx/xv0zK1jZpDcrqZj7pvJ7M5dfSBFSgghGq2LF2HTJhg3zugk\ntZMxKSGEaKTWrYM334SPPzbm/WVMSgghRK3cvasPpEgZTsf+b9Azt46ZQXK7mo6565P53DnYsgXG\njnV8HkeSIiWEEI1QSgpERYGPj9FJrk/GpIQQohEaOdJ67ai4OOMyyNp9QgghrnHqFAQEQH4+tGhh\nXA6ZOKEBHfu/Qc/cOmYGye1qOua+0czvvQfDhhlboOwlRUoIIRoZHWb1VZLuPiGEaESKiqwXNiwq\ngqZNjc0i3X1CCCGqWb8eoqONL1D2kiJlMB37v0HP3DpmBsntajrmvpHMOnX1gRQpIYRoNPLyICsL\nBg82Oon9nFakjh49ysCBAwkNDSUsLIwlS5YAMG/ePMxmMxEREURERPDRRx/ZnpOYmEhQUBDBwcFs\n3rzZtn/37t307NmToKAgnnzySWdFNkRUVJTREepFx9w6ZgbJ7Wo65rY389q1cP/94O3t3DyO5LSJ\nE8eOHePYsWOEh4dz4cIF+vbty4YNG1i7di0tW7ZkxowZ1R6fmZnJ+PHj2bVrFwUFBQwePJjs7GxM\nJhORkZG8+uqrREZGMmLECJ544gmGDx9e/YPIxAkhhLiuvn1h4UIYONDoJFaGTpzo2LEj4eHhALRo\n0YIePXpQUFAAUGOolJQU4uLi8Pb2xmKxEBgYSHp6OkVFRZw/f57IyEgAJk2axIYNG5wV2+V07P8G\nPXPrmBkkt6vpmNuezFlZUFgI99zj/DyO5JIxqdzcXDIyMujfvz8AS5cupXfv3kyZMoWzZ88CUFhY\niNlstj3HbDZTUFBwzX4/Pz9bsRNCCGGfNWsgJgY8PY1OcmO8nP0GFy5c4Je//CWLFy+mRYsWTJs2\njT/84Q8AzJ07l5kzZ7J8+XKHvFdCQgIWiwUAHx8fwsPDbX21lX9pyLZjtiv3uUsee7erZneHPPZs\nR0VFuVWeG9mu5C55Gmp7V+6r7fdbt6bx5puQnGxs3sr7ubm52MupJ/NevnyZX/ziF9x333089dRT\n1/w+NzeXUaNGsX//fpKSkgCYPXs2AMOHD+f555/n9ttvZ+DAgXz77bcAvPvuu2zbto3XX3+9+geR\nMSkhhKjR/v0wahTk5IDJZHSaKwwdk1JKMWXKFEJCQqoVqKKiItv9f/3rX/Ts2ROA6OhokpOTKS0t\nJScnh+zsbCIjI+nYsSOtWrUiPT0dpRSrV69mzJgxzortclf/xakLHXPrmBkkt6vpmLuuzMnJEBvr\nXgXKXk7r7tu+fTv/+Mc/6NWrFxEREQAsWLCAd999l71792IymejatStvvPEGACEhIcTExBASEoKX\nlxfLli3D9GOLLlu2jISEBIqLixkxYsQ1M/uEEELUTClrkVq/3ugk9SNr9wkhRAO2a5f1ulEHD7rf\nkZSs3SeEEI1c5TJI7lag7CVFymA69n+Dnrl1zAyS29V0zF1b5ooK69Tz2FjX5nEkKVJCCNFAbd8O\nbdtaL82hKxmTEkKIBuo3vwGzGebMMTpJzez53pYiJYQQDVBZGfj5wY4d0K2b0WlqJhMnNKBj/zfo\nmVvHzCC5XU3H3DVl3roVLBb3LVD2kiIlhBANkG4XN6yNdPcJIUQDU1ICnTvDvn3WLj93Jd19QgjR\nCG3eDGFh7l2g7CVFymA69n+Dnrl1zAyS29V0zH115obS1QdSpIQQokG5eBE2bYJx44xO4hgyJiWE\nEA3IunXw5pvw8cdGJ6mbjEkJIUQj05C6+kCKlOF07P8GPXPrmBkkt6vpmLsy87lzsGULjB1rbB5H\nkiIlhBANREoKREWBj4/RSRxHxqSEEKKBGDnSeu2ouDijk9hH1u4TQohG4tQpCAiA/Hxo0cLoNPaR\niRMa0LH/G/TMrWNmkNyupmPutLQ03nsPhg3Tp0DZS4qUEEI0AA1tVl8l6e4TQgjNFRVZL2xYVARN\nmxqdxn7S3SeEEI3A+vUQHa1XgbKXFCmD6dj/DXrm1jEzSG5X0zH3G2+kNciuPpAiJYQQWsvLg6NH\nYfBgo5M4h4xJCSGExl56Cb77Dt54w+gkN07GpIQQooFrqLP6KkmRMpiO/d+gZ24dM4PkdjWdcmdl\nQWEhVFSkGR3FaaRICSGEptasgZgY8PQ0OonzyJiUEEJoSCkIDYXly2HAAKPT1I+hY1JHjx5l4MCB\nhIaGEhYWxpIlSwA4ffo0Q4YM4Y477mDo0KGcPXvW9pzExESCgoIIDg5m8+bNtv27d++mZ8+eBAUF\n8eSTTzorshBCaOObb6xX4e3f3+gkzuW0IuXt7c3LL7/MgQMH+Oqrr3jttdf49ttvSUpKYsiQIWRl\nZTFo0CCSkpIAyMzMZM2aNWRmZpKamsr06dNtFXbatGksX76c7OxssrOzSU1NdVZsl9Op/7sqHXPr\nmBkkt6vpkjs5GWJjwWTSJ3N9OK1IdezYkfDwcABatGhBjx49KCgoYOPGjcTHxwMQHx/Phg0bAEhJ\nSSEuLg5vb28sFguBgYGkp6dTVFTE+fPniYyMBGDSpEm25wghRGOkVMOf1VfJJRMncnNzycjI4M47\n7+T48eP4+voC4Ovry/HjxwEoLCzEbDbbnmM2mykoKLhmv5+fHwUFBa6I7RJRUVFGR6gXHXPrmBkk\nt6vpkPvrr8HLC348DtAic315OfsNLly4wLhx41i8eDEtW7as9juTyYTJZHLYeyUkJGCxWADw8fEh\nPDzc9h+v8nBYtmVbtmVb9+2XXkqjf38wmdwjj73blfdzc3Oxm3Ki0tJSNXToUPXyyy/b9nXv3l0V\nFRUppZQqLCxU3bt3V0oplZiYqBITE22PGzZsmPrqq69UUVGRCg4Otu1/55131COPPHLNezn5ozjN\n1q1bjY5QLzrm1jGzUpLb1dw9d3m5Un5+Sh04cGWfu2eujT3f207r7lNKMWXKFEJCQnjqqads+6Oj\no1m5ciUAK1euZMyYMbb9ycnJlJaWkpOTQ3Z2NpGRkXTs2JFWrVqRnp6OUorVq1fbniOEEI3N9u3Q\ntq310hyNgdPOk/riiy+455576NWrl61LLzExkcjISGJiYjhy5AgWi4W1a9fi4+MDwIIFC1ixYgVe\nXl4sXryYYcOGAdYp6AkJCRQXFzNixAjbdPZqH0TOkxJCNAK/+Q2YzTBnjtFJbp4939tyMq8QQmii\nrAz8/GDHDujWzeg0N08WmNVA1QFFneiYW8fMILldzZ1zb90KFsu1BcqdM98sKVJCCKGJxnJuVFXS\n3SeEEBooKYHOnWHfPmuXX0Mg3X1CCNFAbN4MYWENp0DZS4qUwXTtS9Yxt46ZQXK7mrvmvl5Xn7tm\ndgQpUkII4eYuXoRNm2DcOKOTuF6dY1Jnzpxh1apV5ObmUlZWZn2SyVTjuUpGkjEpIURDtW4dvPkm\nfPyx0Ukcy57v7TrX7hsxYgQDBgygV69eeHh4oJRy6Hp7Qgghrq8xzuqrVGd3X0lJCX/5y1+YPHky\n8fHxJCQk2C61IW6ern3JOubWMTNIbldzt9znzsGWLTB2bO2PcbfMjlRnkRo/fjx/+9vfKCoq4vTp\n07abEEII50tJgago+HH1uEanzjGpV199leeeew4fHx88PKw1zWQycfjwYZcEtJeMSQkhGqKRI2HC\nBIiLMzqJ4zlk7b6uXbuya9cu2rVr59BwjiZFSgjR0Jw6BQEBkJ8PLVoYncbxHHIyb1BQEM2aNXNY\nKFGdrn3JOubWMTNIbldzp9zvvQfDhtVdoNwps6PVObuvefPmhIeHM3DgQG655RbAPaegCyFEQ5Oc\nDI89ZnQKY9XZ3ff2229bH/jjtPPKKejuNsNPuvuEEA1JUZH1woZFRdC0qdFpnMNh15MqKSnh4MGD\nmEwmgoODadKkicNCOooUKSFEQ7J0KXz9Nfx4IfMGySFjUps2bSIwMJAnnniCxx9/nICAAD788EOH\nhWzsdO1L1jG3jplBcruau+S+kRN43SWzM9Q5JjVjxgy2bt1KYGAgAIcOHWLEiBGMGDHC6eGEEKIx\nysuDrCwYPNjoJMars7vvJz/5Cbt27bJtK6WIjIysts8dSHefEKKheOkl+O47eOMNo5M4l0PGpB59\n9FGOHDlCTEwMAOvWrcPf358hQ4YAcP/99zso7s2RIiWEaCj69oWFC2HgQKOTOJdDxqRKSkrw9fVl\n27ZtbNu2jfbt23Pp0iXef/993n//fYeFbax07UvWMbeOmUFyu5rRubOyoLAQ7rnH/ucYndmZrjsm\nVV5eTs+ePZkxY4ar8gghRKO2Zg3ExICnp9FJ3MMNj0m5K+nuE0LoTikIDYXly2HAAKPTOJ9DxqSe\nfvppLl++TGxsLLfeeqvtZN4+ffo4NOzNkiIlhNDd/v0wahTk5EBjuGyfQ8akMjIyOHDgAH/4wx+Y\nOXMmv/3tb5k5c6bDQjZ2uvYl65hbx8wguV3NyNzJyRAbe+MFSte2tked50k15A8vhBDuQilrkVq/\n3ugk7sWuZZF0IN19Qgid7dplvW7UwYONo6sPHNTdJ4QQwvkql0FqLAXKXk4tUg899BC+vr707NnT\ntm/evHmYzWYiIiKIiIjgo48+sv0uMTGRoKAggoOD2bx5s23/7t276dmzJ0FBQTz55JPOjOxyunan\n6phbx8wguV3NiNwVFdap57Gx9Xu+rm1tjxsuUrt27aKwsNCux06ePJnU1NRq+0wmEzNmzCAjI4OM\njAzuu+8+ADIzM1mzZg2ZmZmkpqYyffp022HgtGnTWL58OdnZ2WRnZ1/zmkIIobPt26FtW+ulOUR1\nN1ykli5dysiRI4m1o+TffffdtG7d+pr9NfVBpqSkEBcXh7e3NxaLhcDAQNLT0ykqKuL8+fNERkYC\nMGnSJDZs2HCjsd1WVFSU0RHqRcfcOmYGye1qRuS+kRXPa6JrW9ujztl9V1u1ahUA586dq/ebLl26\nlFWrVtGvXz8WLVqEj48PhYWF9O/f3/YYs9lMQUEB3t7emM1m234/Pz8KCgrq/d5CCOFOysqsM/p2\n7DA6iXuq9Uhq9+7d7Nmzx/bz6lurVq3q9YbTpk0jJyeHvXv30qlTp0Z/zpWufck65tYxM0huV3N1\n7q1bwWKBbt3q/xq6trU9aj2SmjlzJiaTieLiYnbv3k2vXr0A2LdvH/369WNHPct+hw4dbPenTp3K\nqFGjAOsR0tGjR22/y8/Px2w24+fnR35+frX9fn5+Nb52QkICFosFAB8fH8LDw22HwZX/Ed1tu5K7\n5LF3e+/evW6Vx57tvXv3ulWehr4t7W3fdnIy9OuXRlpaw///sfJ+bm4udlN1GDt2rNq3b59te//+\n/er++++v62k2OTk5KiwszLZdWFhou/+Xv/xFxcXFKaWUOnDggOrdu7cqKSlRhw8fVt26dVMVFRVK\nKaUiIyPVV199pSoqKtR9992nPvroo2vex46PIoQQbuXSJaXatFEqP9/oJMaw53u7zjGpgwcPVptC\nHhYWxrfffmtXAYyLi2Pbtm2cPHmSLl268Pzzz9v+wjKZTHTt2pU3fryqV0hICDExMYSEhODl5cWy\nZcsw/XjCwLJly0hISKC4uJgRI0YwfPhw+6uwEEK4qc2bISwMaukcEtix4sQDDzxAixYtmDBhAkop\n3nnnHS5cuMC7777rqox20XXFibS0NNshsU50zK1jZpDcrubK3A8+CD/7GUybdnOvo2tbO2TFibfe\neouQkBAWL17MkiVLCAkJ4a233nJYSCGEaIwuXoRNm2DcOKOTuDe71u67ePEiR44cITg42BWZ6kXX\nIykhROO0bh28+SZ8/LHRSYzjkCOpjRs3EhERYRsHysjIIDo62jEJhRCikbrZE3gbizqL1Lx580hP\nT7etHBEREcHhw4edHqyxqDo1Uyc65tYxM0huV3NF7nPnYMsWGDvWMa+na1vbo84i5e3tjY+PT/Un\necji6UIIUV8pKRAVBVd9tYoa1Dkm9dBDDzFo0CCSkpJ47733WLJkCZcvX+b11193VUa7yJiUEEIX\nI0darx0VF2d0EmPZ871dZ5H64YcfmD9/vu3SGcOGDWPu3Lk0bdrUcUkdQIqUEEIHp05BQADk50OL\nFkanMZZDJk7ceuutLFiwgG3btvH1118zf/58tytQOtO1L1nH3DpmBsntas7O/d57MGyYYwuUrm1t\njzqL1JdffklISIht+vl//vMfpk+f7vRgQgjREMmsvhtTZ3dfZGQk69evZ/To0WRkZAAQGhrKgQMH\nXBLQXtLdJ4Rwd0VF1gsbFhWBdEg5qLsPwN/fv9q2l9cNX4ZKCCEavfXrITpaCtSNqLNI+fv7s337\ndgBKS0tZuHAhPXr0cHqwxkLXvmQdc+uYGSS3qzkzt7O6+nRta3vUWaT++te/8tprr1FQUICfnx8Z\nGRm89tprrsgmhBANRl4eZGXB4MFGJ9GLXWv36UDGpIQQ7uyll+C77+DHqxMJHDQmdejQIUaNGkW7\ndu1o3749o0ePlmWRhBDiBsmsvvqps0iNHz+emJgYioqKKCws5Fe/+hVxjf00aQfStS9Zx9w6ZgbJ\n7WrOyJ2VBYWFcM89Dn9pQN+2tkedRaq4uJiJEyfi7e2Nt7c3EyZM4NKlS67IJoQQDcKaNRATA56e\nRifRT51jUrNmzcLHx8d29LRmzRrOnDnDs88+C0CbNm2cn9IOMiYlhHBHSkFoKCxfDgMGGJ3GvThk\n7T6LxYLJZKr1DdxlfEqKlBDCHe3fD6NGQU4O1PJV2mg5ZOJEbm4uOTk5Nd7cpUDpTNe+ZB1z65gZ\nJLerOTp3cjLExjq3QOna1vaotUjt3LmToqIi2/bKlSuJjo7miSee4PTp0y4JJ4QQOlNKZvXdrFq7\n+yIiIvj0009p06YNn3/+ObGxsbz66qtkZGRw8OBB1q9f7+qs1yXdfUIId7Nrl/W6UQcPSldfTez5\n3q51Eb6D9V65AAAY+ElEQVSKigrbpIg1a9bwyCOPMG7cOMaNG0fv3r0dm1QIIRqgyqMoKVD1V2t3\nX3l5OZcvXwZgy5YtDBw40Pa7srIy5ydrJHTtS9Yxt46ZQXK7mqNyV1RYp57Hxjrk5a5L17a2R61H\nUnFxcdx77720a9eO5s2bc/fddwOQnZ2Nj4+PywIKIYSOtm+Htm2tl+YQ9XfdKeg7duzg2LFjDB06\nlFtvvRWArKwsLly4QJ8+fVwW0h4yJiWEcCe/+Q2YzTBnjtFJ3JdDzpPShRQpIYS7KCsDPz/YsQO6\ndTM6jfty2EUPhfPo2pesY24dM4PkdjVH5N66FSwW1xUoXdvaHlKkhBDCweTcKMdxanffQw89xKZN\nm+jQoQP79+8H4PTp08TGxpKXl4fFYmHt2rW2iRiJiYmsWLECT09PlixZwtChQwHYvXs3CQkJXLp0\niREjRrB48eJrP4h09wkh3EBJCXTuDPv2Wbv8RO0M7+6bPHkyqamp1fYlJSUxZMgQsrKyGDRoEElJ\nSQBkZmayZs0aMjMzSU1NZfr06bbw06ZNY/ny5WRnZ5OdnX3NawohhLvYvBnCwqRAOYpTi9Tdd99N\n69atq+3buHEj8fHxAMTHx7NhwwYAUlJSiIuLw9vbG4vFQmBgIOnp6RQVFXH+/HkiIyMBmDRpku05\nDYGufck65tYxM0huV7vZ3EZ09ena1vZw+ZjU8ePH8fX1BcDX15fjx48DUFhYiNlstj3ObDZTUFBw\nzX4/Pz8KCgpcG1oIIexw8SJs2gTjxhmdpOGo9WReVzCZTLVeBqQ+EhISsFgsAPj4+BAeHk5UVBRw\n5S8N2XbMduU+d8lj73bV7O6Qx57tqKgot8pzI9uV3CWPs9v7xIko7rwTMjPTyMyU/x9r+veQlpZG\nbm4u9nL6eVK5ubmMGjXKNnEiODiYtLQ0OnbsSFFREQMHDuTgwYO2sanZs2cDMHz4cJ5//nluv/12\nBg4cyLfffgvAu+++y7Zt23j99derfxCZOCGEMNi4cfCLX8DkyUYn0YPhEydqEh0dzcqVKwHr5T/G\njBlj25+cnExpaSk5OTlkZ2cTGRlJx44dadWqFenp6SilWL16te05DcHVf3HqQsfcOmYGye1q9c19\n7hxs2QJjxzo2jz10bWt7OLW7Ly4ujm3btnHy5Em6dOnCCy+8wOzZs4mJiWH58uW2KegAISEhxMTE\nEBISgpeXF8uWLbN1BS5btoyEhASKi4sZMWIEw4cPd2ZsIYS4ISUl8PzzEBUFsrSpY8mySEIIUU9K\nwQcfwNNPQ2goLF0K/v5Gp9LHTV1PSgghRO0OHrQWp5wceO01GDbM6EQNkyyLZDBd+5J1zK1jZpDc\nrlZX7u+/h9/+Fu6+G4YMsa4sYXSB0rWt7SFFSggh7FBRAStWQHAwnD0L33wDM2ZAkyZGJ2vYZExK\nCCHq8NVX8MQT4OUFS5ZAv35GJ2oY3HIKuhBC6KKoCOLjrec/Pf44fPGFFChXkyJlMF37knXMrWNm\nkNyulpaWRkkJ/PnP0LMndOpknSQxcSJ4uOk3pq5tbQ+Z3SeEEFXs2AEPP2wde9qxA4KCjE7UuMmY\nlBBCAP/9r3VK+aFD8MorcN99Ridq+GRMSggh6nDuHDzzDNx1FwwaBPv3S4FyJ1KkDKZrX7KOuXXM\nDJLbWSoq4O23rd16p05Zp5TPnAlffplmbLB6cPe2vhkyJiWEaHR27rTO1jOZYMMG+PGaqsINyZiU\nEKLROHYM5syBjz+GpCSYMMF9Z+w1BjImJYQQQGkpLFwIYWHQoYN1SvmkSVKgdCD/iQyma1+yjrl1\nzAyS+2Z9+KH1fKe0NPjyS/jTn6BVq9of7y65b4SOme0lY1JCiAYpO9s6pTwrC15+GUaONDqRqA8Z\nkxJCNCjnz8OLL8Ly5TBrFjz5pCwC665kTEoI0WhUVMCqVdYp5cePW893euYZKVC6kyJlMF37knXM\nrWNmkNz22LULfvpTePVVeO896/lPnTrV77V0bG8dM9tLipQQQlvHj8NDD0F0NDz6qPWSGnfeaXQq\n4UgyJiWE0E5pKSxdComJMHkyzJ17/Rl7wj3Z870ts/uEEFpJTYWnnoKuXWH7duje3ehEwpmku89g\nuvYl65hbx8wguSt99521W+/xx60n5n74oXMKlI7trWNme0mREkK4tfPnYfZs6N8ffvYz60Kwv/iF\ndd090fDJmJQQwi0pBf/8p/Vcp0GDrGvtde5sdCrhSDImJYTQ0tdfwxNPwOXLsH49DBhgdCJhFOnu\nM5iufck65tYxMzSu3P/7H0ydCqNGWX+mp7u+QOnY3jpmtpccSQkhDFNRYV0Z4tNPrbft22HKFOsq\n5bfdZnQ64Q5kTEoI4VKHD8OWLdaitHWrtRgNGmS9DRwI7doZnVC4ij3f24YVKYvFQqtWrfD09MTb\n25udO3dy+vRpYmNjycvLw2KxsHbtWnx8fABITExkxYoVeHp6smTJEoYOHVr9g0iREsItHT8On312\n5Wjp0iX4+c9h8GDrz9tvNzqhMIpbLzBrMplIS0sjIyODnTt3ApCUlMSQIUPIyspi0KBBJCUlAZCZ\nmcmaNWvIzMwkNTWV6dOnU1FRYVR0h9K1L1nH3DpmBv1ynzsH778Pv/xlGj17Ws9lSk6GXr3ggw+g\nsNA6a2/yZPcsULq1N+iZ2V6GjkldXUE3btzItm3bAIiPjycqKoqkpCRSUlKIi4vD29sbi8VCYGAg\nO3fupH///kbEFkJUUVICO3ZcOVLat8+6fl7XrvDmm9C3L3jJ6LeoJ8O6+7p168Ztt92Gp6cnjzzy\nCA8//DCtW7fmzJkzgLWAtWnThjNnzvD444/Tv39/HnzwQQCmTp3Kfffdx7hx4658EOnuE8Ilyssh\nI+NKUdqxA3r0uDKudNdd0KyZ0SmFDtz6PKnt27fTqVMnTpw4wZAhQwgODq72e5PJhOk6p5TX9LuE\nhAQsFgsAPj4+hIeHExUVBVw5HJZt2ZbtG9tWClavTmPPHjh6NIq0NGjRIo0+fWD69CjWroW9e90n\nr2y773bl/dzcXOym3MC8efPUwoULVffu3VVRUZFSSqnCwkLVvXt3pZRSiYmJKjEx0fb4YcOGqa++\n+qraa7jJR7lhW7duNTpCveiYW8fMShmTOz9fqZUrlZo0SSk/P6XMZqXi45VatUqpggL7XkPa23V0\nzKyUfd/bhkycuHjxIufPnwfghx9+YPPmzfTs2ZPo6GhWrlwJwMqVKxkzZgwA0dHRJCcnU1paSk5O\nDtnZ2URGRhoRXYgG6cwZ+Ne/4LHHrF13vXrBxo3W9fI++wyOHLFeSHDiRFmaSLiWIWNSOTk5jB07\nFoCysjIefPBB5syZw+nTp4mJieHIkSPXTEFfsGABK1aswMvLi8WLFzNs2LDqH0TGpISwW3Gx9cTZ\nTz+1nrN08KD1yraDB1vHlcLDwUPWoxFO5tbnSTmaFCkhaldWZl0Pr3Kyw65d1qOlyskO/fvDLbcY\nnVI0Nm59npSwqjqgqBMdc+uYGeqX++JF2LsXliyB0aOtqzj8+tdw6hTMnGk9V2n7dnjhBbj3XucU\nqMbU3kbTMbO95OwFITRVWgo5OZCdDVlZ1lvl/ZMnoVs3axdeXBz8/e/QoYPRiYW4cdLdJ4Qbq6iA\no0erF6DK+0ePgtkMd9wBQUHWn5X3u3QBT0+j0wtxfTImJYQGlLKub1fTEdHhw9CmTfUCVHm/a1do\n0sTo9ELUnxQpDaSlpdlOeNOJjrmNznz2bM1HRFlZ1jGhq4+G7rgDAgNh1y792hqMb+/60jG3jpnB\nzVecEKIhungRvvuu5mJUXFy9AI0cab0fFGQ9WhJCXEuOpIS4QZcvWycsXH00VHXCwtVHREFB0LEj\nXGelLyEaHenuE6Ke7JmwUFP3nExYEMJ+UqQ0oGtfso65r86sFPzvfzUfEVWdsHB1MerWzbUTFnRs\na5DcrqRjZpAxKdGIKQXffw9FRXDsmPX2xRfw0UfWdegqC1KTJtULUFzclQkLt95q9KcQQsiRlNBK\nScmVonP1rWpBOnbMOmOuY0fo1Mn6s/Lm53elKMmEBSGMI919QgsVFdbleuoqOseOwYUL4Ot7beG5\nuhj5+kLz5kZ/MiHE9UiR0oCufcn25P7hB/sKz//+By1b1l14OnaE1q3rvzp3Q25rdyS5XUfHzCBj\nUsIJSkut06wrz/upqehUFqOyspoLz513Vt/u0EFW4BZC1EyOpBqxyskFJ0/CiRM1/7x638WL0LZt\n3Uc8HTtCq1ZyXpAQonbS3dfIlJTUXFhq23fqFDRrZr2MQ/v21p9V71/9s1078PGRwiOEcAwpUhq4\nXl/yhQtXxmyuV2wqf166dG2huV7Radu2/t1sOvaB65gZJLer6Zhbx8wgY1JuqaTEuuL1sWPWn9u2\nwb//XX08p/L3FRXWbrT27a/c2rWzzlwLDb22EEn3mhCioZEjKQcoL7cezVQWl6tvVfdfuGCdKHD1\n+E3ltOmq2y1aSNERQjRc0t3nBP/7H/zrX7Bpk3XlgmPHrGM7rVvXXmwcNYVaCCEaEilSDlJYaC1M\n69dDRgbcdx+MGXNlZev27cHbu36vrWtfso65dcwMktvVdMytY2aQMSmH2LwZhg+3Ttdu0wYmTLAW\nJ29vazefh4esei2EEM4iR1J1UAry8qyXZ8jPt/68+vb999C5s/UyDZU3s9n687bbrAuVXn1r2lTG\nm4QQjZt097nIpUtQUFC9cOXnW2/ff29dHujq2+XL1rXlaipgN3tr3lzGvYQQ7k+KlBsrK7Ou3vDJ\nJ2n07h1VYyGr76242Hqk5owCeOut4OWlZx+4jplBcruajrl1zAwyJuXWvLys5zW1bWu9dpEjVVRY\nC9WNFLbTp+1/rJeX9TpMPj6OKXrNmllPKm7a1PrzllvkSFAIYSVHUuKGKGU9IdnRR34lJdZu05IS\n683b+0rRcvXPqvdlUowQziPdfUJLSllXW68sWvb+vJHH2vvT09OYQnn1Ty/p8xANkBQpDejal6xj\n7hvNrJR1gsvNFDlHFMri4jQ8PKKuOcpr0sR6q3r/6m1n36/crql7Vsd/I6Bnbh0zQwMbk0pNTeWp\np56ivLycqVOnMmvWLKMjOcTevXu1/MelY+4bzWwyXfkibtnSebnq8sore3nssahqxau01HorKanf\n/QsXqu+/mdeqPOK8uoAVF++lQ4eomyp+dd1v0QIGDHBsezeGf9s60aJIlZeX89hjj7Flyxb8/Pz4\nyU9+QnR0ND169DA62k07e/as0RHqRcfcOmYGa24vL+sXcosWRqe5llLW2apXF6+FC8/yyCP1L4Q/\n/FD3Y1q0gA0bHPt5dPx3omNme2lRpHbu3ElgYCAWiwWABx54gJSUlAZRpITQnclkneji7W2drVmp\nTRvrav1C3AwtJvoWFBTQpUsX27bZbKagoMDARI6Tm5trdIR60TG3jplBcruajrl1zGw3pYH169er\nqVOn2rZXr16tHnvssWqPCQgIUIDc5CY3uclNk1tAQECd3/9adPf5+flx9OhR2/bRo0cxm83VHvPd\nd9+5OpYQQggn06K7r1+/fmRnZ5Obm0tpaSlr1qwhOjra6FhCCCGcTIsjKS8vL1599VWGDRtGeXk5\nU6ZMkUkTQgjRCDSYk3mFEEI0PFp099lj0aJFeHh4cPr0adu+xMREgoKCCA4OZvPmzQamq27u3Ln0\n7t2b8PBwBg0aZBtvy83NpVmzZkRERBAREcH06dMNTlpdbbnBfdsa4JlnnqFHjx707t2b+++/n++/\n/x5w7/auLTO4d1uvW7eO0NBQPD092bNnj22/O7c11J4b3Lu9q5o3bx5ms9nWxqmpqUZHqlVqairB\nwcEEBQXxpz/96foPdvBEPEMcOXJEDRs2TFksFnXq1CmllFIHDhxQvXv3VqWlpSonJ0cFBASo8vJy\ng5NanTt3znZ/yZIlasqUKUoppXJyclRYWJhRsepUW253bmullNq8ebMtz6xZs9SsWbOUUu7d3rVl\ndve2/vbbb9V///tfFRUVpXbv3m3b785trVTtud29vauaN2+eWrRokdEx6lRWVqYCAgJUTk6OKi0t\nVb1791aZmZm1Pr5BHEnNmDGDP//5z9X2paSkEBcXh7e3NxaLhcDAQHbu3GlQwupaVllj58KFC7Rr\n187ANParLbc7tzXAkCFD8Phxcbk777yT/Px8gxPVrbbM7t7WwcHB3HHHHUbHuGG15Xb39r6a0mD0\npuriDN7e3rbFGWqjfZFKSUnBbDbTq1evavsLCwurTVN3txOAn3vuOfz9/Vm5ciWzZ8+27c/JySEi\nIoKoqCi++OILAxPWrDL322+/zZw5cwD3b+uqVqxYwYgRI2zb7t7eUD2zTm19NR3a+mq6tffSpUvp\n3bs3U6ZMcdulkm50cQYtZvcNGTKEY8eOXbN//vz5JCYmVusnvt5fEiaTySn5alJb5gULFjBq1Cjm\nz5/P/PnzSUpK4umnn+att96ic+fOHD16lNatW7Nnzx7GjBnDgQMHqh3BuFPup556irfeeqvG13Fl\nW0PducH676VJkyaMHz8ewPD2rk/mmrhjW1/N6LaG+uWuiavbu6rrfRdOmzaNP/zhD4B1/HjmzJks\nX77c1RHrdKPtp0WR+uSTT2rc/80335CTk0Pv3r0ByM/Pp2/fvqSnp19zAnB+fj5+fn4uyQu1Z77a\n+PHjbX8lN2nShCZNmgDQp08fAgICyM7Opk+fPk7LebX65Da6raHu3G+//TYffvghn376qW2f0e1d\nn8w6tHVNjG5rqF9ud2jvquz9DFOnTr2hwutK9izOUI3LRstcoKaJEyUlJerw4cOqW7duqqKiwuCE\nVllZWbb7S5YsURMmTFBKKXXixAlVVlamlFLq0KFDys/PT505c8aQjDWpLbc7t7VSSn300UcqJCRE\nnThxotp+d27v2jK7e1tXioqKUl9//bVt253buqqrc+vS3kopVVhYaLv/l7/8RcXFxRmYpnaXL19W\n3bp1Uzk5OaqkpKTOiRMNqkh17drVVqSUUmr+/PkqICBAde/eXaWmphqYrLpx48apsLAw1bt3b3X/\n/fer48ePK6WU+r//+z8VGhqqwsPDVZ8+fdQHH3xgcNLqasutlPu2tVJKBQYGKn9/fxUeHq7Cw8PV\ntGnTlFLWNSHdtb1ry6yUe7f1e++9p8xms2ratKny9fVVw4cPV0q5d1srVXtupdy7vauaOHGi6tmz\np+rVq5caPXq0OnbsmNGRavXhhx+qO+64QwUEBKgFCxZc97FyMq8QQgi3pf3sPiGEEA2XFCkhhBBu\nS4qUEEIItyVFSgghhNuSIiWEEMJtSZESQgjhtqRICWGnU6dO2S6D0KlTJ9tlEfr06UNZWZnR8UhI\nSMBsNlNaWgrAyZMn6dq1q8GphLg5WiyLJIQ7aNu2LRkZGQA8//zztGzZkhkzZtT5vIqKCtuK5s7m\n5eXFihUrePTRR13yfkI4mxxJCVFPSik+/fRTIiIi6NWrF1OmTLEdxVgsFmbPnk3fvn1Zt24dqamp\n9OjRg759+/LEE0/Y1lWbN28eixYtsr1mWFgYR44cAeAf//gHd955JxERETz66KNUVFRcN4/JZOLJ\nJ5/k5ZdfrvOxCQkJTJ8+nQEDBhAQEEBaWhrx8fGEhIQwefLkm2kWIRxKipQQ9XTp0iUmT57MunXr\n2LdvH2VlZfz1r38FrAWjXbt27N69m9GjR/PrX/+aDz74gN27d3P8+HHbStBXrwhduf3tt9+ydu1a\nvvzySzIyMvDw8OCf//xnnZn8/f352c9+xqpVq6672rTJZOLs2bPs2LGDl19+mejoaJ599lkOHDjA\n/v37+c9//lPfZhHCoaRICVFP5eXldOvWjcDAQADi4+P5/PPPbb+PjY0F4ODBg3Tt2pWAgAAAJkyY\ncN1LylQeoe3evZt+/foRERHBZ599Rk5OTp2ZTCYTc+bM4aWXXqrzaKryaC4sLIyOHTsSGhqKyWQi\nNDSU3NzcOt9LCFeQMSkhbkLVYqOUqnb0cuutt9b5HC8vr2rF5NKlS7b78fHxLFiw4IYzBQYGEh4e\nzpo1a2z7nnvuOT788ENMJhN79uwBsF06w8PDg1tuucX2WA8PD7eYCCIEyJGUEPXm6elJbm4uhw4d\nAmD16tXce++91zwuODiY3NxcDh8+DMC7775rK2YWi8VWNPbs2UNOTg4mk4lBgwaxfv16Tpw4AcDp\n06dtY1WTJk1i165dNWaqLIDPPfccCxcutO2fP38+GRkZtvcSQhdSpISop2bNmvHWW2/xq1/9il69\neuHl5WWbVVf1iKpp06b87W9/Y+TIkfTt2xdfX19bMRk3bhynT58mLCyM1157je7duwPQo0cPXnzx\nRYYOHUrv3r0ZOnSo7Yqs+/fvr/XCe5XvGxISQt++fescl6rpfk3bQhhFLtUhhItt27aNhQsX8v77\n79/wc8+dO8fDDz9crStPiIZMjqSEMEB9j1RatWolBUo0KnIkJYQQwm3JkZQQQgi3JUVKCCGE25Ii\nJYQQwm1JkRJCCOG2pEgJIYRwW/8PzQ558z2jz0kAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f4445b34810>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "J/t : [7.4074, 5.4348, 4.0323, 3.3333, 2.9412, 2.71, 2.6667, 2.7855, 3.5842, 5.1282, 8.1967]\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEfCAYAAABBHLFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcFfX+x/EXIEpuoaYoLom4IIuAuZS5oLiWS25pWohW\nlmm/UlO7ttmtNK+ae92uy7Wyq6aWaamZC2ouKK65b+AS7oSIgGzz+2M8R0FQ4Mw5MwOf5+PBQ2fO\nOTNvj3o+Z76fme84KYqiIIQQoshz1juAEEIIY5CCIIQQApCCIIQQ4g4pCEIIIQApCEIIIe6QgiCE\nEAKQgiCEEOIOKQiiSLt58ybHjx/XO4YQhiAFQRQJixYt4tlnn6VJkyb88ccf1vU//PADZcqUIT4+\nnoYNGzJ16lTmzZtH6dKl+eijj/jPf/5Dt27d+O6773RML4RjFNM7gBCO8MILL7By5UpefPFFmjdv\nbl1//vx5PD09Wbx4Mb/99hsVK1bk/PnzlChRgo8//hiAwMBA5IJ+URTIEYIoEhRFYdOmTbRp08a6\n7tixY/j4+ABQvXp1KlasCMCmTZto1aqV9XklS5bE19fXsYGF0IEUBFEkHDhwgMceewwPDw/rup9/\n/pkePXoA8PTTT1vXZy8c5cqVY+PGjTz//PMATJ06lcmTJwOQkJDArFmzWL16NV988QUAiYmJrF69\n+r4MTZo04eLFi9r/4YTQiBQEUSRs2LCBtm3bWpczMjJIS0ujePHi9z03IiKC1q1bW5dPnDhBcHAw\nly5dAqBv3744O6v/dVasWMH58+dp1qwZR44cAdSC0qlTJwD27Nlj3U737t2trxPCiORfpygS1q9f\nT2hoaJbl9u3b3/e86OhokpOT8fPzs65r06YN8+bNIzw8HIC4uDhrcenUqRPXrl0jICCARo0aAZCe\nno6TkxMAEydOtG6nfPnyWY5QhDAaKQiiUEpOTsbT05MzZ85w6dIlDh8+nKUg7Ny5kyZNmtz3uk2b\nNhESEnLf+j179tC0aVMA9u3bR4MGDYiMjOS9995j3rx57Nmzh4iICOvjAL///jtlypQBYOnSpXh6\nemr8pxRCWy7jxo0bp3cIIbTm7OzM7du3URSFJUuWMGXKFOsHcnx8PCdOnLB+wAMcOXKE5cuX8/XX\nX+Pi4kJKSgpBQUHWb/qZmZlERkZy7do1GjduTLly5UhLSyM5OZnY2Fi2bNnC8OHDKVu2LJs3byY8\nPJxHHnmEv//+m1GjRuHn50dYWBgRERHMnDmTRx55hLlz53L79m12797NsWPHshyVCKEHJ7lBjihq\n5syZQ5cuXahcubLD933x4kU+/PBD5syZw6hRo/jHP/7BoUOHOHz4MEOGDHF4HiHupcuQ0fTp0wkI\nCMDf35/p06frEUEUYbGxsboUA4DU1FS8vb0B9Srp8uXLs2bNGpo0aUJycrIumYSwcHhBOHToEHPn\nzmX37t0cOHCAX375hdOnTzs6hiiizpw5Q4MGDXTbf1RUFKGhoaSnp1OhQgUAXFxciI+P55FHHtEt\nlxCgw5DRsmXLWLt2LXPnzgXg008/pUSJEowaNcqRMYQQQmTj8CMEf39/tm7dSlxcHElJSfz6669c\nuHDB0TGEEEJk4/C5jHx8fBgzZgzt27enVKlSBAcHy8U6QghhALqfZTR27Fhq1KjB66+/bl1XtWpV\nYmNjdUwlhBDm4+3tzalTpwr8el2+ml+5cgWAc+fO8dNPP9GvX78sj8fGxqIoiuF/PvroI90zSE7J\nKTklo+XH1hN0dJn+ulevXly/fh1XV1e+/PJLypYtq0cMm8XExOgdIU8kp7Ykp7bMkNMMGbWgS0HY\nsmWLHrsVQgjxANLNtYFlsjOjk5zakpzaMkNOM2TUgu5N5Zw4OTlhwFhCCGFotn52yhGCDSyzWxqd\n5NSW5NSWGXKaIaMWpCAIIYQAZMhICCEKDRkyEkIIoQkpCDYwy7ii5NSW5NSWGXKaIaMWpCAIIYTJ\nuLi4EBwcjL+/P0FBQXzxxReaDLNLD0EIIUymTJky3Lx5E4CrV6/Sr18/nn76aT7++GObPjulIAgh\nhMncWxAAoqOjady4MdevX5emsl7MMq4oObUlObVlhpxGz+jl5UVGRobN25GCIIQQApAhIyGEMJ3s\nQ0ZnzpyhSZMmMmQkhBBF2dWrV3n99dd58803bd6WFAQbGH1c0UJyaktyassMOY2WMTk52Xraabt2\n7ejYsSMffvihzdvV5X4IQgghCi49Pd0u25UeghBCmMDly5fZtm1blnVPPvkknp6e1mVbPzvlCEEI\nIQzo5s2bTJs2DRcXF1xdXfnhhx+IioqiRIkSANy+fZuAgADCwsJIS0sjLS3N9p0qBmTQWPfZtGmT\n3hHyRHJqS3Jqyww59ci4YcMGBbjvx8PDQ6lUqVKOj9n62SlHCEIIYUBt2rTJ9/CPk5OTTfuUHoIQ\nQhQScj8EIYQQbN9u+zakINjAaOcm50ZyaktyassMOY2e8fp16NvX9u3oUhAmTJiAn58fAQEB9OvX\nj9u3b+sRQwghTC8zEwYMgOeft31bDu8hxMTE0KZNG44ePUqJEiXo06cPzzzzDAMGDLgbSnoIQgiR\nJ5Mnw/LlsGULFC9ususQypYti6urK0lJSbi4uJCUlETVqlUdHUMIIUxvxw6YNAl27QJXV9u35/Ah\no/LlyzNy5Ehq1KiBp6cn7u7utG3b1tExNGH0cUULyaktyaktM+Q0Ysa4OLVvMGcOPP64Ntt0eEE4\nffo006ZNIyYmhtjYWBITE/n+++8dHUMIIUxLUSA8HHr1gq5dtduuw4eMoqKiaNasGRUqVACgR48e\nbN++nf79+2d5Xnh4ODVr1gTA3d2doKAgQkJCgLvVWpbztmxZZ5Q8Zl+2rDNKHrMvW9YZJU9uy/dm\n1TvPDz/A5cshvPlmBOHhCwCsn5e2cHhT+cCBA/Tv35/du3fj5uZGeHg4TZo0YejQoXdDSVNZCCFy\ntHMndOsGkZGQvQaY7sK0wMBAwsLCaNSoEQ0aNABg8ODBjo6hiezfHIxKcmpLcmrLDDmNktHSN/jP\nf+4vBlrQZS6j0aNHM3r0aD12LYQQpqQoMHAgdO+uHiHYg8xlJIQQJjB1KixaBH/8AcWL5/wcWz87\npSAIIYTBRUZCly7qr15euT/PdD2EwsQo44oPIzm1JTm1ZYacemb8+++7fYMHFQMtSEEQQgiDsvQN\nunWD556z//5kyEgIIQxq+nRYuBC2bcu9b3Av6SEIIUQhtGsXdO6sXndQq1beXiM9BB2ZYewTJKfW\nJKe2zJDT0Rnj46FPH/j3v/NeDLQgBUEIIQxEUWDQIPWsoh49HLtvGTISQggDmTEDvv1W7RuUKJG/\n10oPQQghCondu+HZZ/PXN7iX9BB0ZIaxT5CcWpOc2jJDTkdktPQNvvrKsX2De0lBEEIInSkKvPyy\nenTQs6d+OWTISAghdDZrFvz3v7B9e/77BveSHoIQQphYVBQ884x6f2Rvb9u2Vah7CAMHQkKC3ily\nZ4axT5CcWpOc2jJDTntlvHFD7RvMnm17MdCCoQvC9u3w1196pxBCCO0pCrzyCnTsCL17651GZegh\no5AQ+PBDaNNG70RCCKGt2bNh3jz1i6+bmzbbtHXISJc7puWVpyfExuqdQgghtLV3L4wbp/YNtCoG\nWjD0kFGVKsYuCGYY+wTJqTXJqS0z5NQy440b8Pzz6plFtWtrtllNGLogeHrCxYt6pxBCCG0oCrz6\nKrRvrzaTjcbQPYRFi2DFCliyRO9EQghhu6++Uu98Zq+hokLdQ6hSRY4QhBCFw7596kkyWjaRtWb4\nISPpIdhOcmpLcmrLDDltzZiQoPYNZs6EOnW0yWQPuhSE48ePExwcbP159NFHmTFjxn3PsxwhGG9Q\nSwgh8kZRYPBgCA2Fvn31TvNguvcQMjMzqVq1Krt27aJ69epqqHvGwcqUgQsX4NFH9UwphBAF8+9/\nqz87dsAjj9h3X6bvIaxfvx5vb29rMcjOcpQgBUEIYTb798MHH6g3u7F3MdCC7j2ExYsX069fv1wf\nN3IfwQxjnyA5tSY5tWWGnAXJaOkbzJgBdetqn8kedC0IqamprFq1it4PmMhDzjQSQpiNosBrr0Hr\n1vDCC3qnyTtdh4zWrFnDE088QcWKFe97LDw8nJo1axITA0uWuFO1ahAhISHA3Woty3lbtqwzSh6z\nL1vWGSWP2Zct64ySJ7fle7M+7PmrVsGRIyHs3GnffBERESxYsACAmjVrYitdm8p9+/alU6dODBgw\nIMv6exsjkyerM55OnapHQiGEyJ8DB6BtW/jjD6hXz7H7Nu39EG7dusX69evp0aPHA59n5Okrsn9z\nMCrJqS3JqS0z5Mxrxps31amsp01zfDHQgm5DRqVKleLatWsPfZ6Rm8pCCGFh6Ru0agX9++udpmB0\nvw4hJ/ce9hw/Dp07w8mTOocSQogHmDNHvRI5MlK/U0wL/T2Vb96EypUhMRGcnHQOJoQQOTh4UL0S\neetW8PHRL4dpewh5VaaMWghu3tQ7yf3MMPYJklNrklNbZsj5oIw3b6rXG0ydqm8x0ILhCwJIH0EI\nYUyKAkOGQPPm8OKLeqexneGHjEBt0owbp17kIYQQRjFvnnpGUWQklCypd5pCMJdRXsgRghDCaP78\nE959F7ZsMUYx0IIphoyMOn2FGcY+QXJqTXJqyww5s2dMTFSvN5gyBerX1yeTPZiiIMgRghDCKCx9\ng2bNICxM7zTaMkUP4fvvYdUqWLxYx1BCCAHMnw9ffAG7dhlvqKjI9BCMOGQkhChaDh2CMWNg82bj\nFQMtyJCRDcww9gmSU2uSU1tmyBkREWHtG0yeDL6+eieyD1MUBLm3shBCb0OHwpNPQrbJmQsVU/QQ\nFEW9Yjk2FsqW1TGYEKJIWrAAJk1S+walSumdJndFoofg5HT3KEEKghDCkQ4fhlGjICLC2MVAC6YY\nMgJj9hHMMPYJklNrklNbRs5565baNxg0KAI/P73T2F+eC0JkZCTLly/nr7/+sq7bsGEDhw8ftkuw\n7Ix6cZoQovAaNgwaN4aOHfVO4hh56iF88MEHHDt2jFq1anHgwAHatGnD6NGjSU9Px8PDg+vXr2sb\nKodxsBEj1KOEd97RdFdCCJGjBQvgX/+C3bvNM1TkkB6Cu7s7S5cutS5HRETw2Wef8Y9//ANnZ8eM\nOskRghDCUY4cUfsGmzaZpxhoIU+f5m5ubsTFxfHVV1+RlJRESEgIr7/+OrNnzyYtLc3eGQHpIdhC\ncmpLcmrLaDktfYOJE8HfX11ntIz2kqcjhMGDB7Ns2TIuX75sPSKoUKECw4YNo1gxx5yoVKWK8QqC\nEKLwefNNeOIJGDhQ7ySOZ4rrEACOHYOuXeHECZ1CCSEKvW+/hQkT1L5B6dJ6p8m/Qn9PZYuEBHXY\nKDFRp1BCiELt6FFo2RI2boSAAL3TFEyhv6eyRZky6hXLRrq3slnGFSWntiSntoyQMylJ7RtMmJBz\nMTBCRkfQpSDEx8fTq1cv6tevj6+vLzt37nzoa5ycjNlYFkKY3//9HwQFwcsv651EX7oMGQ0YMIBW\nrVoxaNAg0tPTuXXrFo8++ujdULkc9rRsCf/8J4SEODCsEKJQ++47+OwziIoyZ9/gXg4ZMtqxY0eB\nd5DdjRs32Lp1K4MGDQKgWLFiWYrBg8gRghBCS8eOqRe9/vCD+YuBFvJUEBISEjTbYXR0NBUrVmTg\nwIE0bNiQV199laSkpDy91mgXp5llXFFyaktyakuvnJa+wfjx0KDBg59rlvfSVg7vIaSnp7N3717e\neOMN9u7dS6lSpfj888/z9Fo5QhBCaOWtt9RC8MoreicxDodPf12tWjWqVatG48aNAejVq1eOBSE8\nPJyaNWsC6tQZQUFBVKkSwr59d6t1yJ1mgiw/eNmyzih5zL5sWWeUPGZftqxz5P5//x22bAkhKgo2\nb87b6+/Nau98eV2OiIhgwYIFANbPS1vkqakcGxuLp6enzTuzaNmyJXPnzqVu3bqMGzeO5ORkJk6c\neDdULo2RjRvVpnIROXoTQtjB8ePQvDmsXw+BgXqn0ZZDmsqenp5s3bqVjz/+mCFDhjBs2DA+/vhj\n1q1bV6Cdzpw5k/79+xMYGMjBgwcZO3Zsnl5ntOkrsn9zMCrJqS3JqS1H5kxOVvsGn36av2JglvfS\nVnkaMho/fjxpaWkEBwdTqlQpMjIySEhIYMOGDWzcuDHPPQCLwMBAdu/ene+wnp7GaioLIczl7bfB\nzw8GD9Y7iTHlacho5cqVdO3aNcfHli1bRq9evbQNlcthj6Kop4ZduqReuSyEEHn1v//BuHHq9QaF\n9Va8DrkfwoEDB9i/fz8NGzakZMmSuLi4cOvWLQ4ePMjVq1c1Lwi5uffeylIQhBB5deKEelbR778X\n3mKghTz1ED744AOaNWvG3r17+fHHH1myZAm7d++mcePGTJ482d4ZszDSqadmGVeUnNqSnNqyd87k\nZHj+efjkE3V6ioIwy3tpqzyfdtq2bVvatm173/pbt25RyoG3FDLaxWlCCGMbPhx8fOC11/ROYnw2\nz2U0bdo03n77ba3yAA8eBxs+HKpVg5EjNd2lEKIQWrwYPvgA9uwpGkNFDukhjBgxgs2bN1M2h3f0\n6NGjmheEB5EjBCFEXpw8qd79bN26olEMtJCnHsLkyZPp378/mzZtuu9nzJgx9s6YhfQQ8k9yakty\nasseOVNS1OsNPv4YgoNt355Z3ktb5akgODs7MzCXG4wOdvAJvXKEIIR4mBEjoG5dGDJE7yTmUqAe\nwuXLlyldujSXLl3C29tb+1APGAc7ehSee069/FwIIbJbsgTee0/tG+RxZv1CQ5dbaCqKwsKFC1m4\ncGGBd1xQRpu+QghhHKdOwbBh6v0Nilox0EK+C0JSUhLz589n8+bNuLi45HvaCls9+ihkZBjj3spm\nGVeUnNqSnNrSKmdKinq9wbhx0LChJpu0Mst7aat8F4SSJUsyaNAgWrZsSWZmJu+++649cuXq3quV\nhRDCYuRI8PaGN97QO4l52dRDuHjxIrVr19Y+1EPGwVq0UGcrbNVK810LIUxo6VJ4913Yu7doDxU5\n5DqE7Dw8PADsUgzywtMTLlzQZddCCIM5dQqGDoU1a4p2MdCCw2+hqYX69eHIEb1TmGdcUXJqS3Jq\ny5act29Dnz7q1chPPKFdpuzM8l7ayuaCcOvWLS1y5EtQEOzf7/DdCiEM5p13oGZN9cwiYTvTzWUE\nEBMDTz8Nf/2l6W6FECaybBmMGaNeb+DurncaY7C1h5CngvCwuYwuXbpU4AA5hnrIH0pRoFw5dY7z\nSpU03bUQwgROn4annoLVq6FRI73TGIdDLkwz0lxGoJ56GhQEBw44fNdZmGVcUXJqS3JqK785LX2D\n9993XDEwy3tpK9PNZWRhhIIghHC8UaOgRg11JlOhLZt7CPaQl8OeBQtg/XrQYfYMIYROfvxRvQBt\n71512Fhk5ZAho8zMzBzXR0dH4+3tTUREBL/99luBQxREYKCcaSREUXLmDLz+ujp5nRQD+8hTQWjc\nuDGLFy9mf7ZPYC8vL7Zs2UJISAgdOnSwS8Dc+PqqjaXkZIfuNguzjCtKTm1JTm3lJaelbzB2LDRp\nYv9M2ZnlvbRVnq5UHjx4MH379s3xsapVqxZoxzVr1qRs2bK4uLjg6urKrl278vX6EiXU+c4PH5az\nDIQozG7cgJdegurV4a239E5TuOWph/Dyyy8zevRo6tWrd99jV65coVIBzv308vJiz549lC9f/v5Q\neRwHGzBAndfolVfyvXshhAkcOgQ9ekD79vDFF1C8uN6JjM0hPYSzZ8/y1ltvUatWLdq1a8d7773H\nqlWruHTpEsuXLy/wzm3tZ8sVy0IUXosXQ+vW6rQUs2ZJMXCEPBWE3r17s3btWs6cOcOXX36Jr68v\nGzZsoGfPnowePbpAO3ZycqJt27Y0atSIOXPmFGgbehcEs4wrSk5tSU5tZc+ZlgbDh6t3PVu/Xh0u\n0ptZ3ktb5amHsGLFCgYNGoSrqyt16tShTp069O/fH4BJkyYVaMfbtm2jSpUqXL16lXbt2uHj40OL\nFi3ytY3AQDh4EDIzwdmU0/QJIe516ZJ6k5syZSAqSs4mcrQ8FYTp06fz008/UadOHYKDg7M81r59\n+wLtuEqVKgBUrFiR7t27s2vXriwFITw8nJo1awLg7u5OUFAQISEhwN1qHRISQrlysGhRBFWrkuPj\nsox1nVHymH3Zss4oecy+bFlXvHgIzz8PbdtGEBYG5coZI59l+d6sRsgTEhJCREQECxYsALB+Xtri\noU3l48eP4+zsTJ06dWzemUVSUhIZGRmUKVOGW7du0b59ez766CNrcclPY6RbNwgLg549NYsnhHAg\nRYHZs+GTT+C//4VnntE7kXnZvans7e3N2bNnmT17Nl999RVRUVEF3pnF5cuXadGiBUFBQTRt2pTO\nnTsX+EhDzz5C9m8ORiU5tSU5tZOUBO3bRzB3LmzfbtxiYIb3UgsPHTIqVqwYbdu2pW3btgDs2rWL\nr776iszMTOrVq0dISAjFiuXvxmteXl73XeRWUEFBMH++JpsSQjjQ6dPqKaWVKqnFoGRJvROJPF2H\nEB0djZeX133rjx8/TkREBKmpqVStWpUOHTpQqlQp20Pl47AnOhpatoTz57Oud3FxoUGDBiiKgouL\nC7NmzeKpp56yOZsQwna//goDB8KHH6q3v3Ry0jtR4eCQ+yG0adOGN998k6eeeorKlSvn+JzY2Fi2\nbt1Knz59ChzGGioffyjLvRFOnYLHHru7vkyZMty8eROAdevWMX78+CJz2CeEUWVmwj//CXPnwg8/\nQLNmeicqXBxyYVqVKlXYtWsXL7zwAn5+fvTt25cZM2Zw5swZ63M8PT01KQb55eQEDRo8eCrsGzdu\n5HhFtK3MUmAkp7YkZ8HExUGXLrBxo3pKqaUYGC1nTsyQUQt5Gvx/6623aHJnRqmMjAwOHjzIjh07\nGDlyJN27dycsLMyuIR/G0lgODb27Ljk5meDgYFJSUrh48SIbN27UL6AQRdz+/eqZgN26wcSJ4Oqq\ndyKRE5vvhzB37lxe0Xgyofwe9syfD5s2wXff3V1375DRzp07eeWVVzh06JCmOYUQD/fddzBiBMyc\nCbnMkSk04pAho9yEhISQkJBgyyY08bBTT5988kmuXbvGtWvXHBdKiCIuNVVtGH/yifqFTYqB8dlU\nEObPn5/rrTUdyddXbSqnpOT8+LFjx8jIyKBChQqa7tcs44qSU1uS8+H++gtCQtRfd+8Gf//cn2uG\n99MMGbWQvwsIsqlVq5ZWOWzi5gZ16sCRI9CwobrO0kMAdVbVb7/9Fic5t00Iu9u8GV54AYYNg3ff\nlXnGzMS091TOLixM/UYyaJB9MgkhHkxRYNo0tWn87bfqPQyEY9naQ7DpCMFIgoJg3z6FkydPZbkH\ndKVKlSgnUyYKYVeJieqNqk6ehJ07QYN51oQOTH8wd+bMGU6cOIGHRzQbNvyIr68vjRs3pnHjxgQH\nB9OxY0fOnTvH6dOnOXbsGImJiZrt2yzjipJTW5IzqxMn4Mkn1akn/vgj/8XADO+nGTJqwdRHCGfP\nnsXb2/u+9YmJiTg7O5ORkcGuXbt4/PHHrY+1atWqyPzlCmFvP/8Mr74Kn36q/iptOnMrND0E9XVw\n6pRCjRrpZGRk4OrqiouLix0SClG0ZWSot7ZcuBCWLYM7160KnUkPIZsDB5zw9nbFVS6FFMIurl2D\nfv3UorBnD1SsqHcioRXT9xCyc+S9Ecwy9CQ5tVWUc+7ZA40aQXAw/PabNsXADO+nGTJqodAdIeh1\nsxwhCrv582HMGPj3v+UOhYVVoeshVK8O587ZIZQQRdTt2/B//wdbtsCPP0L9+nonErnRdS4jI4qP\nV6fZFULY7vx5aNECrl+HXbukGBR2ha4gBAY++N4IWjLLuKLk1FZRyblhg3r2UO/esHQplCmjTa7s\nzPB+miGjFgpdQXjYzKdCiAdTFHX6iRdfhO+/h1Gj5PqCoqLQ9RDmzlXHOr/5xg7BhCjkEhLUex1f\nuKBeX1C9ut6JRH5IDyEbOUIQomCOHoWmTdVTSbdskWJQFBW6guDnp06wdfu2/fdllnFFyamtwphz\n2TJo2RJGj1ZPKy1Rwn65sjPD+2mGjFrQrSBkZGQQHBxMly5dNN2umxt4e6v3RhBCPFh6uloERo2C\ntWvV4SJRdOnWQ/jiiy/Ys2cPN2/eZOXKlVlD2dBDUBR46SVo00b+cQvxIFeuqLe1dHWF//0PNL6h\noNCBKXsIFy5cYPXq1bzyyis2hc+N9BGEeLDISHUKimbNYPVqKQZCpUtBGD58OJMmTcLZTvfWa9RI\nnZfd3swyrig5tWXmnIqi9gi6dIGZM9Vpq/WeENgM76cZMmrB4XMZ/fLLL1SqVIng4OAHvsnh4eHU\nvHOnDXd3d4KCgggJCQHu/uVkXwZ1OT09grNn4fDhEPz8cn++rcsW9tq+Vsv77xwuGSWPvJ+OWbaw\nLDdtGsIbb6jLU6ZAt27GyGuG93P//v2GymNZjoiIYMGCBQDWz0tbOLyHMHbsWL777juKFStGSkoK\nCQkJ9OzZk2+//fZuKBt7CAD/+Ic6Pe+//qVVciHMKyZGnZCubl31Wp1SpfROJOzB1h6Crhembd68\nmcmTJ7Nq1aos67UoCMeOQevW6lwsxQrdnK5C5N1vv0FYmPol6a235KrjwsyUTeV7OdnpX6ePj3pv\n13Xr7LJ5wDzjipJTW2bJuXFjBJ9+qp5tt3QpvP22MYuBGd5PM2TUgq7fnVu1akWrVq3stv3wcFiw\nAJ55xm67EMKQ4uPh/ffVAhAVBZ6eeicSZlDo5jK692Xx8epRwpkzUL68dvmEMLJDh6B7d+jYEaZM\ngeLF9U4kHMX0Q0b25O6uHh0sWqR3EiEcY9EitXf20UfqaaVSDER+FOqCAHeHjezBLOOKklNbRsyZ\nlqb2CN5/H9avV6euNmLOnJghpxkyaqHQF4TQULh4UT2MFqIwunRJ/Xd+8qTaLwgM1DuRMKtC3UOw\nGDtW/QYc8hE2AAAXNklEQVQ1aZIG4YQALl26xNtvv01UVBTu7u54eHgwbdo06tSp49Ac27ZBnz7w\n6qvwwQfgXOi/4okHMfV1CLnRuiAcPw4hIXJNgtCGoig0a9aMgQMHMnjwYAAOHjxIQkICzZs3d1AG\nmDVLnXriv/+VM+mESprKeVCvHnh5qdP7asks44qSU1tTp06lePHi1mIA0KBBA4cVg6QkdUbfefNg\nx47ci4FZ3k8z5DRDRi0UiYIA6sU59moui6IlOjqaJ554Qpd9nz4NTz2lDg1t3w61aukSQxRSRWLI\nCODGDXj8cfU/lEz1K2wxc+ZMoqOj+eKLLxyyv/R0tVewciV89516SukbbxjzqmOhLxkyyqNHH4Vn\nn5VrEoTt/Pz82LNnj133kZCgTjfx0kvg4QEjRkDZsrB5MwwdKsVA2EeRKQig/TUJZhlXlJzacnZ2\n5vbt28yZM8e67uDBg/xh4004zp5VG8UdOkC1amqz+Omn4cAB2LNHPTKoXz/v2zPL+2mGnGbIqIUi\nVRDatIHLl+HPP/VOIszup59+Yv369dSuXRt/f3/ee+89qlSpkq9tZGaq1w18+KF6l79GjdTl116D\nv/5S72T2+utqcRDCEYpMD8HivfcgJUWd40WIvEpPTyc+Pj7LugoVKuR7tt6UFNi4Ue0HrFoFZcpA\n167qz1NP6X/3MmFuch1Cltc9vCCcOAEtW6rXJLi6FjCgKPQURSEjI8P6gT906FDmzZtHsTsXsqSl\npTF//nz69+9vfX6xXC5yuXIFfv1VLQIbN6pHA127qrexrFvXMX8eUTRIUzmf6taF2rW1uSbBLOOK\nkjP/xo4di6urK8WKFaNYsWJ8/fXXpKenW//DZWRkMGDAAOvjrq6ubNu2DVC/lBw9ChMnqj2AunXV\n4Z8ePdSZdzdvhpEj7V8MjPR+PogZcpohoxaKXEEA+054JwqHCRMmkJmZSWpqKrdu3eLvv//mypUr\nnDp1iu+//56rV69y48YNkpKSSEtLIzU1k7S0p60f9B06wLlzan/g8uW7ZwzJKc/CyIrckBGop/TV\nqAEHD6q/ClEQCQnqkebKlbBmjXo1vKUfEBgop4YKx5MeQpbX5a0gAHzyiXqxz5o18h9X5N3Zs2oz\neOVK2LkTmjdXC0DnznI2kNCf9BAK6N134epVdT6YgjLLuKLkLLjMTNi9W51J1HJq6C+/RDBkCMTG\nGvvUUCO+nzkxQ04zZNRCkZ3709VV7SO0aQPt28vQkbgrOTnrqaGPPqoeBcyeDU8+CVu3qrPnClHY\nFNkhI4vx4yEiAn77TYaOijI5NVQUBtJDyPK6/BeE9HT1gqBXX4V7ZjMWhZzl1FDLUcDhw+qRYteu\n0KmTnA0kzEl6CDYqVkwdOnrvPbVhmB9mGVeUnKr0dPVocMQIqFMHOnaECxfUOYIuX4YfflDvRfyw\nYiDvp7bMkNMMGbWgSw8hJSWFVq1acfv2bVJTU+nWrRsTJkzQIwoAfn7qhUIvvwy//y5DR4XJjRvq\ncKDl1NBatdRhoGXL5NRQIbLTbcgoKSmJkiVLkp6eTvPmzZk8ebL1jlOOHDKySE9XryodOFA9a0SY\nV0zM3VNDIyOhRYu7p4ZWrap3OiHsx9YhI93OMipZsiQAqampZGRkUL58eb2iAOrQ0X//C61aqVeZ\nennpGkfkQ2amOj30ypXqT2ys+uH/xhvw009QurTeCYUwB916CJmZmQQFBeHh4UHr1q3x9fXVK4qV\nry+MGqUOHWVmPvz5ZhlXLIw5k5PVs4Jee029BmDAAEhLgy+/hEuX1OLevbt9ikFhfD/1ZIacZsio\nBd2OEJydndm/fz83btygQ4cOREREEHLPyd3h4eHUrFkTAHd3d4KCgqyPW/5ysi/Dgx/Py/LIkbBg\nQQQjRsC0aQ/bHzbvzxHL+/fvN1Segr6f9euH8OuvMH9+BPv2QePGIXTtCi1aRFCtmryf8u/Tfsv7\n9+83VB7LckREBAvuTMxm+by0hSFOO/3kk0945JFHeOeddwB9egj3OnZMHXeOjJSbmOvp3lNDV66E\nI0fk1FAhHsSUp51eu3bNerOR5ORkfv/9d4KDg/WIkiMfH/jnPyE0VP1AEo6Tlpb11NBOndS7h40b\nl79TQ4UQ+adLQbh48SJt2rQhKCiIpk2b0qVLF0JDQ/WIkqshQ9QPoZAQdaqCnGQ/NDcqo+e8cQOW\nLIG2bSPw8FD7OOXKwfLl6hlDM2eqRwYlSuidVGX099NCcmrHDBm1oEsPISAggL179+qx63wZMAA8\nPaFnT3Uem9699U5UeGQ/NbRlS2jQAL75Rk4NFUIvhughZKd3DyG7/fvV0xhHjIDhw+VipoKw3FDe\nMlXExYvqe9q1K7RrB6VK6Z1QCPOTuYyyvM4+BQHUu1898wy0bQtTpsjN0HOSmQmJiRAfrw4D3bih\nngK6bp1aBMqVu3sDmaZN5T0UQmtSELK8zn4FAdQPuu7doXx5WLgQIiOzniprVBERecuZknL3g9zy\noZ7brzmtS0iAkiXV6aLd3dVfK1SA1q3V6SJq19Ymp94kp7bMkNMMGcHEVyqbkbu7esvEgQPVI4XR\no/VOdFdGBty8mfMHeFQU/PHHwz/kMzPvfpBn/9Xy+9q1c3+sbFn1im8hhDnJEUIBZGbC2LEwdy4E\nBKjXKlh+vLzUXytWzHuvQVHUK2/z+k08p+ckJqpX5T7sA/1Bj7m5SX9ECDOTIaMsr3NMQbCIiYFT\np+DMGfUnOvru72/fzloknJwe/GHv4pK3D+3cHitTRsbkhSjqZMhIRzExEbRtG5LjY/HxdwtEdLRa\nEPz8cv9At+c59mYZ/5Sc2pKc2jFDRi1IQbATd3cIDlZ/hBDCDGTISAghCglTzmUkhBDCeKQg2MAs\n85tITm1JTm2ZIacZMmpBCoIQQghAeghCCFFoSA9BCCGEJqQg2MAs44qSU1uSU1tmyGmGjFqQgiCE\nEAIoAj2EFStW0KNHD44ePUq9evU0SiiEEPpxcXGhQYMG1uUXXniB0aNHy1xGWV93f0Ho06cPycnJ\nNGzYkHHjxmkTUAghdFSmTBlu3rx533ppKj9AYmIikZGRzJo1iyVLlmi+fbOMK0pObUlObZkhpxky\naqFQF4Sff/6Zjh07UqNGDSpWrGiK+zgLIcTDJCcnExwcbP1ZunSpJtst1ENGnTt3Zvjw4YSGhjJz\n5kzOnTvHpEmTNEwqhBCOZ68ho0JbEOLi4qhevToVK1bEycmJjIwMnJycOHv2rMZphRDCsQpVD+H8\n+fO0bt0aPz8//P39mTFjhub7WLZsGWFhYcTExBAdHc25c+fw8vJi69atmu3DLOOKklNbklNbZshp\nhoxa0KUguLq6MnXqVA4fPszOnTuZPXs2R48e1XQfixcvpnv37lnW9ezZk8WLF2u2j/3792u2LXuS\nnNqSnNoyQ06jZczeQxg7dqwm29XlBjmVK1emcuXKAJQuXZr69esTGxtL/fr1NdvHxo0b71v35ptv\narZ9gPj4eE23Zy+SU1uSU1tmyGm0jOnp6XbZru53TIuJiWHfvn00bdpUg63dYPr0BWRmZlrXBAUF\n0bp1aw22LYQQ+jl16hSrVq3Ksq5Tp074+Photg9dC0JiYiK9evVi+vTplC5dOt+vT05O5rXXXuPK\nlSu4uroCJ3n77eM4O6sjYZbC0LVrV9LS0khLS2PkyJF07NhRk/wxMTGabMfeJKe2JKe2zJBTj4yx\nsbGEh4fj4uKCq6sra9euJS0tLcvn24gRI+jSpYv1881Wup1llJaWRufOnenUqRNvv/12lsdq167N\n6dOn9YglhBCm5enpyV9//VXg1+tSEBRFYcCAAVSoUIGpU6c6evdCCCFyoEtB+OOPP2jZsiUNGjTA\nyckJgAkTJmg2lCOEECL/DHlhmhBCCMcz3FxGa9euxcfHhzp16jBx4kS941jldjFdXFwc7dq1o27d\nurRv394Qp6dlZGQQHBxMly5dAGNmjI+Pp1evXtSvXx9fX18iIyMNmXPChAn4+fkREBBAv379uH37\ntiFyDho0CA8PDwICAqzrHpRrwoQJ1KlTBx8fH9atW6drzlGjRlG/fn0CAwPp0aMHN27cMGROiylT\npuDs7ExcXJxhc86cOZP69evj7+/PmDFjCp5TMZD09HTF29tbiY6OVlJTU5XAwEDlyJEjesdSFEVR\nLl68qOzbt09RFEW5efOmUrduXeXIkSPKqFGjlIkTJyqKoiiff/65MmbMGD1jKoqiKFOmTFH69eun\ndOnSRVEUxZAZw8LClHnz5imKoihpaWlKfHy84XJGR0crXl5eSkpKiqIoivL8888rCxYsMETOLVu2\nKHv37lX8/f2t63LLdfjwYSUwMFBJTU1VoqOjFW9vbyUjI0O3nOvWrbPuf8yYMYbNqSiKcu7cOaVD\nhw5KzZo1levXrxsy58aNG5W2bdsqqampiqIoypUrVwqc01AFYfv27UqHDh2syxMmTFAmTJigY6Lc\ndevWTfn999+VevXqKZcuXVIURS0a9erV0zXX+fPnldDQUGXjxo1K586dFUVRDJcxPj5e8fLyum+9\n0XJev35dqVu3rhIXF6ekpaUpnTt3VtatW2eYnNHR0Vk+GHLLNX78eOXzzz+3Pq9Dhw7Kjh07dMt5\nrx9//FHp37+/oijGzNmrVy/lwIEDWQqC0XL27t1b2bBhw33PK0hOQw0Z/fXXX1SvXt26XK1aNZtO\nobKXey+mu3z5Mh4eHgB4eHhw+fJlXbMNHz6cSZMmWc9VBgyXMTo6mooVKzJw4EAaNmzIq6++yq1b\ntwyXs3z58owcOZIaNWrg6emJu7s77dq1M1xOi9xyxcbGUq1aNevzjPT/av78+TzzzDOA8XL+/PPP\nVKtWLcudycB4OU+ePMmWLVt48sknCQkJISoqCihYTkMVBMsZR0aWmJhIz549mT59OmXKlMnymJOT\nk65/hl9++YVKlSoRHByc64yHemcE9bL7vXv38sYbb7B3715KlSrF559/nuU5Rsh5+vRppk2bRkxM\nDLGxsSQmJrJw4cIszzFCzpw8LJcRMn/22WcUL16cfv365focvXImJSUxfvx4Pv74Y+u63P5Pgb7v\nZ3p6On///Tc7d+5k0qRJPP/887k+92E5DVUQqlatyvnz563L58+fz1Lh9JaWlkbPnj156aWXeO65\n5wD1m9ilS5cAuHjxIpUqVdIt3/bt21m5ciVeXl688MILbNy4kZdeeslQGUH9plKtWjUaN24MQK9e\nvdi7dy+VK1c2VM6oqCiaNWtGhQoVKFasGD169GDHjh2Gy2mR299z9v9XFy5coGrVqrpktFiwYAGr\nV6/m+++/t64zUs7Tp08TExNDYGAgXl5eXLhwgSeeeILLly8bKieo/5969OgBQOPGjXF2dubatWsF\nymmogtCoUSNOnjxJTEwMqampLFmyhK5du+odC1C/Hbz88sv4+vpmubK6a9eufPPNNwB888031kKh\nh/Hjx3P+/Hmio6NZvHgxbdq04bvvvjNURlAnN6xevTonTpwAYP369fj5+dGlSxdD5fTx8WHnzp0k\nJyejKArr16/H19fXcDktcvt77tq1K4sXLyY1NZXo6GhOnjxJkyZNdMu5du1aJk2axM8//4ybm5t1\nvZFyBgQEcPnyZaKjo4mOjqZatWrs3bsXDw8PQ+UEeO6556yTeZ44cYLU1FQee+yxguXUps2hndWr\nVyt169ZVvL29lfHjx+sdx2rr1q2Kk5OTEhgYqAQFBSlBQUHKmjVrlOvXryuhoaFKnTp1lHbt2il/\n//233lEVRVGUiIgI61lGRsy4f/9+pVGjRkqDBg2U7t27K/Hx8YbMOXHiRMXX11fx9/dXwsLClNTU\nVEPk7Nu3r1KlShXF1dVVqVatmjJ//vwH5vrss88Ub29vpV69esratWt1yzlv3jyldu3aSo0aNaz/\nj4YMGWKYnMWLF7e+n/fy8vKyNpWNljM1NVV58cUXFX9/f6Vhw4bKpk2bCpxTLkwTQggBGGzISAgh\nhH6kIAghhACkIAghhLhDCoIQQghACoIQQog7pCAIIYQApCAIIYS4QwqCEEIIQAqCMJAVK1bg7OzM\n8ePH7bL90qVL22W79jBu3DimTJmidwxRxEhBEIaxaNEiOnfuzKJFi+yy/fzMSKmo9wqxS468MMJs\npKLokYIgDCExMZHIyEhmzZrFkiVLAPW+E/Xr12fw4MH4+/vToUMHUlJSrK/55JNP8PHxoUWLFvTr\n148pU6Zw9uzZLLcXnDx5cpYpjC26d+9Oo0aN8Pf3Z86cOdb91atXjwEDBhAQEMCFCxeyvObWrVs8\n++yzBAUFERAQwNKlS4mJicHHx4cXX3wRX19fevfuTXJyMgALFy6kadOmBAcH8/rrr5OZmfnA9Z99\n9hn16tWjRYsWdjtKEuJBpCAIQ/j555/p2LEjNWrUoGLFiuzduxeAU6dOMWzYMA4dOoS7uzvLly8H\nYPfu3fz4448cPHiQNWvWEBUVleO36tzuCzB//nyioqLYvXs3M2bM4O+//7bub+jQoRw6dCjLzZpA\nnaWzatWq7N+/nz///JMOHToA6gyTQ4cO5ciRI5QtW5Yvv/ySo0eP8sMPP7B9+3b27duHs7Mz33//\nfa7r9+zZw5IlSzhw4ACrV69m9+7dOeaOjY1l9+7dWda1bt2ajIyMArzrQmRVTO8AQoA6XDR8+HAA\nevfuzaJFixg2bBheXl7WO1Y98cQTxMTEALBt2zaee+45ihcvTvHixenSpUu+hnimT5/OihUrAPW+\nGydPnqRSpUo8/vjjuU4R3KBBA9555x3effddOnfuTPPmzYmLi6N69eo89dRTALz44ovMmDEDNzc3\n9uzZQ6NGjQBISUmhcuXKJCQk5Lg+Li6OHj164ObmhpubG127ds3xz7Nr1y6ee+45kpKSuHTpErVq\n1SI0NFSGmIQmpCAI3cXFxbFp0yYOHTqEk5MTGRkZODs7M3ToUEqUKGF9nouLi3U4xsnJKcsHpuX3\nxYoVsw7BANbn3ysiIoINGzawc+dO3NzcaN26tXUoqlSpUrnmrFOnDvv27ePXX3/l/fffJzQ0lLCw\nsCwfxoqiWLMNGDCA8ePHZ9nGrFmzclw/ffr0HP882aWmpgKwbt06HnvsMWrVqoWXl1eWW6YKUVDy\nr0jobtmyZYSFhRETE0N0dDTnzp2jZs2anDt3LtfXPP3006xatYrbt2+TmJjIr7/+ipOTEx4eHly5\ncoW4uDhu377NL7/8ct9rb9y4Qbly5XBzc+PYsWPs3LkzTzkvXryIm5sb/fv355133mHfvn0AnDt3\nzrqN//3vf7Ro0YLQ0FCWLVvG1atXAbXonTt3Ltf1LVu2ZMWKFaSkpHDz5k1++eWXHL/1Hzt2DEVR\nWLZsGfXr12fLli2ULVs2T/mFeBg5QhC6W7x4Me+++26WdT179uTzzz+/70PRstyoUSO6du1KgwYN\n8PDwICAggEcffZRixYrx4Ycf0qRJE6pWrYqvr+99r+3UqRNff/01vr6+1KtXzzrc87D7EP/555+M\nGjUKZ2dnihcvzldffYWiKNSrV4/Zs2czaNAg/Pz8GDJkCG5ubnz66ae0b9+ezMxMXF1d+fLLL2nS\npEmu6/v06UNgYCCVKlXKddgqISGBgIAAhg0bRlBQED179mTatGlERkayZs0aevbsydKlS3nmmWc4\ncuQIgwYNyv9fiCiy5AY5wrRu3bpFqVKlSEpKolWrVsyZM4egoCCHZoiJiaFLly78+eefDt1vdleu\nXGH58uV06tSJLVu24OPjw6lTpx54A3shspMjBGFagwcP5siRI6SkpBAeHu7wYmBhhIbujh07CA0N\nZdu2bYSGhrJmzRoqV66sdyxhMnKEIIQQApCmshBCiDukIAghhACkIAghhLhDCoIQQghACoIQQog7\npCAIIYQApCAIIYS4QwqCEEIIQAqCEEKIO/4ffdMIK7mk/eQAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f444007ee50>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hence from the plot the area ABCDEA between the curve and the speed axis for speed change \n", + "for synchronous to 0.02 times synchrnous speed is the stopping time is which equal to: 9.36 sec\n" + ] + } + ], + "prompt_number": 205 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.7,Page No:176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor\n", + "f=50 # frequency in HZ\n", + "Vl=2200 # line voltage in V\n", + "P=6 # number of poles\n", + "#parameters referred to the stator\n", + "Xr_=0.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=0.12 # resistance of the rotor windings in ohm\n", + "Rs=0.075 # resistance of the stator windings in ohm\n", + "J=100 # combine inertia of motor and load in kg-m2\n", + "\n", + "#calculation\n", + "#(i) during starting of the motor\n", + "Sm=Rr_/math.sqrt(Rs**2+(Xs+Xr_)**2) #slip at maximum torque\n", + "Wms=4*math.pi*f/P #angular frequency\n", + "x=Rs+math.sqrt(Rs**2+(Xs+Xr_)**2)\n", + "Tmax=(3/2/Wms)*(Vl/math.sqrt(3))**2/x #maximum torque\n", + "tm=J*Wms/Tmax #mechanical time constant of the motor\n", + "ts=tm*(1/4/Sm+1.5*Sm) #time taken during starting\n", + "Es=1/2*J*Wms**2*(1+Rs/Rr_) #energy disspated during starting\n", + "\n", + "#(ii) when the motor is stopped by plugging method\n", + "tb=tm*(0.345*Sm+0.75/Sm) #time required to stop by plugging\n", + "Eb=3/2*J*Wms**2*(1+Rs/Rr_) #energy disspated during braking \n", + "\n", + "#(iii)required resistance to be inserted during plugging\n", + "tb1=1.027*tm #minimum value of stopping time during braking\n", + "x=1.47*(Xs+Xr_) #x=Rr_+Re\n", + "Re=x-Rr_ #Re is the required external resistance to be connected\n", + "Ee=3/2*J*Wms**2*(Re/(Re+Rr_)) #energy disspated in the external resistor\n", + "Eb1=Eb-Ee #total energy disspated during braking \n", + "\n", + "\n", + "#results\n", + "print\"(i)Time taken during starting is ts:\",round(ts,4),\"s\"\n", + "print\" Energy disspated during starting is Es:\",round(Es/1000),\"kilo-watt-sec\"\n", + "print\"\\n(ii)Time taken to stop by plugging is tb:\",round(tb,2),\"s\"\n", + "print\" Energy disspated during braking is Eb:\",round(Eb/1000),\"kilo-watt-sec\"\n", + "print\"\\n(iii)Minimum Time taken to stop by plugging is tb:\",round(tb1,2),\"s\"\n", + "print\" Required external resistance to be connected is Re:\",round(Re,2),\"ohm\"\n", + "print\" Total Energy dissipated during braking is Eb:\",round(Eb1/1000,2),\"kilo-watt-sec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Time taken during starting is ts: 1.108 s\n", + " Energy disspated during starting is Es: 891.0 kilo-watt-sec\n", + "\n", + "(ii)Time taken to stop by plugging is tb: 3.08 s\n", + " Energy disspated during braking is Eb: 2673.0 kilo-watt-sec\n", + "\n", + "(iii)Minimum Time taken to stop by plugging is tb: 0.5 s\n", + " Required external resistance to be connected is Re: 1.35 ohm\n", + " Total Energy dissipated during braking is Eb: 1162.36 kilo-watt-sec\n" + ] + } + ], + "prompt_number": 206 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.8,Page No:184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "from sympy import *\n", + "from array import array\n", + "import numpy as np\n", + "\n", + "#variable declaration\n", + "#ratings of the delta connected Induction motor\n", + "f=50 # frequency in HZ\n", + "Vl=400 # line voltage in V\n", + "P=4 # number of poles\n", + "Pm=2.8*1000 # rated mechanical power developed\n", + "N=1370 # rated speed in rpm\n", + "#parameters referred to the stator\n", + "Xr_=5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=5 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "Xm=80 # no load reactance\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "Wms=2*math.pi*Ns/60 #synchronous speed in rad/s\n", + "s=(Ns-N)/Ns #full load slip\n", + "x=(Rs+Rr_/s)**2+(Xs+Xr_)**2 #total impedance\n", + "T=(3/Wms)*(Vl**2*Rr_/s)/x #full load torque\n", + "Tl=T\n", + "K=Tl/(1-s)**2 #since Tl=K*(1-s)**2\n", + "\n", + "#(i) when the motor is running at 1200 rpm\n", + "N1=1200 #speed in rpm\n", + "s1=(Ns-N1)/Ns #slip at the given speed N1\n", + "Tl=K*(1-s1)**2 #torque at the given speed N1\n", + "\n", + "y=(Rs+Rr_/s1)**2+(Xs+Xr_)**2 #total impedance\n", + "a=Tl*(Wms/3)*y*(s1/Rr_) #Since T=(3/Wms)*(Vl**2*Rr_/s)/x and a=V**2\n", + "V=math.sqrt(a) #required voltage at the given speed N1\n", + "Ir_=V/((Rs+Rr_/s1)+1j*(Xs+Xr_))#rotor current\n", + "Im=V/(1j*Xm) #magnetizing current\n", + "Is=Ir_+Im #total current\n", + "Il=abs(Is)*math.sqrt(3) #line current\n", + "\n", + "#(ii)when the terminal voltage is 300 V\n", + "V1=300 #terminal voltage in V\n", + "s = Symbol('s')\n", + "x=(Rs+Rr_/s)**2+(Xs+Xr_)**2 \n", + "T=(3/Wms)*(V1**2*Rr_/s)/x\n", + "\n", + "#Now we have to solve for the value of slip 's' from the given equation 104s**4- 188s**3 + 89s**2 - 179s + 25=0\"\n", + "coeff = [104,-188,89,-179,25] #coeffcient of the polynomial equation \n", + "s=np.roots(coeff) #roots of the polynomial equation\n", + "\n", + "T=K*(1-s[3].real)**2 #torque at the given terminal voltage of 300 V\n", + "N=Ns*(1-s[3].real) #speed at the given terminal voltage of 300 V\n", + "Ir_=V1/((Rs+Rr_/s[3].real)+1j*(Xs+Xr_))#rotor current\n", + "Im=V1/(1j*Xm) #magnetizing current\n", + "Is=Ir_+Im #total current\n", + "Il1=abs(Is)*math.sqrt(3) #line current\n", + "\n", + "\n", + "#results\n", + "print\"(i)Required torque is Tl:\",round(Tl,1),\"N-m\"\n", + "print\" Required motor terminal voltage is V:\",round(V,1),\"V\"\n", + "print\" Required line current is Il:\",round(Il,2),\"A\"\n", + "print\"\\n(ii)The roots of the polynomial equation are \"\n", + "print\" s1:\",round(s[0].real,3),\"s2:\",round(s[1].real,3),\"s3:\",round(s[2].real,3),\"s4:\",round(s[3].real,3)\n", + "print\" Hence Only s4:\",round(s[3].real,3),\"is valid\"\n", + "print\"\\nRequired torque is Tl:\",round(T,2),\"N-m\"\n", + "print\"Required speed is N:\",round(N),\"rpm\"\n", + "print\"Required line current is Il:\",round(Il1,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Required torque is Tl: 36.9 N-m\n", + " Required motor terminal voltage is V: 253.2 V\n", + " Required line current is Il: 17.89 A\n", + "\n", + "(ii)The roots of the polynomial equation are \n", + " s1: 1.818 s2: -0.079 s3: -0.079 s4: 0.147\n", + " Hence Only s4: 0.147 is valid\n", + "\n", + "Required torque is Tl: 41.94 N-m\n", + "Required speed is N: 1279.0 rpm\n", + "Required line current is Il: 16.88 A\n" + ] + } + ], + "prompt_number": 207 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.9,Page No:199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "from array import array\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected squirrel Induction motor\n", + "f=50 # frequency in HZ\n", + "Vl=400 # line voltage in V\n", + "P=4 # number of poles\n", + "N=1370 # rated speed\n", + "\n", + "#the frequency variation is from 10 Hz to 50 Hz\n", + "fmin=10 \n", + "fmax=50\n", + "#parameters referred to the stator\n", + "Xr_=3.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=3 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed\n", + "N1=Ns-N #increase in speed from no load to full torque rpm\n", + "Wms=2*math.pi*Ns/60\n", + "s=(Ns-N)/Ns #full load slip\n", + "#(i)to obtain the plot between the breakdown torque and the frequency\n", + "K=0.1\n", + "k=[]\n", + "frequency=[]\n", + "torque=[]\n", + "for i in range (0,9):\n", + " K=K+0.1\n", + " f1=K*f\n", + " x=Rs/K+math.sqrt((Rs/K)**2+(Xs+Xr_)**2)\n", + " Tmax=(3/2/Wms)*(Vl/math.sqrt(3))**2/x\n", + " k.append(round(K,1))\n", + " frequency.append(round(f1))\n", + " torque.append(round(Tmax,2))\n", + "print\"K :\",k\n", + "print\"f :\",frequency,\"Hz\"\n", + "print\"Tmax :\",torque,\"N-m\"\n", + "\n", + "#plotting the values of Tmax vs f \n", + "plt.figure(1)\n", + "plt.plot(frequency,torque,'y')\n", + "plt.xlabel('$f$,Hz')\n", + "plt.ylabel('$Tmax$,N-m')\n", + "plt.grid(True)\n", + "plt.title('Torque vs frequency characteristic')\n", + "plt.show()\n", + "\n", + "#(ii) to obtain the starting torque and current at rated frequency and voltage\n", + "x=(Rs+Rr_)**2+(Xs+Xr_)**2\n", + "Tst=(3/Wms)*(Vl/math.sqrt(3))**2*Rr_/x #starting torque at 50 Hz frequency\n", + "Ist=(Vl/math.sqrt(3))/math.sqrt(x) #starting current at 50 Hz frequency\n", + "\n", + "K=fmin/fmax #minimum is available at 10 Hz\n", + "y=((Rs+Rr_)/K)**2+(Xs+Xr_)**2\n", + "Tst_=(3/Wms)*(Vl/math.sqrt(3))**2*Rr_/K/y #starting torque at 10 Hz frequency\n", + "Ist_=(Vl/math.sqrt(3))/math.sqrt(y) #starting current at 10 Hz frequency\n", + "\n", + "ratio1=Tst_/Tst #ratio of starting torque to the rated starting torque\n", + "ratio2=Ist_/Ist #ratio of starting current to the rated starting current\n", + "\n", + "\n", + "#results\n", + "print\"\\n(i)Hence from the plot we can see that for a constant (V/f) ratio breakdown torque decreases with frequency\"\n", + "print\"\\n(ii)Hence the required ratio of starting torque to the rated starting torque is :\",round(ratio1,3)\n", + "print\" Hence the required ratio of starting current to the rated starting current is :\",round(ratio2,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "K : [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]\n", + "f : [10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0] Hz\n", + "Tmax : [22.93, 31.18, 37.44, 42.22, 45.94, 48.89, 51.27, 53.24, 54.88] N-m\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEdCAYAAAAM1BBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVGX7B/DvDCCC7NsAIgyiICAwkwgtaqCpbVipaeZG\naZYt7y+1UCsVs9dwQTOzsjJFzWx5tcTSNBUsKxVlXFBUUBRkGNlBdmae3x/qJALCyGHOOXB/rovr\n8sx2vvOA557z3OeckTDGGAghhHR6Ur4DEEIIEQYqCIQQQgBQQSCEEHITFQRCCCEAqCAQQgi5iQoC\nIYQQAFQQiAhoNBoMGjQINjY2ePvtt/mOIxhZWVmQSqXQ6XR8R+FE3759cfDgQYOf980332D48OHt\nkKjzkdB5CMJlZWUFiUQCAKioqEDXrl1hYmICAPjiiy8wbtw4PuMZzaJFi3DixAn8+OOPfEcRlKys\nLPTs2RP19fWQSvn9bCeVSpGRkYGePXu263qE9J47IlO+A5DmXb9+Xf9vb29vrFu3DoMHDzboNerr\n62FqKu5f8+XLl+Hv79/s/VqtVl8oyb3h4u/kXj9b3su66XNs+6ASK0I1NTV488030b17d3Tv3h0z\nZsxAbW0tACApKQkeHh5YunQp3NzcMGXKFFRXVyM6OhoODg4IDAzEsmXL0KNHD/3rSaVSXLx4Ub8c\nHR2NefPm6Zd37twJhUIBe3t7PPTQQzh16lSrcj722GNYs2ZNg9tCQkLw008/AQBmzJgBmUwGW1tb\nBAcHIy0trdFrREdHY+PGjVi6dClsbGywb98+xMbGYvTo0Zg4cSJsbW2RkJCA0tJSTJkyBe7u7vDw\n8MC8efP0Uyk6nQ5vvfUWnJ2d4ePjgzVr1jSYapHL5di3b59+nbGxsZg4caJ++Z9//sGDDz4Ie3t7\nKBQKJCcn6++LiIjA/PnzMWDAANjY2GD48OEoLCzU3//nn3/qn+vp6YmEhAQcPXoUrq6uDTZq27Zt\ng0KhaHIcq6qqMGvWLMjlctjZ2WHgwIGoqanR379582Z4eXnB2dkZixcv1t9+5MgRPPDAA7C3t4e7\nuzveeOMN1NXV6e+XSqX49NNP0bt3b/j5+QEA/u///g+enp6wtbVFaGgo/vzzT/3jdTodFi9ejF69\nesHGxgb9+/dHTk4OBg0apP/dWltb44cffgBw978buVyOpUuXIjg4GNbW1tBqtZDL5di/f78+e2ho\nKGxtbeHq6oq33noLAPTrsrOzg42NDf755x9s2LABAwcO1L92Wloahg4dCkdHR7i6uuLDDz9sclxJ\nExgRBblczvbt28cYY2zevHnsgQceYPn5+Sw/P589+OCDbN68eYwxxg4cOMBMTU3ZnDlzWG1tLauq\nqmKzZ89mgwYNYsXFxSw7O5sFBgayHj166F9bIpGwzMxM/XJ0dLT+9Y4fP85cXFzYkSNHmE6nYwkJ\nCUwul7OampoWM2/cuJE99NBD+uW0tDRmZ2fHamtr2e7du1m/fv1YaWkpY4yx9PR0plarm3yd2/Mw\nxtiCBQuYmZkZ+/nnnxljjFVVVbGnn36avfLKK6yyspJdu3aNhYWFsbVr1zLGGPvss89Ynz59WE5O\nDisqKmIRERFMKpUyrVbbaGwZYyw2NpZNmDCBMcZYTk4Oc3R0ZLt27WKMMbZ3717m6OjICgoKGGOM\nPfzww6xXr17swoULrKqqikVERLA5c+YwxhjLyspi1tbWbOvWray+vp4VFhayEydOMMYYCwgI0L8m\nY4w9/fTTbMWKFU2+/1dffZVFRkay3NxcptVq2d9//81qamrYpUuXmEQiYdOmTWPV1dXsxIkTzNzc\nnKWnpzPGGDt27Bg7fPgw02q1LCsri/n7+7OPPvpI/7oSiYQNGzaMFRcXs+rqasYYY5s3b2ZFRUVM\nq9Wy+Ph45urqqv9dL126lAUFBbHz588zxhg7ceIEKyws1L/W7X9Dzf3d1NbWMsYY8/LyYkqlkuXk\n5OjXffvv4f7772ebN29mjDFWUVHB/vnnH/2YSiQS/e+OMcbWr1/PBgwYwBhjrKysjLm6urIVK1aw\nmpoaVl5ezg4fPtzkuJLGqCCIxO3/WXx8fBpsTH777Tcml8sZYzcKQpcuXRpssHv27Ml+++03/fIX\nX3zBPDw89Mt3KwivvPJKg40xY4z5+fmx5OTkFjOXlZWxbt26sStXrjDGGHvnnXfYlClTGGOM7du3\nj/n6+rJ//vmnwX/upkRHR7P33ntPv7xgwQL28MMP65fz8vKYubk5q6qq0t+2ZcsWFhkZyRhjLDIy\nUl8cGGNsz549DTYqdxaEBQsW6AtCXFwcmzhxYoM8w4cPZwkJCYwxxiIiIth///tf/X2ffvope/TR\nRxljjC1evJiNHDmyyfcUFxfHxo8fzxhjrLCwkFlaWrK8vLxGj9NqtczCwoKdPHmy0X23CsLVq1f1\nt4WFhbGtW7c2uc6VK1eyZ555Rr8skUjYgQMHmnzsLfb29vp1+/r6sh07djT5uDv/hpr7uzl48CBj\n7MaYr1+/vsH9t/8eBg0axBYsWMDy8/MbPObWe26uIGzZsoXdd999d31PpHk0ZSRCubm58PLy0i97\nenoiNzdXv+zs7IwuXbo0ePztU0Senp6tXtfly5cRHx8Pe3t7/U9OTg7UanWLz7W2tsYTTzyBb7/9\nFgCwdetWjB8/HgAwePBgvP7663jttdcgk8nw8ssvo7y8vNW5PDw8GmSsq6uDm5ubPuMrr7yC/Px8\nAIBarW7T+//hhx8avP9Dhw4hLy9P/xhXV1f9vy0sLPS9n+zs7GabrOPHj0diYiIqKyvx/fffY9Cg\nQZDJZI0eV1BQgOrqavj4+DSb8fb1W1paoqKiAgBw/vx5PPnkk3Bzc4OtrS3efffdBtNZABqMCwAs\nX74cAQEBsLOzg729PUpLS1FQUAAAyMnJuWuO2zX3d3P73+md677dunXrcP78efj7+yMsLAy//PJL\nq9Z7tzEnLaOCIELu7u7IysrSL1+5cgXu7u765VtHJt3i5uaGK1euNHj87SwtLVFZWalfvn1j7+np\niXfffRfFxcX6n+vXr2Ps2LGtyjpu3Dh8++23+Pvvv1FdXY3IyEj9fW+88QZSUlJw5swZnD9/HsuW\nLWvVa0okkgbvsUePHjA3N0dhYaE+Y2lpqX7OuqX3361bN/1GFADy8vL0r+/p6YmJEyc2eP/l5eWI\niYlpMaenpycyMzObvM/DwwP3338/tm3bhs2bNzfoWdzOyckJXbt2RUZGRovru9P06dMREBCAjIwM\nlJaW4r///W+jQ1RvH8c//vgDy5Ytww8//ICSkhIUFxfD1tZW3+vo0aNHq3O05u/mzr/T2/Xq1Qtb\ntmxBfn4+Zs+ejdGjR6Oqququz7m13tv7YcQwVBBEaNy4cfjggw9QUFCAgoICvP/++81uUABgzJgx\n+PDDD1FSUoKcnBysXr26wX8shUKBb775BlqtFrt3725wLPhLL72Ezz//HEeOHAFjDBUVFfjll18a\nHAF1N48//jguX76MBQsW4LnnntPfnpKSgsOHD6Ourg6WlpYNDqm9E7vjiJI7l93c3DBs2DDMnDkT\n5eXl0Ol0yMzM1L+PMWPG4OOPP8bVq1dRXFyMuLi4Ru9/69atqK+vR0pKCv73v//p75swYQISExOx\nZ88eaLVaVFdXIykpCVevXm02zy3PP/88fv/9d/zwww+or69HYWEhTpw4ob9/0qRJWLJkCU6fPo2R\nI0c2+RpSqRQvvvgiZs6cCbVaDa1Wi7///lt/EMHdXL9+HdbW1rC0tER6ejo+++yzuz6+vLwcpqam\ncHJyQm1tLd5//32UlZXp7586dSrmzZuHjIwMMMZw8uRJFBUVAQBkMlmD4tfWv5vNmzfr9/BsbW0h\nkUgglUrh7OwMqVTabKF94oknoFarsWrVKtTU1KC8vBxHjhxp1ToJFQRReu+99xAaGorg4GAEBwcj\nNDQU7733nv7+Oz9FLViwAF5eXvD29sajjz6KSZMmNdiIrVq1ComJibC3t8eWLVvwzDPP6O/r168f\nvvzyS7z++utwcHBA7969sXHjxlZn7dKlC0aOHIl9+/bh+eef199eVlaGadOmwcHBAXK5HE5OTs2e\ndHbnHsGdywCwceNG1NbWIiAgAA4ODnj22Wf10zovvfQShg8fjpCQEISGhmLUqFEN3v+iRYuQmZkJ\ne3t7xMbG6qe1gBuf5H/++WcsXrwYLi4u8PT0RHx8fIPnN5fN09MTv/76K+Lj4+Ho6AilUomTJ0/q\nHzty5EhcuXIFzzzzDLp27drsGC5fvhxBQUHo378/HB0dMXfuXP367/aJefny5diyZQtsbGwwbdo0\nPPfcc42y3u7RRx/Fo48+Cl9fX8jlclhYWDSYXps5cybGjBmDYcOGwdbWFi+99BKqq6sB3Dgya/Lk\nybC3t8ePP/7Y7N9NS5/wb/ntt9/Qt29fWFtbY8aMGdi6dSvMzc1haWmJd999Fw899BAcHBxw+PDh\nBmNubW2NvXv3IjExEW5ubvD19UVSUlKr1kmMfGKaXC6HjY0NTExMYGZmhiNHjiA2NhZfffUVnJ2d\nAQAffvghHn30UWNF6pSSkpIwceJEZGdn8x2FF0I6ual3795Yu3atweeXENIejHrGkkQiQVJSEhwc\nHBrcNnPmTMycOdOYUQjh3bZt2yCRSKgYEMEw+imsTe2QGHEnhdzU2l33jorv9x8REYH09HRs2rSJ\n1xyE3M6oU0Y9e/aEra0tTExM8PLLL+Oll17CwoULsX79ev2ZkfHx8bCzszNWJEIIITcZtSCo1Wq4\nubkhPz8fQ4cOxerVq+Hn56fvH8ybNw9qtRrr1q0zViRCCCE38Xa104ULF8LKygqzZs3S35aVlYWo\nqKhG18rp3r17gxNaCCGEtMzHx8egc1iMdohFZWWl/kzUiooK7NmzB0FBQQ3O+Ny+fTuCgoIaPTc3\nNxfsxmU2BP2zYMEC3jN0hIyUk3IK/YfvnDqdDpWVGcjN/QpnzkzAX3954NAhd6SljcfVq1+iouKC\n/nwcQxitqazRaPTHt9fX12P8+PEYNmwYJk2aBJVKBYlEAm9vb6xdu9ZYkTh3+9nDQiWGjADl5Brl\n5JaxczLGUF19ESUlSfofxnSws4uEnV0EvLwWwMLCp80HSxitIHh7e0OlUjW63ZCTnAghpDNgjKGq\nKrNBAQAY5wXgTuL+5hSBiY6O5jtCi8SQEaCcXKOc3OI6Z0sFQC6PbZcCcCdRfIWmRCKBCGISQkir\ntFQA7OwiOCkAhm476VpGHBLDNVPEkBGgnFyjnNwyNCdjrEET+O+/e0ClikBJSRLs7CKgUCThgQdy\nEBCwGe7uU2Fp2YuXkydpyogQQjjW9B4A9J/+jTUFZCiaMiKEkDZqqQBwNQVkKEO3nVQQCCHEQEIt\nAHeiHgKPxDD/KYaMAOXkGuVsu/r6Uly79h3Onp2ENWtcmugBZPPeA2gr6iEQQkgzKiszUFiYiMLC\nnSgvPwpb24FwdHwSvXoNxwMPPC/Kjf7d0JQRIYTcpNPVo6zs75tFIBH19SVwcHgCTk5RsLd/BCYm\n3fiOaBDqIRBCiAHq60tRVLQbBQWJKCraja5de8DRMQqOjlGwtu4HiUS8M+vUQ+CRkOc/bxFDRoBy\nco1yNlRVlYns7I+gUg3B3397IC8vAba2DyE0NBWhoanw9n4fNjb9my0GYhlPQ1EPgRDS4f07FbQT\nhYWJqKsrgqPjk/Dw+I8op4LaC00ZEUI6pBtTQb/d7Afsgrm5B5ycbk0FhYp6Kqi1qIdACOm0qqoy\nUVBw66igI7C1HQBHxyfh6Pgkunb15Due0VEPgUdimFcUQ0aAcnKto+ZkTIuSkj+RmTkbR44E4Pjx\nh1BRcQrdu7+OBx7IRXDwr+je/VXOi4FYxtNQ1EMghIjKv1NBO1FUtAtdunSHo+OT6NNnPaytm28E\nk5bRlBEhRPCqqi6isDARBQWJKC8/fHMqKKrTTgW1FvUQCCGix5gWpaW3HxVUAEfHJ+DoGAV7+6Ew\nNbXiO6IoUA+BR2KYVxRDRoByck0MOevry7F9eyzOnp2Ev/5yxYULr0EiMYWf3zo8+KAaffp8DWfn\nZwRRDMQwnveCegiEEN7odHUoLt6DvLxNKCrahcJCP9jYTIa39yJ07erFd7xOh6aMCCFGxRhDeXkK\nNJpNuHbtO1hY9IRMNhEuLmNhZubId7wOhXoIhBBBqq6+DI1mMzSazdDpaiGTTYRMNgGWlr34jtZh\nUQ+BR2KYVxRDRoByco2vnHV1JcjN/QqpqQ8jJaUfampy4Oe3DuHhGfD2jm1UDGg8+WXUHoJcLoeN\njQ1MTExgZmaGI0eOoKioCGPHjsXly5chl8vx/fffw87OzpixCCEc0ulqUVS0GxrNJhQV7YG9/SPw\n8JgBR8fHIJWa8x2P3IVRp4y8vb1x7NgxODg46G+LiYmBk5MTYmJisGTJEhQXFyMuLq5hSJoyIkTQ\nbvQFjiAvbxPy87+DhYUfXF0nwtn5WZiZObT8AqRdCLqH4O3tjZSUFDg6/ts46tOnD5KTkyGTyZCX\nl4eIiAikp6c3DEkFgRBBqqq6qO8LALjZFxgPC4uePCcjgMB7CBKJBI888ghCQ0Px5ZdfAgA0Gg1k\nMhkAQCaTQaPRGDMSp8QwryiGjADl5BqXOevqipGbuxbHjw/A8ePhqK29Bn//TQgLOwe5fF6bikFn\nHE8hMWoP4dChQ3Bzc0N+fj6GDh2KPn36NLhfIpE0+x2l0dHRkMvlAAA7OzsoFApEREQA+PeXw/fy\nLULJI+ZllUolqDxiX27reOp0dQgKqoBGswn79++GtXV/REXFwMHhURw8+Bdyc6sQESERzPtt72Wh\n/n0mJSVhw4YNAKDfXhqCt8NOFy5cCCsrK3z55ZdISkqCq6sr1Go1IiMjacqIEAFgjKGs7O+b5wv8\ngG7dAiGTTYSz82iYmdGBH2Ig2CmjyspKlJeXAwAqKiqwZ88eBAUFYcSIEUhISAAAJCQk4OmnnzZW\nJEJIEyorM3DpUiwOH+6Nc+emwNy8B/r1S4FSmQx396lUDDowoxUEjUaDgQMHQqFQIDw8HE8++SSG\nDRuGOXPmYO/evfD19cX+/fsxZ84cY0Xi3K1dNyETQ0aAcnKtpZx1dYW4evVTHD/+AFJTH0J9fTEC\nAraif/8z8PJ6BxYWckHkFAqx5DSU0XoI3t7eUKlUjW53cHDA77//bqwYhJCbdLoaFBbuRF7eJpSU\nJMHR8TF4eb0He/thkErN+I5HeECXriCkE2GMobT0EDSaTcjP/xFWViE3+wKjYGpqw3c8wjFDt510\ntVNCOoHKyvPQaDZBo9kMqdQSMtlEhIaq0LVrD76jEQGhaxlxSAzzimLICFBOLjCmQ0HBz0hNfRhf\nf30/tNoKBAZuQ//+p+HlNUeQxUDI43k7seQ0FO0hENLBaLWVyMtLQE7OSpia2qFHj1kICHBCr15D\n+I5GBI56CIR0ELW1Gly9uga5uZ/DxuZB9OgxE7a2A5s92ZN0fNRDIKSTqag4g+zsFSgo2AYXl7FQ\nKv+EpaUv37GICFEPgUNimFcUQ0aAcraEMYbi4n04efJxqFSD0bWrF8LCzsPX97MmiwGNJ7fEktNQ\ntIdAiIjodLW4du075OSsgE5Xix49ZiIwcBtMTLryHY10ANRDIEQE6upKoFavRU7Oalha9kGPHrPg\n4DAcEgnt5JPmUQ+BkA6kquoScnI+gkazCY6OTyAoaCesrRV8xyIdFH284JAY5hXFkBGgnGVlh5GW\n9iyOHesPqbQrQkNPwt9/0z0Xg84+nlwTS05D0R4CIQLBmBYFBTuQnR2P2tqr8PB4E35+X8PU1Jrv\naKSToB4CITzTaiuQl7cB2dkrYWbmhB49ZsHJ6RlIpfR5jbQN9RAIEYmaGjWuXv0EavUXsLUdCH//\nBNjYPEgnkhHeUA+BQ2KYVxRDRqBj57x+/TTS01/A0aMBqK8vgVL5F/r23QZb24farRh05PHkg1hy\nGor2EAgxghsnku1FdnY8KipOonv31xEengEzM0e+oxGiRz0EQtrRjRPJvkV2djwABg+PmZDJnodU\nas53NNIJUA+BEAGoqytCbu5aXL36Cbp1C4SPzzLY2w+j/gARNOohcEgM84piyAiIN2dVVSYuXHgD\nhw/3QmVlOoKDf0VIyJ6bZxXzVwzEOp5CJZachqI9BEI4UFr6F7Kz41FSkgx395fQv/9pmJu78x2L\nEINQD4GQe3TjRLKfkJ29HLW1Gnh4zICr6wswNbXiOxohAKiHQIhRFBfvQ0bGTEilFvD0fBtOTk9D\nIjHhOxYhbUI9BA6JYV5RDBkB4easrDyPU6dG4Ny5l+DlNQ9lZR/C2XmU4IuBUMfzTpSTX0YtCFqt\nFkqlElFRUQCA2NhYeHh4QKlUQqlUYvfu3caMQ0ir1dUV4cKFN3H8+IOwtR2A/v3PwMVlNB01RDoU\no/YQVqxYgWPHjqG8vBw7duzAwoULYW1tjZkzZ971edRDIHzR6eqQm/s5Ll9eBCenkfD2fh9durjw\nHYuQVjF022m0PYScnBz8+uuvmDp1qj4gY4w29ESQGGMoLPwFKSnBKCxMREjIPvj5fU7FgHRoRisI\nM2bMwLJlyyCV/rtKiUSC1atXIyQkBFOmTEFJSYmx4rQLMcwriiEjwG/O69dP4+TJ4cjImAUfn+UI\nDv4NVlZBTT6WxpNblJNfRjnKaOfOnXBxcYFSqWwwkNOnT8f8+fMBAPPmzcOsWbOwbt26Jl8jOjoa\ncrkcAGBnZweFQoGIiAgA//5y+F6+RSh5xLysUqmMvv4HHwzApUvzsWfPVri6TsSoUb9AKjUTxHi0\ndZmP8ezIy0Idz6SkJGzYsAEA9NtLQxilh/DOO+9g06ZNMDU1RXV1NcrKyjBq1Chs3LhR/5isrCxE\nRUXh1KlTjUNSD4G0I52uBjk5q3DlylLIZBMgl8+HmZkD37EIaTNDt51GPzEtOTkZy5cvR2JiItRq\nNdzc3AAAK1euxNGjR7Fly5bGIakgkHbAGENBwTZkZsborzdkaenHdyxCOCPYpvItjDH9oXoxMTEI\nDg5GSEgIkpOTsXLlSmPH4dStXTchE0NGoP1zlpcfg0oVgayshfD1XYugoB33VAxoPLlFOfll9DOV\nIyIi9HNfmzZtMvbqSSdXU5OLixffQXHxb5DL34eb24uCP6mMEGOhaxmRTkGrrUR29nLk5KyCu/s0\neHrOhampDd+xCGlXdC0jQm7DmA4azRZcuvQObGzuR79+KbCw8OY7FiGCRNcy4pAY5hXFkBHgJmdp\n6V84fvwBXL26Cv7+WxAY+D3nxaAzjacxUE5+0R4C6XCqqy8jM3M2ysoOwdt7MWSy8ZBI6LMPIS2h\nHgLpMOrry3HlyofIzV0LD4//oEePt2Bi0o3vWITwhnoIpNNhTAu1ej2ysubD3n4o+vc/CXPz7nzH\nIkR0aD+aQ2KYVxRDRqD1OYuL9yMlpR80mgT07bsD/v4JRi0GHW08+UY5+UV7CESUKisvIDPzbVRU\nnEDPnstufkkNfTcBIW1BPQQiKnV1xbh8eRHy8jbC0/NtdO/+fzAx6cp3LEIEiXoIpEO68UU1a29+\nUc3TCAtLQ5cuMr5jEdKhUA+BQ2KYVxRDRqBhzsLCXUhJCUFh4c8ICfkdfn5rBVMMxDieQkY5+UV7\nCESwKirSkJExC9XVl+DjEw9HxyeoT0BIO6IeAhGcuroSXLr0DvLzf4SX13twd58OqdSM71iEiA71\nEIiolZb+jbNnn4e9/XCEhaXTF9UQYkTUQ+CQGOYVhZqRMS0uX/4Qp08/g169PoJa/ZwoioFQx/NO\nlJNbYslpKNpDILyrqcnF2bMTwVg9+vVLQdeuHgCS+I5FSKdDPQTCq8LCX3Du3FS4u78KL6936Mtq\nCOEQ9RCIKOh0Nbh4cQ7y87chIOAH2NkN4DsSIZ0e9RA4JIZ5RSFkrKw8j+PHH0B19WWEhqY2WQyE\nkLM1KCe3KCe/qCAQo2GMQa3egNTUh+DmNg2Bgf8TReOYkM6CegjEKOrry3D+/Cu4fv0kAgK2wsqq\nL9+RCOnw2q2HcPToUSxevBhZWVmor6/Xr+zkyZOGpySdSlnZEZw5Mw4ODsPQr98RmJhY8h2JENKE\nVk8ZjR8/Hi+88AL+97//ITExEYmJidixY0d7ZhMdMcwrGjMjYzpcubIUp05FwcdnKXx9P2t1MRDD\nWAKUk2uUk1+t3kNwdnbGiBEj2rQyrVaL0NBQeHh4IDExEUVFRRg7diwuX74MuVyO77//HnZ2dm1a\nBxGGmpo8pKdPglZbiX79jqJrV0++IxFCWtDqHsKePXvw3Xff4ZFHHkGXLl1uPFkiwciRI1u9shUr\nVuDYsWMoLy/Hjh07EBMTAycnJ8TExGDJkiUoLi5GXFxc45DUQxCVwsLdOHfuBbi5TYOX1zxIpXR0\nMyF8MHTb2eqCMH78eJw7dw6BgYGQSv+daVq/fn2rVpSTk4Po6Gi8++67WLFiBRITE9GnTx8kJydD\nJpMhLy8PERERSE9PbxySCoIo6HS1uHjxHeTnfwd//82ws3uY70iEdGqGbjtb3UNISUnB0aNHkZCQ\ngPXr1+t/WmvGjBlYtmxZg2Ki0Wggk924rr1MJoNGo2n16wmRGOYV2ytjZeUFHD/+IKqqMhAaqmpz\nMRDDWAKUk2uUk1+t3pd/8MEHcebMGQQGBhq8kp07d8LFxQVKpbLZgZRIJHe91n10dDTkcjkAwM7O\nDgqFAhEREQD+/eXwvXyLUPIYa3nbtndw9eoajBy5GO7uryI5ObnNr69SqQTz/jrCMo1n5xjPpKQk\nbNiwAQD020tDtHrKqE+fPsjMzIS3tzfMzc1vPLmVh52+88472LRpE0xNTVFdXY2ysjKMHDkSR48e\nRVJSElxdXaFWqxEZGUlTRiJSX1+OCxdeQ3n50ZvnFoTwHYkQcpt26yFkZWXp/61Wq+Hm5gbA8CqU\nnJyM5cuXIzExETExMXB0dMTs2bMRFxeHkpISaiqLRHn5MZw58xzs7CLQq9dHMDHpxnckQsgd2q2H\nIJfL9T8n2UENAAAarElEQVSvvfaa/t/34tbU0Jw5c7B37174+vpi//79mDNnzj29nlDc2nUTsrZm\nZEyH7Ox4nDz5GLy9/ws/vy/bpRiIYSwBysk1ysmvezoesC2f1h9++GE8/PCNhqODgwN+//33e34t\nYly1tRqkp0ejvr4E9913BBYWcr4jEUI4dE/XMlqzZg1ee+219sjTJJoy4l9R0V6kp0fD1TUacnks\nfccxISLQbj0EPlFB4I9OV4tLl+ZBo/kG/v4bYW8/mO9IhJBW4vzidgsXLmx2RQAwf/78Vq+so0tK\nStIfCiZUhmSsqsrEmTPPw8zMGaGhqejSxbl9w91GDGMJUE6uUU5+tdhU7tatG6ysrBr8SCQSrFu3\nDkuWLDFGRsIDjWYLjh+/HzLZ8wgKSjRqMSCE8MOgKaOysjJ8/PHHWLduHcaMGYNZs2bBxcWlPfMB\noCkjY6qvv46MjDdQWvoXAgK2wtpayXckQsg9apfDTgsLC/Hee+8hJCQEdXV1OH78OJYsWWKUYkCM\np7w8FceO9QMgQb9+x6gYENLJtFgQ3nrrLYSFhcHa2honT57EwoULYW9vb4xsoiOGY5ObysgYQ3b2\nRzh5chjk8lj06fM1TE2tjB/uNmIYS4Byco1y8qvFpvKKFSvQpUsXfPDBB/jggw8a3CeRSFBWVtZu\n4Uj7q63NR3p6NOrqCnDffYdhYdGT70iEEJ7QYaedWHHxfpw9Owky2QR4ey+icwsI6WDa7TuV76RW\nq+Hg4KC/0B0RD52uDllZC5CXl4A+fTbAwWEo35EIIQLQ6msZ3WnChAnw8/PDW2+9xWUeURPDvOJv\nv30LlWoQrl9PRWhoqmCLgRjGEqCcXKOc/LrnPYR9+/ZBp9Ph7NmzXOYh7aik5E+cPz8dAQHz4eHx\nJiSSe/48QAjpgAzqIVy8eBFubm6wsLBoz0yNUA+h7YqK9uLs2efh779FsHsFhBButdvlrwEgPj4e\nhw8fBgD8+eefOHTokGHpCC8KCnbg7NnxCAzcRsWAENIsgwpCWFgYLl26hEuXLmHAgAG4du1ae+US\nJSHOK2o0W3Hu3DQEBf0KO7uBgszYFMrJLcrJLbHkNJRBBSE7Oxvm5uZYsWIFIiMjcezYsfbKRTig\nVn+NzMyZCAnZCxubUL7jEEIEzqAewpYtWzBq1CiYm5ujoKAA27Ztw7Rp09ozHwDqIdyLnJzVyM5e\nhpCQ32Fp6ct3HEIID9q1hzB27FikpaUBAC5dugSNRmNYOmIUly9/iJycj6BQHKRiQAhpNYMKwvr1\n61FTU4OamhrU1taiT58+7ZVLlPieV2SM4eLFd6HRbIJS+UeTX3HJd8bWopzcopzcEktOQxl0HsK1\na9dQWFiI1atXo7y8HD4+Pnj22WfbKxsxAGMMGRkzUFqaDIUimb6/gBBiMIN6CBs3bsSkSZMAALW1\ntfj555+NUhCoh3B3jGlx/vwrqKg4jaCgXTAzs+M7EiFEANr1WkZmZmaIjo7GiBEj4Ofnh5ycHIMD\nEm7pdHVIT49GbW0ugoP3wNTUmu9IhBCRMqiHMG7cOMydOxepqan4/PPPMWDAgPbKJUrGnlfU6WqQ\nlvYs6utLEBT0a6uKgVjmPikntygnt8SS01AGX8zGz88PixYtwtSpU9GvX79WP6+6uhrh4eFQKBQI\nCAjA3LlzAQCxsbHw8PCAUqmEUqnE7t27DY3UKWm1lTh1agQkElP07bsdJibGvZwIIaTjMbiHkJqa\niv79+2PQoEHYu3cvXnjhhVavrLKyEpaWlqivr8eAAQOwfPly7Nu3D9bW1pg5c2bzIamH0EB9fRlO\nnXoSXbvK4ef3NaTSe75GISGkA2vX8xAAYN68ebCzs0NcXBwKCgoMeq6lpSWAGw1prVar/ypO2ti3\nXl1dEU6ceATdugWiT58NVAwIIZwxqCA4OTmhS5cuePzxx/HJJ5/g7bffNmhlOp0OCoUCMpkMkZGR\nCAwMBACsXr0aISEhmDJlCkpKSgx6TSFp73nF2loNVKoI2NoOQu/en97T5avFMvdJOblFObkllpyG\nMujj5e7du7F06VI4OjoiLCwMkZGRCAsLa/XzpVIpVCoVSktLMXz4cCQlJWH69OmYP38+gBt7H7Nm\nzcK6desaPTc6OhpyuRwAYGdnB4VCgYiICAD//nL4Xr6lPV6/tjYftrbvwcVlHLKyHkZOTjLv77c9\nl1UqlaDyiH2ZxrNzjGdSUhI2bNgAAPrtpSEM6iFs27YNI0eORGVlJVJSUnD69Gm8+uqrBq8UABYt\nWgQLC4sG37iWlZWFqKgonDp1qmHITt5DqKq6iBMnHoG7+6vw9KRvqCOEtA7nPQSdTtfgxY8ePQpL\nS0sMGjTIoGJQUFCgnw6qqqrC3r17oVQqkZeXp3/M9u3bERQU1OrX7AwqKtKhUj2MHj3epmJACGlX\nLRaE/v3747vvvoNKpUJycjK++eYbREVF4dlnn8Unn3zS6hWp1WoMHjwYCoUC4eHhiIqKwpAhQxAT\nE4Pg4GCEhIQgOTkZK1eubNMb4tOtXTeulJercOJEJLy9P0D37tM5eU2uM7YXysktysktseQ0VIs9\nhGnTpmHs2LEAgFGjRkEikWDAgAGoqqrSX/m0NYKCgnD8+PFGt2/cuNGAuJ1HWdlhnDo1Ar17fwIX\nF7peFCGk/bXYQ5gyZQpiYmLg5+fX6L5r167BxcWl3cLd0tl6CMXFSThz5ln06bMBjo5P8B2HECJS\nhm47WywIjzzyCExNTXH+/Hn4+PggPDwc4eHh6N+/P7Zv347p07mZyrhryE5UEAoLdyM9fSICAr6D\nvf1gvuMQQkSM86bys88+i927d+PixYv49NNP4e/vj3379mHUqFGIiYlpU9iOpq3zivn525GePgl9\n+/7cbsVALHOflJNblJNbYslpqBZ7CD/99BNefPFFmJmZoXfv3ujduzfGjx8PAFi2bFm7B+ws8vI2\nIzPzLQQH74a19X18xyGEdEItThmdP38eKpUKvXv3hlKpbHDfiRMnEBIS0q4BgY4/ZZSb+wWyst5H\nSMhv6NYtkO84hJAOgvMeghB05IKQnb0SOTmrEBLyOywte/EdhxDSgbT7xe1I8wyZV2SMIStrEXJz\nP4VSedBoxUAsc5+Uk1uUk1tiyWkoulQmDxhjuHhxLgoLd0KhOAhzcze+IxFCCE0ZGRtjOly48B+U\nlf2DkJDfYGbmyHckQkgH1a7fqUzahjEtzp2bisrKC1Ao9sHU1JbvSIQQokc9BA7dbV5Rp6vFmTPP\no6YmByEhv/FWDMQy90k5uUU5uSWWnIaiPQQj0GqrcebMjesR9e2bCBOTrjwnIoSQxqiH0M602gqc\nOvUUzMwc4e+/GVKpGd+RCCGdBB12KiD19aU4cWI4unbtgYCALVQMCCGCRgWBQ7fPK9bWFkClGgxr\nayX8/NZBIjHhL9htxDL3STm5RTm5JZachqKC0A5qatRQqSJgbz8UvXp9DImEhpkQInzUQ+BYdfUV\nnDgxBDLZZHh5vQuJRMJ3JEJIJ0XnIfCosjIDJ048Ag+P/0OPHjP4jkMIIQahuQyOVFSk4euvH4CX\n1zuCLgZimfuknNyinNwSS05DUUHgQHV1Nk6cGAp392lwd5/GdxxCCLkn1ENoI622GirVQDg7j4Gn\n59t8xyGEED36PgQjYozh3Lkp0GorEBCwlRrIhBBBoRPTjCg393OUlx+9eZ6BRBTzimLICFBOrlFO\nboklp6GMUhCqq6sRHh4OhUKBgIAAzJ07FwBQVFSEoUOHwtfXF8OGDUNJSYkx4nCipORPZGXFIjBw\nO0xNrfiOQwghbWa0KaPKykpYWlqivr4eAwYMwPLly7Fjxw44OTkhJiYGS5YsQXFxMeLi4hqHFNiU\nUU1NLo4d6w8/v6/g6PgY33EIIaRJgp0ysrS0BADU1tZCq9XC3t4eO3bswOTJkwEAkydPxk8//WSs\nOPdMp6tBWtpodO/+KhUDQkiHYrSCoNPpoFAoIJPJEBkZicDAQGg0GshkMgCATCaDRqMxVpx7duHC\n/6FLF1d4es5tdJ8Y5hXFkBGgnFyjnNwSS05DGe1MZalUCpVKhdLSUgwfPhwHDhxocL9EIrnrUTrR\n0dGQy+UAADs7OygUCkRERAD495fT3su+vhkoLU1GeflyFBQcbHT/LcbK05GXVSqVoPKIfZnGs3OM\nZ1JSEjZs2AAA+u2lIXg57HTRokWwsLDAV199haSkJLi6ukKtViMyMhLp6emNQwqgh1BWdhinTkVB\nqfwDlpZ+vGYhhJDWEGQPoaCgQH8EUVVVFfbu3QulUokRI0YgISEBAJCQkICnn37aGHEMVlOTh7S0\n0fDz+4qKASGkwzJKQVCr1Rg8eDAUCgXCw8MRFRWFIUOGYM6cOdi7dy98fX2xf/9+zJkzxxhxDKLT\n1eHMmTFwdX0RTk4j7vrYW7tuQiaGjADl5Brl5JZYchrKKD2EoKAgHD9+vNHtDg4O+P33340R4Z5l\nZs6Cqakt5PIFfEchhJB2RZeuuIu8vARcvvxf3HffEZiZ2Rl9/YQQ0hb0fQgcKS8/hszMt6BQJFEx\nIIR0CnQtoybU1ubj9OlR8PX9HN26Bbb6eWKYVxRDRoByco1yckssOQ1FBeEOOl09zpwZC5lsHJyd\nR/EdhxBCjIZ6CHfIyJiFiorTCA7+FRKJiVHWSQgh7YF6CG2g0XyLgoKf0K/fUSoGhJBOh6aMbrp+\n/QQyMv6Dvn23wczM4Z5eQwzzimLICFBOrlFOboklp6GoIACoqyvC6dMj0avXx7CyCuE7DiGE8KLT\n9xAY0+LkycfRrVtf9OoV3y7rIIQQPgjyWkZCdunSe2CsHj17LuE7CiGE8KpTF4Rr136ERvMtAgK2\nQipte39dDPOKYsgIUE6uUU5uiSWnoTrtUUYVFWm4cGE6goN3o0sXZ77jEEII7zplD6GurgTHj/eH\nl9c8uLpO4ux1CSFESAzddna6gsCYDqdOjYCFRU/07v0xJ69JCCFCRE3lFmRlLYRWWwYfH+6PKBLD\nvKIYMgKUk2uUk1tiyWmoTtVDKCj4GXl5X6NfvxRIpWZ8xyGEEEHpNFNGFRXpUKkGISgoETY24Rwl\nI4QQ4aIpoybU15chLe0ZeHsvpmJACCHN6PAFgTEd0tMnw9b2Ybi7T23XdYlhXlEMGQHKyTXKyS2x\n5DRUh+8hXLnyIWpr8xAQsJXvKIQQImgduodQWLgL585NRb9+R2Fu7t4OyQghRLjo+xBuqqzMQHp6\nNPr23UbFgBBCWqFD9hDq668jLe0ZyOULYGv7kNHWK4Z5RTFkBCgn1ygnt8SS01BGKwjZ2dmIjIxE\nYGAg+vbti48/vnGWcGxsLDw8PKBUKqFUKrF79+42rYcxhnPnpsDauj/c3adzEZ0QQjoFo/UQ8vLy\nkJeXB4VCgevXr6Nfv3746aef8P3338Pa2hozZ85sPqQB82BXrixDfv73UCj+gIlJV67iE0KI6Ai2\nh+Dq6gpXV1cAgJWVFfz9/XH16lUA4Ow6RUVFe5GTswL33XeEigEhhBiIlx5CVlYWUlNTcf/99wMA\nVq9ejZCQEEyZMgUlJSX39JpVVZdw9uxE+Pt/i65de3AZt9XEMK8ohowA5eQa5eSWWHIayuhHGV2/\nfh2jR4/GqlWrYGVlhenTp2P+/PkAgHnz5mHWrFlYt25do+dFR0dDLpcDAOzs7KBQKBAREQEA2Ldv\nNzIyXsfjj8+BvX2E/pd1635jLd/C1/o70rJKpRJUHrEv03h2jvFMSkrChg0bAEC/vTSEUc9DqKur\nw5NPPonHHnsMb775ZqP7s7KyEBUVhVOnTjUMeZd5MMYYzp6dCADw998EiUTCfXBCCBEhwV7LiDGG\nKVOmICAgoEExUKvV+n9v374dQUFBBr1uTs4qVFamwc/vCyoGhBDSBkYrCIcOHcLmzZtx4MAB/SGm\nu3btwuzZsxEcHIyQkBAkJydj5cqVrX7N4uIkXLkSh8DA7TAxsWzH9K1za9dNyMSQEaCcXKOc3BJL\nTkMZrYcwYMAA6HS6Rrc/9thj9/R61dVXcPbsOPj7b4KFhbyN6QghhIjyWkZabTVUqoFwdh4DT8+3\neUxGCCHC1eG/U/nGmcgvQqutREDAVuobEEJIMwTbVOZKbu5nKC9PgZ/fOsEVAzHMK4ohI0A5uUY5\nuSWWnIYS1dVOS0r+RFZWLJTKv2BqasV3HEII6VBEM2VUXZ2DY8fC4Of3JRwdH+c7EiGECF6HnTJK\nSxuN7t1fpWJACCHtRDQFoUsXV3h6zuU7xl2JYV5RDBkBysk1ysktseQ0lGgKQp8+CZBIRBOXEEJE\nRzQ9BBHEJIQQQemwPQRCCCHtiwoCh8QwryiGjADl5Brl5JZYchqKCgIhhBAA1EMghJAOi3oIhBBC\n7gkVBA6JYV5RDBkBysk1ysktseQ0FBUEQgghAKiHQAghHRb1EAghhNwTKggcEsO8ohgyApSTa5ST\nW2LJaSgqCIQQQgBQD4EQQjos6iEQQgi5J0YrCNnZ2YiMjERgYCD69u2Ljz/+GABQVFSEoUOHwtfX\nF8OGDUNJSYmxInFODPOKYsgIUE6uUU5uiSWnoYxWEMzMzLBy5UqkpaXhn3/+wZo1a3D27FnExcVh\n6NChOH/+PIYMGYK4uDhjReKcSqXiO0KLxJARoJxco5zcEktOQxmtILi6ukKhUAAArKys4O/vj6tX\nr2LHjh2YPHkyAGDy5Mn46aefjBWJc2LYuxFDRoByco1yckssOQ3FSw8hKysLqampCA8Ph0ajgUwm\nAwDIZDJoNBo+IhFCSKdn9IJw/fp1jBo1CqtWrYK1tXWD+yQSCSQSibEjcSYrK4vvCC0SQ0aAcnKN\ncnJLLDkNxoyotraWDRs2jK1cuVJ/m5+fH1Or1YwxxnJzc5mfn1+j5/n4+DAA9EM/9EM/9GPAj4+P\nj0HbaKOdh8AYw+TJk+Ho6IiVK1fqb4+JiYGjoyNmz56NuLg4lJSUiLqxTAghYmW0gvDnn39i0KBB\nCA4O1k8LffjhhwgLC8OYMWNw5coVyOVyfP/997CzszNGJEIIIbcRxZnKhBBC2p+gzlR+8cUXIZPJ\nEBQUpL9NiCeuNZUzNjYWHh4eUCqVUCqV2L17N48JbxDLyYDN5RTamFZXVyM8PBwKhQIBAQGYO3cu\nAGGNZ3MZhTaWt2i1WiiVSkRFRQEQ1lje7s6cQhxPuVyO4OBgKJVKhIWFAbiH8bzH/nC7OHjwIDt+\n/Djr27ev/ra3336bLVmyhDHGWFxcHJs9ezZf8fSayhkbG8vi4+N5TNWYWq1mqampjDHGysvLma+v\nLztz5ozgxrS5nEIc04qKCsYYY3V1dSw8PJz98ccfghvPpjIKcSwZYyw+Pp49//zzLCoqijEmzP/v\njDXOKcTxlMvlrLCwsMFtho6noPYQBg4cCHt7+wa3CfHEtaZyAhDcBfjEcjJgczkB4Y2ppaUlAKC2\nthZarRb29vaCG8+mMgLCG8ucnBz8+uuvmDp1qj6b0MYSaDonY0xw4wk0/h0bOp6CKghNEdOJa6tX\nr0ZISAimTJkimF3dW8RyMuCtnPfffz8A4Y2pTqeDQqGATCbTT3MJbTybyggIbyxnzJiBZcuWQSr9\ndzMktLEEms4pkUgEN54SiQSPPPIIQkND8eWXXwIwfDwFXxBuJ+QT16ZPn45Lly5BpVLBzc0Ns2bN\n4juSnlhOBrx+/TpGjx6NVatWwcrKSpBjKpVKoVKpkJOTg4MHD+LAgQMN7hfCeN6ZMSkpSXBjuXPn\nTri4uECpVDb7SVsIY9lcTqGNJwAcOnQIqamp2LVrF9asWYM//vijwf2tGU/BFwSZTIa8vDwAgFqt\nhouLC8+Jmubi4qIf8KlTp+LIkSN8RwIA1NXVYdSoUZg4cSKefvppAMIc01s5J0yYoM8p1DEFAFtb\nWzzxxBM4duyYIMcT+DdjSkqK4Mbyr7/+wo4dO+Dt7Y1x48Zh//79mDhxouDGsqmckyZNEtx4AoCb\nmxsAwNnZGc888wyOHDli8HgKviCMGDECCQkJAICEhAT9xkJo1Gq1/t/bt29vcAQSXxhjmDJlCgIC\nAvDmm2/qbxfamDaXU2hjWlBQoJ8aqKqqwt69e6FUKgU1ns1lvLVRAIQxlosXL0Z2djYuXbqErVu3\nYvDgwdi0aZOgxrK5nBs3bhTc32ZlZSXKy8sBABUVFdizZw+CgoIMH09O29xt9NxzzzE3NzdmZmbG\nPDw82Ndff80KCwvZkCFDWO/evdnQoUNZcXEx3zEb5Vy3bh2bOHEiCwoKYsHBweypp55ieXl5fMdk\nf/zxB5NIJCwkJIQpFAqmUCjYrl27BDemTeX89ddfBTemJ0+eZEqlkoWEhLCgoCC2dOlSxhgT1Hg2\nl1FoY3m7pKQk/dE7QhrLOx04cECfc8KECYIaz4sXL7KQkBAWEhLCAgMD2eLFixljho8nnZhGCCEE\ngAimjAghhBgHFQRCCCEAqCAQQgi5iQoCIYQQAFQQCCGE3EQFgRBCCAAqCIQQQm6igkAIIQQAFQRC\nWrR//37MmDGj0aWDraysGixv2LABb7zxhjGjEcIpKgiEtGD16tUYP368/jsbbrnzypF8X5mTkLYy\n5TsAIUJXXV2N0NDQFh936yowa9euxeeffw4AKCkpgbe3N/bv39+uGQnhAhUEQu4iPj4eVVVV+Pnn\nn/HUU081uK+qqgpKpVK/XFRUhKeeegovv/wyXn75ZdTX12Pw4MGCuFY+Ia1BBYGQuwgNDYVOp2tU\nDADAwsICqamp+uWEhASkpKTol//zn/9gyJAheOKJJ4ySlZC2ooJAyF2kpaW1+lr3t184eMOGDcjO\nzsann37aXtEI4Rw1lQm5i9OnT+sLwpAhQ5Cbm9vic44dO4b4+Hhs2rSpveMRwikqCITcRW5uLrp3\n7w6dTofMzEw4Ojrq72vuKKM1a9agqKgIkZGRUCqVmDZtmlEzE3KvaMqIkCZs27YNtbW18PDwAACc\nOXMGo0ePhrm5uf4xZWVlDZ4zefJkTJ482ag5CeESfWMaIU1ITExEeno6RowYAT8/P77jEGIUVBAI\nIYQAoB4CIYSQm6ggEEIIAUAFgRBCyE1UEAghhACggkAIIeQmKgiEEEIAUEEghBByExUEQgghAID/\nB9dt23sqOyvAAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f443fef8950>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "(i)Hence from the plot we can see that for a constant (V/f) ratio breakdown torque decreases with frequency\n", + "\n", + "(ii)Hence the required ratio of starting torque to the rated starting torque is : 0.549\n", + " Hence the required ratio of starting current to the rated starting current is : 0.33\n" + ] + } + ], + "prompt_number": 208 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.10,Page No:201" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "from array import array\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected squirrel Induction motor is same as that of Ex-6.9\n", + "f=50 # frequency in HZ\n", + "Vl=400 # line voltage in V\n", + "P=4 # number of poles\n", + "N=1370 # rated speed\n", + "\n", + "#the frequency variation is from 5 Hz to 50 Hz\n", + "fmin=5 \n", + "fmax=50\n", + "#parameters referred to the stator\n", + "Xr_=3.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=3 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed\n", + "N1=Ns-N #increase in speed from no load to full torque rpm\n", + "Wms=2*math.pi*Ns/60\n", + "s=(Ns-N)/Ns #full load slip\n", + "Tmax=torque[8] #maximum torque as obtain from Ex-6.9\n", + "#to obtain the plot between the voltage and the frequency\n", + "K=0\n", + "k=[]\n", + "frequency=[]\n", + "line_voltage=[]\n", + "for i in range (0,10):\n", + " K=K+0.1\n", + " f1=K*f\n", + " x=2*K*Wms*Tmax/3\n", + " y=Rs+math.sqrt((Rs)**2+(K*(Xs+Xr_))**2)\n", + " Vl_square=3*x*y\n", + " Vl=math.sqrt(Vl_square)\n", + " k.append(round(K,1))\n", + " frequency.append(round(f1))\n", + " line_voltage.append(round(Vl,1))\n", + "print\"K :\",k\n", + "print\"f :\",frequency,\"Hz\"\n", + "print\"Vl :\",line_voltage,\"V\"\n", + "#plotting the values of line voltage Vl vs f \n", + "plt.figure(1)\n", + "plt.plot(frequency,line_voltage,'b')\n", + "plt.xlabel('$f$,Hz')\n", + "plt.ylabel('Line voltae,volts')\n", + "plt.grid(True)\n", + "plt.title('Line voltage vs frequency characteristic')\n", + "#for constant V/f ratio\n", + "x=[0,10,20,30,40,50]\n", + "y=[0,80,160,240,320,400]\n", + "plt.plot(x,y,'--')\n", + "plt.annotate('Constant V/f ratiuo', xy=(21, 160), xytext=(30, 160),arrowprops=dict(facecolor='black', shrink=0),)\n", + "plt.show()\n", + "\n", + "print\"\\nHence for a constant breakdown torque at all frequencies,\"\n", + "print\"V/f ratio has to be progressively increased with increase in frequency\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "K : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]\n", + "f : [5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0] Hz\n", + "Vl : [84.3, 123.8, 159.2, 193.7, 228.0, 262.3, 296.7, 331.1, 365.5, 400.0] V\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEdCAYAAADn46tbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcFPUbB/DPoiiiCHiAB9qqKLiiLGl4J4R4i5o/CSiF\nskzLyjQvrNQOwdTMLEpN08xbS7wPlNU80ZQ08Sww7lRE5RJYnt8f086yXMu1Fzzv14uXzu7OzMPD\nMF/me0qIiMAYY4wVYmboABhjjBkfLhwYY4wVw4UDY4yxYrhwYIwxVgwXDowxxorhwoExxlgxXDgY\n2G+//QZnZ2dDh6EhKCgIH330kaHD0JmbN29CLpejcePG+OabbwwdjtFQKBRo06aNocOoNlZWVoiL\ni6vwfiEhIXjjjTeqPyATw4WDnkilUhw7dqzY6/3798eNGzcMEFHpJBIJJBIJgJp3wwCAL774Al5e\nXnj8+DGmTp1q6HBYEXFxcTAzM0NBQUGVjvPkyRNIpdIyP1PS9T137lysWbOmSueuCbhw0JPCN1xT\nUJPHRt69excymazU96t6U2JAfn5+lY9R2WuwOs7NuHAwuKJ/uUilUixbtgyurq6wsbGBn58fnj59\nKr6/b98+yOVy2Nraom/fvrh69WqJx50yZQpmzpyp8dqoUaOwfPlyAMD169fh4eEBW1tbuLi4YO/e\nvRqflUgkyMrKwtChQ5GUlAQrKys0btwYKSkpiIqKQu/evWFra4tWrVrhnXfeQV5enrjvkSNH4OTk\nBBsbG7z99tsYMGAA1q5dK76/bt06yGQyNGnSBEOGDME///xTrlx17twZ+/fvF7fz8/PRvHlzREdH\nIycnB6+88gqaNWsGW1tbuLu7499//y12jBdeeAEKhQJTp05F48aNcfv2bQQFBWHKlCkYNmwYGjVq\nBIVCgaSkJIwdOxZ2dnZo3749Vq5cKR4jOzsbQUFBaNKkCbp06YIlS5Zo/AzNzMzw999/i9tFq+nK\n+hlq+/mHh4dDLpfD2toajo6OOHz4MHbs2IEePXpofJ9ffvklRo8eXWIe09LS8Oqrr6J169Zo0qQJ\nxowZU2xfe3t7tGrVCuvXrxdf379/P9zc3GBtbY22bdti4cKF4nuqv/bXrVuHZ555BgMHDgQAjBs3\nDi1btoSNjQ0GDBiAmJgYjTzOmDEDUqkUNjY2eP7555GTk4Pnn38eAGBjYwMrKyucP38eQNnXjZmZ\nGcLCwtCxY0c4OTkV+zkcOHAAXbp0QePGjeHg4IAvv/yyxOs7OTkZCxYswPjx48Vjnzp1Cn369IGt\nrS3atm2LDRs2lJjXGoeYXkilUjp27Fix1yMjI8nBwUHjcz179qTk5GRKS0ujzp070/fff09ERJcu\nXSI7OzuKioqigoIC2rBhA0mlUnr69Gmx4548eZLatGkjbqelpVGDBg0oOTmZcnNzqUOHDhQSEkJ5\neXl0/PhxsrKyops3bxIRUVBQEH344YdERKRQKDTiIyL6/fff6fz586RUKikuLo46d+5MX331FRER\n3bt3jxo3bky//vorKZVKWrFiBZmbm9PatWuJiGj37t3k6OhIN27cIKVSSZ999hn16dOnXDn85JNP\n6OWXXxa39+3bRzKZjIiIvv/+exo5ciRlZ2dTQUEBXbp0iR4/flzicTw8PMR4iIgCAwPJ2tqazpw5\nQ0REWVlZ9Oyzz9Knn35KeXl59Pfff1P79u3p8OHDREQ0e/Zsev755+nhw4cUHx9PXbp00ci1RCKh\nv/76S9wOCgqijz76iIhK/xnm5uYSUdk///Pnz5O1tTVFREQQEVFiYiLduHGDnj59Sk2aNKHr16+L\n55TL5fTLL7+U+P0PGzaM/Pz8KD09nfLy8ujkyZNEJFyLdevWpfnz51N+fj4dOHCALC0tKT09nYiE\na+HPP/8kIqIrV66Qvb097d69m4iIYmNjSSKRUGBgIGVlZVFOTg4REf3444+UkZFBubm5NG3aNJLL\n5WIcb731Fnl6elJSUhIplUo6e/YsPX36lOLi4kgikZBSqRQ/q+26kUgkNGjQIHr48KF47sI/hxYt\nWtCpU6eIiCg9PZ0uXbokfk9Fr+8FCxbQK6+8QkREcXFxZGVlRVu3bqX8/Hx68OABRUdHl5jXmoYL\nBz2pSOGwadMmcXvWrFk0efJkIiKaPHmyeJNRcXJyohMnThQ7bkFBAbVt21b8xV+9ejV5eXkRkVBw\ntGjRQuPz/v7+tGDBAiLSLByKxleS5cuX05gxY4iIaMOGDcVu9m3atBFvxkOGDNG4MSuVSrK0tKR/\n/vmnzHMQEd25c4esrKwoOzubiIgCAgLo008/JSKidevWUZ8+fejKlStaj+Ph4UE//PCDuB0UFESB\ngYHi9rlz56ht27Ya+yxatIheffVVIiKNgoJIyG3hHJVVOJT2M1T9nMr6+U+aNImmT59e4vc0efJk\nmjdvHhER/fnnn2RraysWOIUlJSWRmZmZeMMvLDIykho0aKBxU7azs6Pz58+XeM733nuP3n//fSJS\nFw6xsbElfpaI6OHDhySRSOjx48ekVCqpQYMGJf68VMcqHIe260YikVBkZKTGcQr/HNq2bUurVq2i\nR48eFfuei17f8+fPFwuHRYsW0Ysvvljq91STcbWSEWrRooX4/wYNGiAjIwOAUFe+bNky2Nrail8J\nCQlITk4udgyJRAI/Pz9s2bIFALB582a8/PLLAICkpKRijXDPPPMMkpKSyhXfrVu3MGLECLRs2RLW\n1taYN28eHjx4IB7bwcFB4/OFt+/evYv33ntPjL9p06YAgMTERK3n7dChAzp37ow9e/YgKysLe/fu\nRUBAAABg/PjxGDx4MPz8/NC6dWvMnj27zLrnou0/RWNMSkrSyHNISIhYTVU0f23bttUae+Fjl/Qz\nLJz7oj//zMxMAEBCQgI6dOhQ4nEDAwOxefNmAMDGjRvx0ksvwdzcvNjn4uPj0aRJE1hbW5d4nKZN\nm8LMTH1bsLS0FK+/8+fPw9PTE3Z2drCxscGqVavEn7tK4bwUFBRgzpw5cHR0hLW1Ndq1awcAuH//\nPu7fv4+cnJxSv5+iynPdlNVxYteuXThw4ACkUik8PDxw7ty5cp03Pj4e7du3L9dnaxouHEyA6kbW\ntm1bzJs3Dw8fPhS/MjIy8NJLL5W4n7+/P3bu3Im7d+8iKioKY8eOBQC0atUK8fHxGg1+d+/eRevW\nrYuds6RG9ClTpkAmk+HOnTt49OgRPv/8c7ERt1WrVkhISBA/S0Qa223btsXq1as1vofMzEz06tWr\nXLnw9/fHli1bEB4eji5duoi/uHXr1sXHH3+Ma9eu4cyZM9i3bx9++umnch2z6PfZtm1btGvXTiPG\nx48fY9++fQCAli1batR3F20zsbS0RFZWlrhduPCu6M+wsDZt2uDOnTslvterVy/Uq1cPJ0+exJYt\nWzTqzIseIy0tDY8ePdJ6vqICAgIwevRoJCQkID09HZMnTy7WeF84j5s2bcKePXtw7NgxPHr0CLGx\nsQCEa6JZs2awsLAo8fsp6Zorz3VTVoePHj16YPfu3bh37x5Gjx4NX19frfuozvvXX3+V+ZmaigsH\nPcrNzUVOTo74pVQqy7Wf6ib+xhtv4Pvvv0dUVBSICJmZmdi/f7/4l11RcrkczZo1w+uvv44hQ4ag\ncePGAIQbiaWlJb744gvk5eVBoVBg37598PPzE8+nOqe9vT0ePHiAx48fi8fNyMiAlZUVLC0tcePG\nDXz33Xfie8OGDcPVq1cRHh6O/Px8fPvtt0hJSRHfnzx5MhYtWiQ2TD569Ag7duwobwrh5+eHw4cP\n4/vvvxefGgChYf/q1atQKpWwsrKCubk56tSpozWnRf8PAO7u7rCyssIXX3yB7OxsKJVK/Pnnn7h4\n8SIAwNfXFyEhIUhPT0dCQgJWrlypcZORy+XYtGkTlEolDh06hJMnT4rvVfRnWDi+iRMn4scff8Tx\n48dRUFCAxMRE3Lx5U/zc+PHjMXXqVNSrVw99+vQp8VgtW7bE0KFD8dZbbyE9PR15eXka8ZUlIyMD\ntra2qFevHqKiorB58+Yyb64ZGRmoX78+mjRpgszMTAQHB4vvmZmZ4bXXXsP06dORnJwMpVKJs2fP\nIjc3F82bN4eZmZnGTbkq101eXh42bdqER48eoU6dOrCyshKvjZKu78ICAgIQERGBHTt2ID8/Hw8e\nPMAff/xRrvOaOi4c9GjYsGGwtLQUvxYuXKi1i2vh97t37441a9Zg6tSpaNKkCTp27Kj1r+OAgAAc\nP35c40Zqbm6OvXv34uDBg2jevDmmTp2KjRs3olOnTsXO6ezsDH9/f7Rv3x5NmjRBSkoKli5dis2b\nN6Nx48aYNGkS/Pz8xM83a9YMO3bswKxZs9CsWTNcv34dPXr0QP369QEAo0ePxuzZs+Hn5wdra2t0\n7doVhw8fLncOW7RogT59+uDs2bMaf22npKRg3LhxsLa2hkwmg4eHR6l/Pau+x5JyDAg3rn379iE6\nOhrt27dH8+bNMWnSJPEGMn/+fDzzzDNo164dhgwZggkTJmgUMCtWrMDevXtha2uLzZs3a/QGKu1n\nWNo1UDi25557Dj/++CPef/992NjYwNPTU+OpZfz48bh27RpeeeWVMnO4ceNGmJubw9nZGfb29vj6\n669LzEtRYWFh+Pjjj9G4cWN8+umnxZ52iu47YcIEPPPMM2jdujVcXFzQu3dvjc8sXboUXbt2xXPP\nPYemTZti7ty5ICJYWlpi3rx56Nu3L2xtbREVFaX1uikp7sKv/fzzz2jXrh2sra2xevVqbNq0CUDx\n6zs5OVkj523btsWBAwewbNkyNG3aFG5ubrhy5UqZ+a0pJFT0z6ZqplQq0aNHDzg4OGDv3r1IS0vD\nSy+9hLt370IqlWL79u2wsbEBIIxMXLduHerUqYOvv/4agwYN0mVoTA8KCgrQpk0bbN68GQMGDDB0\nODqhUCgwfvx4xMfHGzSO7Oxs2Nvb4/Lly+Wuy2esNDp/clixYgVkMplYEoeGhsLb2xu3bt2Cl5cX\nQkNDAQAxMTHYtm0bYmJicOjQIbz11ls8GMlEHTlyBOnp6Xj69CkWLVoEAOVuU2CV991338Hd3Z0L\nBlYtdFo4JCQk4MCBA3j99dfFx+49e/YgMDAQgNDDYvfu3QCEwT3+/v4wNzeHVCqFo6MjoqKidBke\n05GzZ8/C0dERzZs3x/79+7F7926xWqmmMvTod6lUipUrV2LZsmUGjYPVHHV1efD3338fS5Ys0Wjs\nSU1Nhb29PQChMSg1NRWA0D2w8F+XDg4O5ereyIzP/PnzMX/+fEOHoTceHh7lHuWtK5WZYI6xsujs\nyWHfvn2ws7ODm5tbqXOklKcxljHGmP7p7MnhzJkz2LNnDw4cOICcnBw8fvwY48ePh729PVJSUtCi\nRQskJyfDzs4OANC6dWuNBr2EhASNfvcqrVu3LvdgLcYYY4IOHTqUOk6mRPoYhq1QKGjEiBFERDRz\n5kwKDQ0lIqKQkBCaPXs2ERFdu3aNXF1d6enTp+JcNgUFBcWOpaeQTcL8+fMNHYLR4FyocS7UamMu\ncnOJFi4kqlePqFkzIoVCeL2i906dtjkUpqoimjNnDnx9fbF27VqxKysAyGQy+Pr6QiaToW7duggL\nC+NqJS24nlmNc6HGuVCrbbk4dAh44w0gNRWYNAlYvhwoYRaVctFL4TBgwACxj3uTJk0QERFR4ueC\ng4M1RlEyxhjT7uZNYMYM4d/gYKB3b0Aur9ox9fbkwKpfUFCQoUMwGpwLNc6FWk3PRXo68MknwE8/\nAXPnAr/8AtSrVz3H1vkI6eomkUhq9CpljDGmjVIJrFkDLFgA+PgAn30G/Ne3p1QVvXfy3EomTKFQ\nGDoEo8G5UONcqNXEXBw/LlQZLV8OPP88sHq19oKhMrhwYIwxE/D338CLLwKBgUIjs6UlMG+e7s7H\n1UqMMWbEnjwBFi0SnhA8PICTJ4F33hHaGCrSE4mrlRhjrAYoKAB+/BFwcgKSk4HZs4Wnh4gI4OOP\nK99Ftby4cDBhNbE+tbI4F2qcCzVTzcWpU4C7u9DovHs3sH498O67QFQU4Oqqnxi4KytjjBmJf/4B\nZs0CTp8GFi8G/P0B1VhgCwv9xsJtDowxZmCZmcAXXwDffAO8/TYQFAT8tzx6teE2B8YYMxFEwKZN\ngLMzcOsWcOAAcPEiMHOmoSPjwsGkmWp9qi5wLtQ4F2rGnIuoKKBPH2G8wpYtwKBBwIgRQK9ewNat\nho6O2xwYY0yvkpKEbqhHjwKffw54eQGTJws9kiIi9NfgrA23OTDGmB5kZwNffil8TZokTJBnZQXs\n2QNER1d83EJFVfTeyYUDY4zpEBGwa5fQjuDmBixdWv2NzeXBDdK1iDHXp+ob50KNc6Fm6Fxcvgx4\negKffgqsWyfMmmqIgqEyuHBgjLFqlpoqLLozdKgwVuHSJaBjR+C/tc1MAhcOJszDw8PQIRgNzoUa\n50JN37l4+lQYr9ClC9C4MXDjhtC+8NNPQpXSX3/pNZwq4d5KjDFWRURAeDjwwQeATAacOQN06gQk\nJAABAcbXE6k8+MnBhBm6PtWYcC7UOBdq+sjFlStCd9QPPwS++07ofdSpE3D4sPC00KuXfudEqi46\nKxxycnLQs2dPyOVyyGQyzJ07FwCwYMECODg4wM3NDW5ubjh48KC4T0hICDp27AhnZ2ccOXJEV6Ex\nxliV3bsnjE/w9gb+9z+hO6q3t/r9zp31N4OqLui0K2tWVhYsLS2Rn5+Pfv36YenSpTh27BisrKww\nffp0jc/GxMQgICAAFy5cQGJiIgYOHIhbt27BzEyz/OKurIwxQ8rNBVauBEJDgZdfBubPB2xtDR2V\ndkbVldXS0hIAkJubC6VSCdv/MlhSgOHh4fD394e5uTmkUikcHR0RFRWly/AYY6zciIC9ewEXF2Gp\nzt9+A776yjQKhsrQaeFQUFAAuVwOe3t7eHp6okuXLgCAlStXwtXVFRMnTkR6ejoAICkpCQ4ODuK+\nDg4OSExM1GV4Jo/rltU4F2qcC7XqysW1a8DgwcJ02l9/DezfL0yWRyQsyPPKK9VyGqOi08LBzMwM\n0dHRSEhIwMmTJ6FQKDBlyhTExsYiOjoaLVu2xIwZM0rdX6KayJwxxgzg/n1hCm1PT2FSvCtXgCFD\nhPcSEoDhw4XCwhhmUa1ueunKam1tjeHDh+PixYsa/Y5ff/11jBw5EgDQunVrxMfHi+8lJCSgdevW\nJR4vKCgIUqkUAGBjYwO5XC4eV/WXQm3Y9vDwMKp4eNt4tlWMJR5Dbateq+j+fft6ICwMmD9fAU9P\n4Pp1DzRtKrxPBMTFeWDWLGDECAWmTwdcXY3j+y28rVAosH79egAQ75cVQjpy7949evjwIRERZWVl\nUf/+/SkiIoKSk5PFz3z55Zfk7+9PRETXrl0jV1dXevr0Kf3999/Uvn17KigoKHZcHYbMGGN04ACR\nszPRoEFEf/5Z/P2ffyaSy4mio/UfW1VU9N6psyeH5ORkBAYGoqCgAAUFBRg/fjy8vLwwYcIEREdH\nQyKRoF27dli1ahUAQCaTwdfXFzKZDHXr1kVYWBhXK2lR+C+i2o5zoca5UKtILq5fB2bMAO7cEWZO\nHT5cvURnYb6+wpcpdk+tCJ0VDl27dsWlS5eKvf7TTz+Vuk9wcDCCg4N1FRJjjBWTlgYsXAhs3ixM\no717N1CvXumfr+mFggpP2c0Yq5Xy84FVq4BPPgFefFH4t3lz9ftEQqNzmzaGi7E6VfTeyXMrMcZq\nnSNHgPffB1q0EFZk69ZN8/2EBGHCPEBY17k24rmVTFjRnim1GedCjXOhVjQXt24BI0cCb70FLFok\nTG9RuGBQjVtQzYkUHq7feI0JPzkwxmq89HSh2uinn4DZs4GdO4H69TU/o3paMMUZVHWB2xwYYzVW\nfj7www/AggWAj4+wIpu9fcmfPXFC+NL1Ws6GwmtIM8YYhPmPpk0DmjQR5kCSyw0dkWEZ1cR7TLe4\nblmNc6FW23Nx5w4wZgzw+uvA2LEKREZywVAZXDgwxmqEx4+FifF69QJ69gRiYoABA4oPZEtIEBqd\nWdm4cDBhPApWjXOhVttyoVQK7QpOTsCDB8DVq8CcOYCFhWYuCvdE4gmftePeSowxk3XihNCu0KgR\nsG8f0L17yZ/jnkgVx08OJqy21y0XxrlQqw25iI0VluYMDBR6F508WXLBoFAIbQ6mvJazoXDhwBgz\nGU+eCIXBc88JN/zr14VJ8Mqao9PFxbTXcjYU7srKGDN6BQXAhg3AvHmAtzcQEgK0amXoqEwLz63E\nGKtRTp0C3ntPGNG8ezfg7l76Z4nKfopg5cfVSiasNtQtlxfnQq2m5OLuXeCll4CAAOCDD4DTp0sv\nGFQ9kXx8hP+r1JRcGAIXDowxo5KRAXz0EfDss4BMBty4Afj7l/5EUHgt588+4yeH6sJtDowxo1BQ\nAPz8s7DgjoeH0K5Q1loKRMD69cLAt3feqblzIlUXbnNgjJmcs2eF8QqAMGNqr17a9wkPF54WeNyC\nbnC1kgnj+lQ1zoWaKeUiPh54+WVg3Dhg6lShkChPwQAI7Qvaxi2YUi6Mjc4Kh5ycHPTs2RNyuRwy\nmQxz584FAKSlpcHb2xudOnXCoEGDkJ6eLu4TEhKCjh07wtnZGUeOHNFVaIwxA8vKEqbRlsuBDh2A\nmzeB8eMBswrckczMuBpJl3Ta5pCVlQVLS0vk5+ejX79+WLp0Kfbs2YNmzZph1qxZWLx4MR4+fIjQ\n0FDExMQgICAAFy5cQGJiIgYOHIhbt27BrMjVwm0OjJkuImDLFmHuoz59gMWLgWee0b7P338LhQir\nPKOastvS0hIAkJubC6VSCVtbW+zZsweBgYEAgMDAQOzevRsAEB4eDn9/f5ibm0MqlcLR0RFRUVG6\nDI8xpkdRUUKB8OWXwObNwNat2gsGVU+kN97Q7KLKdE+nhUNBQQHkcjns7e3h6emJLl26IDU1Ffb/\nLcVkb2+P1NRUAEBSUhIcHBzEfR0cHJDIUyeWietT1TgXasaWi8REYMIEYY2FN98UCol+/crep+ha\nzocPV66LqrHlwpTotLeSmZkZoqOj8ejRIwwePBiRkZEa70skEkjK+ImX9l5QUBCkUikAwMbGBnK5\nXJyaV3Ux8Hbt2lYxlngMuR0dHW0U8WRnA1OnKrBzJ/D22x64cQP4/XcFTp4se/9794Aff/RAcjIQ\nEqKAoyNgbl65eKKjow32/Rt6W6FQYP369QAg3i8rQm/jHD799FM0aNAAP/zwAxQKBVq0aIHk5GR4\nenrixo0bCA0NBQDMmTMHADBkyBAsXLgQPXv21AyY2xwYM2pEwPbtwOzZwgR5X3wBtGtX/v0vXRKm\n3+ZxC9XLaNoc7t+/L/ZEys7OxtGjR+Hm5gYfHx9s2LABALBhwwaMHj0aAODj44OtW7ciNzcXsbGx\nuH37NtzLmkSFMWZ0fv8deP55IDRUmChvx46KFQyAMDKaZ1A1PJ0VDsnJyXjhhRcgl8vRs2dPjBw5\nEl5eXpgzZw6OHj2KTp064fjx4+KTgkwmg6+vL2QyGYYOHYqwsLAyq5wY16cWxrlQM0QukpOB114D\nRowAgoKAixeFJToNja+LytNZm0PXrl1x6dKlYq83adIEERERJe4THByM4OBgXYXEGKtmOTnA8uXA\nsmXAxInCeIXGjcu3b0IC8OuvwtQXzPjw3EqMsQojAnbtAmbOFHoULVlS/nEIRedE+ugjnixPH3hu\nJcaYTl2+DLz/PvDwIbB2LfDCC+Xfl9dyNh08t5IJ4/pUNc6Fmq5ykZoqDEYbOlSYQvvSpYoVDKdP\n638tZ74uKo+fHBhjZXr6FFixQuiSGhgorK9gY1Px43TtChw7BnTrVv0xsurHbQ6MsRIRCdNif/CB\nsOjO0qVAp06GjopVFrc5MMaq7MoVoV0hNRX47jvA27ti+/NazqaP2xxMGNenqnEu1KqSi3v3gMmT\nhcJg7FggOrpiBYNqTiRPT+OYKI+vi8rjJwfGGHJzgW++EZbmfPlloV3B1rZixyjcE2n9en5yMHXc\n5sBYLUYkzGM0YwbQsaMwmM3ZueLH4LWcjR+3OTDGyuXaNaFdIT5eWIt5yJDKHef4cV7LuSbiNgcT\nxvWpapwLNW25ePBAWK/Z01OYC+nKlcoXDIAw1uHCBeMsGPi6qDythUNGRgaUSiUA4ObNm9izZw/y\n8vJ0HhhjrHrl5QnjFTp3FtoDrl8H3n236lVAEglQl+sgahytbQ7PPvssTp06hYcPH6Jv37547rnn\nUK9ePWzatElfMWrgNgfGKu7gQWD6dKBtW2GZzi5dKn4MIqFAkcmqPz6me9W+ngMRwdLSEr/88gve\neust7NixA3/++WeVgmSM6cf168CwYcC0acIgtkOHKlcwqNZynjQJKCio/jiZ8SlXm8PZs2exadMm\nDB8+HICwNjQzPK5PVeNcqCkUCqSlAe+9Jyy84+0NXL0q3Nwr2r2UCFi3TpgTqXdvIDISMDOhlkq+\nLipPa03hV199hZCQEIwZMwZdunTBX3/9BU9PT33ExhiroPx8YY2El14SBrHFxADNm1fuWImJwOuv\nC6OkeU6k2kdr4ZCamoo9e/aI2x06dEC/fv10GhQrH9Wi4oxzAQBHjghdU1u08EBEhDDRXVVkZgJ9\n+wprQZvquAW+LipPa4O0m5sbLl++rPU1feEGacY03bwpDGK7eVNoV/Dx4dHJrLhqGwR38OBBHDhw\nAImJiXj33XfFgz558gTmpvpnRA2jUCj4L6P/1MZcPHwIfPIJ8PPPwJw5wsps9evXzlyUhnNReaU2\nLbVq1Qrdu3eHhYUFunfvLn75+Pjg8OHD5Tp4fHw8PD090aVLF7i4uODrr78GACxYsAAODg5wc3OD\nm5sbDh48KO4TEhKCjh07wtnZGUeOHKnit8dYzZOfD4SFCdNcZGcLI51nzBAKhspISBDmVOIHclaY\n1mqlvLy8Sj8ppKSkICUlBXK5HBkZGejevTt2796N7du3w8rKCtOnT9f4fExMDAICAnDhwgUkJiZi\n4MCBuHU5M8vtAAAgAElEQVTrFswKdY/gaiVWm6nbFYDly6vWSKyaQXX2bGEw3Lx5ptUTiVVMtVUr\ndS2jNUsikeDKlStaD96iRQu0aNECANCoUSN07twZiYmJAFBikOHh4fD394e5uTmkUikcHR0RFRWF\nXr16aT0XYzXZzZvCojvXrwuT41W1XSEhQVjyk3sisdKU+nfC3r17S/0q3HupvOLi4nD58mXxRr9y\n5Uq4urpi4sSJSE9PBwAkJSXBwcFB3MfBwUEsTFhx3Idbrabm4uFD4Umhb19gwAChCmnUqLILBm25\nuHBBGLfQpw9w/nzNLhhq6nWhD6U+OUilUvH/qampiIqKgkQigbu7O+zs7Cp0koyMDPzvf//DihUr\n0KhRI0yZMgUff/wxAOCjjz7CjBkzsHbt2hL3lZTwWxAUFCTGZ2NjA7lcLjY6qS4G3q5d2yrGEk9V\nt/v188Dq1cC8eQr07w/ExHjAzq58+0dHR5f5fm4uEBnpARcX4/l+dbUdHR1tVPHoc1uhUGD9+vUA\nNO/n5aW1zWH79u2YOXMmBgwYAAA4efIklixZgnHjxpXrBHl5eRgxYgSGDh2KadOmFXs/Li4OI0eO\nxNWrVxEaGgoAmDNnDgBgyJAhWLhwIXr27KkOmNscWA2nalewtwe++qpm/2XP9Kei906thUO3bt0Q\nEREhPi3cu3cPXl5e5WpzICIEBgaiadOmWL58ufh6cnIyWrZsCQBYvnw5Lly4gM2bN4sN0lFRUWKD\n9J07dzSeHrhwYDVVdbcrAMI8SGbcyMygo4n3mhcaf9+0adNyn+D06dP4+eefERkZqdFtdfbs2ejW\nrRtcXV1x4sQJseCQyWTw9fWFTCbD0KFDERYWVmK1EhMUrVKpzUw5F5VpVyiLQqEQ50Tq2RP4b8b9\nWsmUrwtD0zp9xpAhQzB48GAEBASAiLBt2zYMHTq0XAfv169fiZP0lbV/cHAwgoODy3V8xkxZfj6w\nejWwcCEwerQwD1IFm/NKdO+eMBNrSoqwfGedOlU/Jqt9yrWG9K5du3Dq1ClIJBL0798fY8aM0Uds\nJeJqJVYTHD0qPC3Y2QnjFapjFTVey5mVpdrbHJYtWwY/Pz+0bt26ysFVBy4cmCkr3K6wdGnVqo+K\nOncOmDJFKCCMcclOZljV3ubw5MkTDBo0CP369cM333yD1NTUKgXIqg/Xp6oZey4ePhRWYuvbV1hj\n4do1oSqpOpvUevUCLl4EHj5UVN9BTZyxXxfGTGvhsGDBAly7dg3ffvstkpOT8fzzz8PLy0sfsTFm\n8grPg5SZKRQKM2dWfh4kbbh9gVWXcrU5AEL30507d2LLli3IyMgoV1dWXeBqJWYqVO0KzZsL4xWq\nq6qHCPjjD0Aur57jsdqh2tscwsLCsH37dvz7778YN24cXnrpJcgMuMI4Fw7M2OmyXSExUVjH+d49\n4MwZoK7W/oaMCaq9zSE+Ph5fffUVYmJisHDhQoMWDEwT16eqGUMudNmuoJpB1c1NGLtw+nTpBYMx\n5MJYcC4qT+vfHSEhIfqIgzGTlZ8PrFkDLFggPCVcuyZMfVFdkpOFtZyTkoSqKu6JxPSh3G0OKs7O\nzgCAqVOnYurUqToJqixcrcSMSeF2heXLddMOkJAA/PST0JDN4xZYZVV7m0NJ7t+/j/Pnz2P48OEV\n3bXKuHBgxuDWLaFd4do1oV2hurulMlbdqr3NARBmTo2IiAAAZGVloX79+gYpGJgmrk9V01cu0tOF\ndoU+ffDfVNrAmDHGVTDwdaHGuag8rYXD6tWrMW7cOLz55psAgISEBIwePVrngTFmTPLzge++A5yc\ngIwM3YxXSEwEPvxQmEmVMUPTWq3k6uoqLtV5+fJlAMISolevXtVLgEVxtRLTt4gIoV2hWTPdtCuo\n5kSaPRuYOhUIDuYuqqz6Vdsa0ir169dH/UJ/HuXn5/M02qxWuH0bmDFDt+0KqnEL3BOJGRut1UoD\nBgzA559/jqysLBw9ehTjxo3DyJEj9REb04LrU9WqMxfp6UKh0Ls30K+f7toVrlxRj1uIiqq+goGv\nCzXOReVpLRxCQ0PRvHlzdO3aFatWrcKwYcPw2Wef6SM2xvSqcLvC48fCE8OsWbqbB0kmAxQK4OOP\nuYsqMz6V6spqSNzmwHRB1a7QtKkwDxLPW8Rqmmpvc7h16xaCg4MRExOD7Oxs8SR///135aNkzEjc\nvi2MV/jzT92OV1AqecZUZlq0Viu9+uqrmDx5MurWrYvIyEgEBgbi5Zdf1kdsTAuuT1WraC4Ktyv0\n7au7dgXVnEiurkBubvUeuzR8XahxLipPa+GQnZ2NgQMHgogglUqxYMEC7N+/v1wHj4+Ph6enJ7p0\n6QIXFxd8/fXXAIC0tDR4e3ujU6dOGDRoENLT08V9QkJC0LFjRzg7O+PIkSOV/LYYK1l+PvD998L6\nCrpuV0hMBEaMAL7+Gti0CahXr/rPwZjOkBa9e/em/Px8Gj16NK1cuZJ27dpFnTp10rYbERElJyfT\n5cuXiYjoyZMn1KlTJ4qJiaGZM2fS4sWLiYgoNDSUZs+eTURE165dI1dXV8rNzaXY2Fjq0KEDKZVK\njWOWI2TGShQRQeTiQjRgANF/l6VOFBQQrVtH1Lw50cKFRLm5ujsXY+VV0Xun1k9HRUXR48eP6Z9/\n/qHAwEAaM2YMnT17tlLBjRo1io4ePUpOTk6UkpJCREIB4uTkREREixYtotDQUPHzgwcPLnYuLhxY\nRd26ReTjQ9S+PdEvvwg3b126coWoe3ei6GjdnoexiqjovVNrtVJsbCysrKzQpk0brF+/Hr/88gv+\n+eefCj+hxMXF4fLly+jZsydSU1Nh/9+cxvb29uK61ElJSXBwcBD3cXBwQGJiYoXPVVtwfapaSblI\nTxcam3XdrlBU167AhQuGG9DG14Ua56LyyrWeg6+vr9bXypKRkYGxY8dixYoVsLKy0nhPIpGUOeK6\npPeCgoIglUoBADY2NpDL5fDw8ACgvhh4u3ZtqygUCiiVwJ07Hpg/H+jeXYHVq4EXXzSueHW5HR0d\nbVTxGHI7OjraqOLR57ZCocD69esBQLxfVkSp4xwOHjyIAwcOYNu2bfDz8xP7xz558gQxMTGIiooq\n1wny8vIwYsQIDB06FNOmTQMgrAmhUCjQokULJCcnw9PTEzdu3EBoaCgAYM6cOQCAIUOGYOHChejZ\ns6c6YB7nwMpw7JgwXqFJE92PVyASRjYXujwZM1rVNmV3q1at0L17d1hYWKB79+7il4+PDw4fPlyu\ngxMRJk6cCJlMJhYMAODj44MNGzYAADZs2CDO8urj44OtW7ciNzcXsbGxuH37Ntzd3cv9zbDa6/Zt\nYRW2N94QVmSLjNRtwaDqifTWW0BOju7Ow5jBaGuUyK1CV4vffvuNJBIJubq6klwuJ7lcTgcPHqQH\nDx6Ql5cXdezYkby9venhw4fiPp9//jl16NCBnJyc6NChQ8WOWY6Qa43IyEhDh2Bw6elEH3xA1Lhx\nJIWGEmVn6/Z8ptATia8LNc6FWkXvnaW2OXTt2rXUAkUikeDKlStaC55+/fqhoJTJ6VWLBxUVHByM\n4OBgrcdmtZtSCaxbJ8xLNHy4MNDsxRd1e86UFGDiRJ5BldUOpbY5xMXFlbljZRo4qgO3ObATJ4D3\n3gMaNxbaFZ59Vj/nffAA+OEHYSU4niiPmRqdrCGdmpqKqKgoSCQSuLu7w87OrkpBVgUXDrVXbKyw\n+trFi8AXXwDjxhnX8pyMGbNqX0N6+/btcHd3x44dOzT+zwyvaDfOmiojA5g3D3juOaGR+fp1wNdX\ns2CoLbkoD86FGuei8rSOc/jss89w4cIF8Wnh3r178PLywrhx43QeHKvdCgqAjRuFZTNfeAH44w+g\ndWvdnzcxEVi2DFi8mKuPWO2l9cmBiNC8eXNxu2nTplytYyRUA19qojNngF69hMV3du0SComyCobq\nyIVqBlU3N8DGpsqHM5iafF1UFOei8rQ+OQwZMgSDBw9GQEAAiAjbtm3D0KFD9REbq4Xi44E5c4RG\n59BQICAAMNP6J0zV8VrOjGnS+mu3ZMkSvPnmm/jjjz9w9epVvPnmm/jiiy/0ERvToibVp2ZlAQsX\nCm0KHToAN28Cr7xS/oKhKrm4dUs3azkbSk26LqqKc1F5Wp8cli1bBj8/P4wdO1Yf8bBahgjYtk1Y\nU6F3b+DSJeCZZ/QbQ8eOwKlTQKdO+j0vY8ZMa1fWBQsWYMeOHbC1tYWfnx/GjRsnzqhqCNyVtea4\neBGYNk14alixAujf39ARMVZz6WScAwD88ccf2L59O3bu3AkHBwccO3as0kFWBRcOpi85WeiBdOgQ\n8NlnQFCQ/tZXzsvjHkisdqr2cQ4qdnZ2aNGiBZo2bYp79+5VKjhWvUytPjUnBwgJEdY7sLMT2hUm\nTqyegkFbLlQ9kTp3BjIzq34+Y6ZQKJCSkgI/Pz84OjqiR48eGD58OG7fvl1t5wgPD8f169crvf/d\nu3exZcuWEt/r0KEDbt26pfHatGnTNNo6e/Togby8POzYsQMymQxeXl4lHqs8vyOLFi3S2O7bt6/W\nfWoDrYVDWFgYPDw84OXlhfv37+OHH34o17xKjKkQAb/8AshkQoPv+fPCGILGjfVz/sJrOe/aBVha\nEj755BMcOnRIPwHoGRFhzJgxeOGFF3Dnzh1cvHgRISEh4qJa1eHXX39FTExMpfePjY3F5s2bS3zP\nz88PW7duFbcLCgqwa9cu+Pv7i/s6ODjA3Nwca9euxQ8//FBmTUZ+fn6ZsYSEhGhsnz59urzfRs2m\nbWa+OXPmiOtAG4NyhMyMSHQ0kYeHsHZzRIR+z13SDKpKpZKCgoIIAC1ZskS/AenJsWPH6Pnnny/1\n/Q8++IBcXFyoa9eutG3bNiISZi8dMGAA/e9//yNnZ2d6+eWXxc/Pnj2bZDIZdevWjT744AM6c+YM\nNWnShNq1a0dubm70119/0erVq+m5554jV1dXGjt2LGVlZRERUWBgIL377rvUp08fat++Pe3cuZOI\niHr27EnW1tYkl8vpq6++0ojv6tWrJJPJxO3IyEjq27evuB0WFkZhYWH0ySefUKNGjcjJyYlmzpyp\ncYzIyEjq168f+fj4iMsQjxo1irp3705dunSh1atXi99bnTp1SC6X0yuvvEJERA0bNhSPMWLECPGY\nb7/9Nq1fv56IiCIiIsjNzY26du1Kr732Gj19+lTrz8XQKnrvNLk7LRcOpuHff4kmTSKysyMKCyPK\ny9N/DHfuELm7q9dyzs3NpVGjRpGlpSXVq1ePVq5cqf+g9GDFihX0/vvvl/jezp07ydvbmwoKCig1\nNZXatm1LycnJFBkZSdbW1pSYmEgFBQXUu3dvOnXqFN2/f1+8uRIRPXr0iIiIgoKCaNeuXeLrDx48\nEP//4YcfirkNDAwkX19fIiKKiYkhR0dHIiJSKBQaN96iXFxc6I8//iAiojfffJO+/fZb8b1Ro0ZR\nbGwsERF5eHjQ77//Xmz/yMhIatiwIcXFxYmvpaWlERFRVlYWubi4iNuNGjXS2Fe1XbRwmDp1Km3Y\nsIGys7OpTZs2dPv2bSIimjBhQrECzhhV9N6ph+FFTFeMsc0hNxf48kuhCsnSErhxA5gyBairtdN0\n1ZSUiw4dgHPnhHELWVlZ8Pb2xpEjR5CVlYW6deuiQYMGug3KQO7cuVPqe6dPn0ZAQAAkEgns7Oww\nYMAAXLhwQZxUs1WrVpBIJJDL5bh79y5sbGxgYWGBiRMn4tdff9XIGRVq3Lx69Sr69++Pbt26YdOm\nTWKVk0QiERfz6ty5s1i1RVoaRv39/bF161YolUqEh4eL0/Xk5uYiISFBY1bo0o7l7u6O2NhYcXvF\nihWQy+Xo3bs34uPjK9UGQ0S4efMm2rVrB0dHRwBAYGAgTp48WeFjGTsd/8qy2oII2L8fmDFDuCn/\n9hvg7GzoqITJ+R49eoQXXngBMTExyPlv2TYiwsKFC7Fq1So0aNAAlpaWsLS0RMOGDdGwYUM0atQI\nDRs2hKWlJSwsLNCgQYMK/Vu/fv0y10bXJalUivDw8FLfL3ozVcVZv3598bU6deogLy8PderUQVRU\nFI4dO4adO3fim2++Eev3C39/QUFB2LNnD7p27YoNGzZoFNb16tUr9dyl8fPzw6BBgzBgwAB069ZN\nnMLnt99+Q79+/UqMv6iGDRuK/1coFDh27BjOnTsHCwsLeHp6itdCaerWrauxHo3q80XPV97vydSU\nq3CIi4vDnTt3MHDgQGRlZSE/Px+N9dWayEplLPPGxMQIaxzExQnrK+h7dhUiQCLxKPG9f//9F/36\n9cPdu3eRm5srvp6dnY34+HjEx8eXeey6deuiTp06qFOnDszMzCCRSGBWaNg2CVWzKCgoQEFBAZRK\npfhVt25d1KtXD+bm5qhfvz7q1asnFhwWFhawtLQUC6bChVKjRo3QoEGDChdIDRo0QP369TF9+nRs\n374da9aswRtvvAEAuHLlCh4/foz+/ftj1apVCAwMxIMHD3Dy5EksXbq01MblzMxMZGZmYujQoejT\npw86dOgAALCyssLjx4/Fz2VkZKBFixbIy8vDzz//jDZt2pSZVysrKzx58qTU99u3b49mzZphzpw5\nGksMHzp0CMOGDSvz2IWpfkceP34MW1tbWFhY4MaNGzh37pz4GXNzc+Tn56NukcfbZ555BjExMcjN\nzUVWVhaOHTuG/v37w8nJCXFxcfjrr7/QoUMHbNy40Wh+F6uT1sJh9erVWLNmDdLS0vDXX38hISEB\nU6ZMMdg4B2Y8Hj4E5s8HtmwBPvxQWE9Z32MICs+J9NtvQKNGmu+/++67iI2N1dpjpTT5+fkG2VdV\nIKkKJVXBpPqrVVUoERGUSiUKCgqQn58PpVKJefPm4ddff8W0adOwePFiWFhYoF27dvjqq6/Qr18/\nnD17Fq6urpBIJFiyZAns7Oxw/fr1Yn8RSyQSPHnyBKNGjUJOTg6ICMuXLwcg/GX/xhtvYOXKldix\nYwc+/fRT9OzZE82bN0fPnj2RkZGhcZyi/3d1dUWdOnUgl8vx6quv4r333iuWA39/f8ydOxcvFlri\n78SJE/jss8+05q9wrgBhjrjvv/8eMpkMTk5O6N27t/jepEmT0K1bN3Tv3h0bN24U92vTpg18fX3h\n4uKCdu3a4dn/VpWqX78+fvzxR4wbNw75+flwd3fH5MmTtcZkcrQ1SnTr1o1ycnJILpeLr7m4uFSo\nYaM6lSPkWsNQ6+Pm5xOtXk1kb0/05ptE9+7pP4aiPZGOHo0s8XOxsbHUtGlTAlBrvsaMGaPfH4ae\nxMfH07Bhwyq0D68hrVbRe6fWBun69etr1EXm5+eXuy71tddeg729vcZ61AsWLICDgwPc3Nzg5uaG\ngwcPiu+FhISgY8eOcHZ2xpEjR8p1DqZf584JE9StXw8cOAB8/z3QrJl+Y7h3Tz1u4ehRYR3p0hq8\npVIpTp06BWtra43XLSwsYG1tDWtrazRu3BhWVlZo2LAhLCwsUK9ePY2qI1NTUxvaHRwcsH//fkOH\nUWtorVYaMGAAPv/8c2RlZeHo0aMICwvDyJEjy3XwV199Fe+88w4mTJggviaRSDB9+nRMnz5d47Mx\nMTHYtm0bYmJikJiYiIEDB+LWrVsm/Uuqa/qs50xJEabSPnpUmEr7lVcMt0RngwaAlxfwzjvqaqyy\ncuHs7Izjx49jwIABYnVHvXr1sGzZMjg4OCAnJwfZ2dnF/s3KykJGRgYyMzORkZGBrKwsZGZmIicn\nB1lZWcjJyUFOTg6ePn2Kp0+fIi8vD7m5ucjLyxPbHIpWDQEoVjVUuL0iPz9foxG0oiQSCTp37lzp\n/WuamtgWoC9aC4fQ0FCsXbsWXbt2xapVqzBs2DC8/vrr5Tp4//79ERcXV+x1KqF1Pzw8HP7+/jA3\nN4dUKoWjoyOioqLQq1evcp2L6UZeHrByJbBoEfDqq8ISnYbui9CokdAAXhHPPvssDh48iMGDByMr\nKwtEhH79+sHJyUknMSqVSjx9+rTEQqe0f1X/VxVKqoIpMzNTLKxUn1F95ebmil+qQqlFixY6+Z5Y\n7aK1cKhTpw4mTZqESZMmVdtJV65ciZ9++gk9evTAsmXLYGNjg6SkJI2CwMHBAYmJidV2zppIoVDo\n9C+jiAjg3XeBNm2EKa2NoWtqacqTi379+mHXrl148cUXkZOTAwsLC53FU6dOHbF7rD4VFBTUyD73\nlaXr35GaTGvhcOrUKSxcuBBxcXFizwuJRIK///67UiecMmUKPv74YwDARx99hBkzZmDt2rUlfra0\nto2goCBxEIyNjQ3kcrl4Aaj6V/N25bdTUoCdOz3w++/AxIkK9O0LODvrP57ERGDKFAXefhsYPLjs\nz6toO76FhQVmzpyJzz//HI0aNTKKfFfn9smTJxEdHW008Rh6Ozo62qji0ee2QqHA+vXrAUBj0GC5\naWux7tSpEx04cIBSUlLo3r174ld5xcbGltq7qfB7ISEhFBISIr43ePBgOnfuXLF9yhEyq6SsLKHn\nT9Omwr//TY+jdyXNiVTd/v333+o/KGNGrKL3Tq1PDjY2NtW6ZnRycjJatmwJQJjZUdWTycfHBwEB\nAZg+fToSExNx+/ZtuLu7V9t5WemIgPBwoR7/2WeB33/X/2psKvpay1k14pYxVjKthYOnpydmzpyJ\nF198UaNLq2pASFn8/f1x4sQJ3L9/H23atMHChQuhUCgQHR0NiUSCdu3aYdWqVQAAmUwGX19fyGQy\n1K1bF2FhYQabfsBUKKqhPvXGDeC994D4eGD1amDgwOqJrTL++Qfo0QOYOhWYO7diA+qqIxc1BedC\njXNReVoLh3PnzkEikeDixYsar0dGRmo9eEmLebz22mulfj44OBjBwcFaj8uq7vFj4NNPhfEKwcHC\nDdnQK6S1bSus91CZ6lHGWPUq9zKhxoKXCa0aIuDnn4UxC4MGCSuzcc9Hxmq+it47S31y2LhxI8aP\nH49ly5ZpVO8QkTiQjZmWS5eEgWO5ucKKaIYcQpKTA+iwJyljrIpKHX6clZUFAHjy5InGV0ZGRpmz\nKTL9KdqNszQPHgCTJwPDhgkD2c6fN1zBoFrLuVMnID29+o5b3lzUBpwLNc5F5ZX65PDmm28CEOZC\nKko1MyMzbkql0Mi8YAHw0kvC6GZbW8PFU7gn0t69gI2N4WJhjJWtUm0Obdq00ToPvq5wm0P5nDol\nVCFZWwvTXxSa+1DviISG79mzK9cTiTFWddXW5sBMU1ISMGsWcOIEsHQp4OtruAnyVJKTgXXrdDtu\ngTFWvXjKUxNWuD41Nxf44gugWzehS+j160JVkqELBgBo1UpYiEeXBQPXLatxLtQ4F5VX6pNDo0aN\nSh2EpmqsZsbh0CFhIFvHjsJ6C/+te84YY5XG4xxM2N9/A++/L6zh/NVXwPDhho2HCDhyRBg/YQxP\nLIwxtYreO7layQTl5Qmjm93dhS6pf/5p+IIhMVFYnW3OHGFtacaYaePCwcRcvgw89xxw9izw7bcK\nzJ0LFJrySu9U4xbc3ITlQ6OigCZN9B8H1y2rcS7UOBeVx72VTMTTp8LTwurVwJIlwIQJQo8kQ3rw\nQIhD1zOoMsb0j9scTEBUlDCyuWNH4LvvgP9mPDe43FyhsHrzTR63wJixq+i9kwsHI5adDcyfD/z0\nk9DgbCxdUxljpocbpGuI06cBuRy4exe4cgXw8yteMHB9qhrnQo1zoca5qDwuHIxMZiYwbRowbpww\nnfa2bYCdnWFjSkwUqrWqc6I8xphx42olIxIZCbz+OtCnj1CN1LSpYePhOZEYqzl4biUT9OSJMB/S\nvn1Cg/OIEYaOSH9rOTPGjBNXKxnY4cOAi4swsO3q1YoVDLqqT/33X+DZZ9XjFkyhYOC6ZTXOhRrn\novJ0Wji89tprsLe3R9dC80WnpaXB29sbnTp1wqBBg5BeqCI7JCQEHTt2hLOzM44cOaLL0AwuPR2Y\nOFHoBrpmDfDDD8azvoGdnbBq3McfczUSY7WVTtscfvvtNzRq1AgTJkzA1atXAQCzZs1Cs2bNMGvW\nLCxevBgPHz5EaGgoYmJiEBAQgAsXLiAxMREDBw7ErVu3YGamWX7VhDaHffuEldl8fIDFiwErK0NH\nxBir6YyqK2v//v1hW2TpsT179iAwMBAAEBgYiN27dwMAwsPD4e/vD3Nzc0ilUjg6OiIqKkqX4end\ngwfAK68IM6j+/DMQFmb4giEz07DnZ4wZJ723OaSmpsLe3h4AYG9vj9TUVABAUlISHBwcxM85ODgg\nMTFR3+HpzK5dwmpszZsL4xY8PKp+zKrUp6rmRHJ0BP77EZg0rltW41yocS4qz6C9lSQSSalrRqje\nL0lQUBCkUikAwMbGBnK5HB7/3W1VF4OxbP/6qwIrVgDJyR7YsQPIy1PgwgXDxnfvHrB+vQeSkoBP\nP1Xg+nXA3t448lXZbRVjiceQ29HR0UYVjyG3o6OjjSoefW4rFAqsX78eAMT7ZYWQjsXGxpKLi4u4\n7eTkRMnJyURElJSURE5OTkREFBISQiEhIeLnBg8eTOfOnSt2PD2EXC0KCog2byaytyeaNYsoK8vQ\nEQkxrVtH1Lw50cKFRLm5ho6IMaYvFb136r1aycfHBxs2bAAAbNiwAaNHjxZf37p1K3JzcxEbG4vb\nt2/D3d1d3+FVi+RkYMwY4PPPgT17hEbnBg0MHRWQlgZs2iSMW+CeSIyxsui0cPD390efPn1w8+ZN\ntGnTBj/++CPmzJmDo0ePolOnTjh+/DjmzJkDAJDJZPD19YVMJsPQoUMRFhZWZpWTMVKNKHZ1FdoX\nfv9dWJBHV4pWqWjTtCkQEWEa4xYqqqK5qMk4F2qci8rTaZvDli1bSnw9IiKixNeDg4MRHBysy5B0\nJj5eGFGckiIMbHNzM3REjDFWeTy3UhURCYPY5s0TuqjOnm346hoioTprxAigTh3DxsIYMw48t5Ie\nxfmxklAAAAt9SURBVMYKE+U9eSJMmufiYuiINOdE6tUL+K/XMGOMVQjPrVQJBQXAN98IazkPHgyc\nOWOYgqFwfWpJaznXpoKB65bVOBdqnIvK4yeHCiooAAYNArKygFOnAGdnQ0cEPHoEBATwDKqMserD\nbQ6VcP480KOH8dTnK5XCU0NgoOHbOxhjxonXkGaMMVaMUU28x3SL61PVOBdqnAs1zkXlceFgQhIT\nhbaFmjBRHmPMuHG1kgngtZwZY1XF4xxqGF7LmTFmCFytZMQePRJ6RZW2ljPXp6pxLtQ4F2qci8rj\nJwcjZm0N/PGHsKYzY4zpE7c5MMZYLcBdWU3Uo0eGjoAxxtS4cDAw1ZxIHTsCd+9WbF+uT1XjXKhx\nLtQ4F5XHbQ4GlJAg9ERKThZ6Ij3zjKEjYowxAbc5GEDhcQvvvAPMmcPjFhhjusXjHExARgawa5ew\nZGe3boaOhjHGijNYm4NUKkW3bt3g5uYG9/8WWk5LS4O3tzc6deqEQYMGIT093VDh6ZSVFbBvX9UL\nBq5PVeNcqHEu1DgXlWewwkEikUChUODy5cuIiooCAISGhsLb2xu3bt2Cl5cXQkNDDRUeY4zVagZr\nc2jXrh0uXryIpk2biq85OzvjxIkTsLe3R0pKCjw8PHDjxg2N/UypzYEI2LkTGDUKqFfP0NEwxmoz\nkxnnIJFIMHDgQPTo0QNr1qwBAKSmpsL+v7Ut7e3tkWrC048mJADDhwMhIcC//xo6GsYYqxiDFQ6n\nT5/G5cuXcfDgQXz77bf47bffNN6XSCSQSCQGiq7yVOMWnn0W6N1bWDXOwUE35+L6VDXOhRrnQo1z\nUXkG663UsmVLAEDz5s0xZswYREVFidVJLVq0QHJyMuxKmVQoKCgIUqkUAGBjYwO5XA4PDw8A6ovB\nENsZGYCXlwJpaUBEhAe6dTNsPLVpW8VY4jHkdnR0tFHFY8jt6Ohoo4pHn9sKhQLr168HAPF+WREG\naXPIysqCUqmElZUVMjMzMWjQIMyfPx8RERFo2rQpZs+ejdDQUKSnpxdrlDbmNgciYNMm4KWXeNwC\nY8y4mMQa0rGxsRgzZgwAID8/Hy+//DLmzp2LtLQ0+Pr64p9//oFUKsX27dthY2OjGbARFw6MMWas\nTKJwqAouHNQUCoX4OFnbcS7UOBdqnAs1k+mtZMoSEoD//Q+IizN0JIwxphv85FABPCcSY8xU8dxK\nOqKaQTUlhedEYozVfFytVA5ZWUCfPupxC8ZSMBTtxlmbcS7UOBdqnIvK4yeHcrC0FNZytrU1dCSM\nMaYf3ObAGGO1APdWqqIHDwwdAWOMGR4XDv9RzYnUuTNw86ahoykfrk9V41yocS7UOBeVx20OKN4T\nycnJ0BExxphh1eo2Bx63wBirLXicQwU8fQocOMDjFhhjrKha3eZgYQHs2GG6BQPXp6pxLtQ4F2qc\ni8qr1YUDY4yxktWKNgciYMsWYS3nhg11FBhjjBkxbnMoonBPpD59uHBgjLHyqLHVSiWt5VyJlfKM\nGtenqnEu1DgXapyLyquRTw5PnwJjxvAMqowxVlk1ts3hl1+AkSN53AJjjAG8TChjjLESmPzEe4cO\nHYKzszM6duyIxYsXGzoco8b1qWqcCzXOhRrnovKMqnBQKpWYOnUqDh06hJiYGGzZsgXXr18v9fMJ\nCUL31DI+UqNFR0cbOgSjwblQ41yocS4qz6gKh6ioKDg6OkIqlcLc3Bx+fn4IDw8v9rnCPZF69AAc\nHQ0QrBFIT083dAhGg3OhxrlQ41xUnlH1VkpMTESbNm3EbQcHB5w/f77Y54YP555IjDGmS0b15CCR\nSMr1uV69jGstZ0OJi4szdAhGg3OhxrlQ41xUARmRs2fP0uDBg8XtRYsWUWhoqMZnOnToQAD4i7/4\ni7/4qwJfHTp0qND92Ki6subn58PJyQnHjh1Dq1at4O7uji1btqBz586GDo0xxmoVo2pzqFu3Lr75\n5hsMHjwYSqUSEydO5IKBMcYMwKieHBhjjBkHo2qQ1qY2D5B77bXXYG9vj65du4qvpaWlwdvbG506\ndcKgQYNqRbe9+Ph4eHp6okuXLnBxccHXX38NoHbmIicnBz179oRcLodMJsPcuXMB1M5cqCiVSri5\nuWHkyJEAam8upFIpunXrBjc3N7i7uwOoeC5MpnCo6AC5mubVV1/FoUOHNF4LDQ2Ft7c3bt26BS8v\nL4SGhhooOv0xNzfH8uXLce3aNZw7dw7ffvstrl+/XitzYWFhgcjISERHR+PKlSuIjIzEqVOnamUu\nVFasWAGZTCb2fKytuZBIJFAoFLh8+TKioqIAVCIXVe5ipCdnzpzR6MkUEhJCISEhBoxI/2JjY8nF\nxUXcdnJyopSUFCIiSk5OJicnJ0OFZjCjRo2io0eP1vpcZGZmUo8ePejPP/+stbmIj48nLy8vOn78\nOI0YMYKIau/viFQqpfv372u8VtFcmMyTQ0kD5BITEw0YkeGlpqbC3t4eAGBvb4/U1FQDR6RfcXFx\nuHz5Mnr27Flrc1FQUAC5XA57e3uxuq225uL999/HkiVLYGamvq3V1lxIJBIMHDgQPXr0wJo1awBU\nPBdG1VupLOUdIFdbSSSSWpWjjIwMjB07FitWrICVlZXGe7UpF2ZmZoiOjsajR48wePBgREZGarxf\nW3Kxb98+2NnZwc3NrdTJ9mpLLgDg9OnTaNmyJe7duwdvb284OztrvF+eXJjMk0Pr1q0RHx8vbsfH\nx8PBwcGAERmevb09UlJSAADJycmws7MzcET6kZeXh7Fjx2L8+PEYPXo0gNqbCxVra2sMHz4cv//+\ne63MxZkzZ7Bnzx60a9cO/v7+OH78OMaPH18rcwEALVu2BAA0b94cY8aMQVRUVIVzYTKFQ48ePXD7\n9m3ExcUhNzcX27Ztg4+Pj6HDMigfHx9s2LABALBhwwbxRlmTEREmTpwImUyGadOmia/Xxlzcv39f\n7HGSnZ2No0ePws3NrVbmYtGiRYiPj0dsbCy2bt2KF154ARs3bqyVucjKysKTJ/9v745ZGonCKAwf\nCxHBzkq0EVELGWYG8gd0sBJNYyFYpDOVgvgfLIRUomgjEXtRBAWLINgqgqjYaCOkM4qLRETybbXB\n7GVJdJNx3bxPd2fuwOEWc2AmufNDkvT8/KzDw0N5nvfxtWjUC5FG2N/ft4GBAevr67PFxcWvjhOr\nqakp6+rqstbWVuvp6bGNjQ27v7+3KIqsv7/fRkdH7eHh4atjNtzx8bG1tLSY7/sWBIEFQWAHBwdN\nuRbn5+cWhqH5vm+e59nS0pKZWVOuxXtHR0c2Pj5uZs25Fre3t+b7vvm+b0NDQ+V75UfXgj/BAQAc\n3+axEgAgPpQDAMBBOQAAHJQDAMBBOQAAHJQDAMBBOQAAHJQDAMBBOQAfkMvlND8/r52dnYrjHR0d\nFeNsNqvZ2dk4owF1RTkAH7C8vKzp6WkFQVBx/PcdLptl90/8v77Nlt3Av+Dl5UWJRKLqvF+70qyv\nr2ttbU2S9Pj4qN7eXuVyuYZmBOqBcgBqlMlkVCwWtbu7q2QyWXGuWCwqDMPyuFAoKJlMKp1OK51O\n6+3tTSMjI1pYWIg7NvAplANQo0QioVKp5BSDJLW3t+vs7Kw83tzc1MnJSXk8NzenKIo0NjYWS1bg\nb1EOQI0uLy/leV5Nc99vdpzNZnV3d6fV1dVGRQPqjhfSQI0uLi7K5RBFkfL5fNVrTk9PlclktLW1\n1eh4QF1RDkCN8vm8uru7VSqVdHNzo87OzvK5P/1aaWVlRYVCQcPDwwrDUDMzM7FmBj6Lx0pAFdvb\n23p9fS1/s/zq6kqTk5Nqa2srz3l6eqq4JpVKKZVKxZoTqCe+BAdUsbe3p+vra01MTGhwcPCr4wCx\noBwAAA7eOQAAHJQDAMBBOQAAHJQDAMBBOQAAHJQDAMBBOQAAHJQDAMDxE1gOcGyJmOWmAAAAAElF\nTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f443fefdb90>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "Hence for a constant breakdown torque at all frequencies,\n", + "V/f ratio has to be progressively increased with increase in frequency\n" + ] + } + ], + "prompt_number": 209 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.11,Page No:202" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected squirrel Induction motor is same as that of Ex-6.9\n", + "f=50 # frequency in HZ\n", + "Vl=400 # line voltage in V\n", + "P=4 # number of poles\n", + "N=1370 # rated speed\n", + "#parameters referred to the stator\n", + "Xr_=3.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=3 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed\n", + "N1=Ns-N #increase in speed from no load to full torque rpm\n", + "Wms=2*math.pi*Ns/60 #synchronous speed\n", + "s=(Ns-N)/Ns #full load slip\n", + "D=Ns-N #drop in speed from no load to full load torque at 50 Hz\n", + "\n", + "#(i)when the frequency is 30 Hz and 80% of full load torque\n", + "f1=30 #given frequency in Hz\n", + "d=D*0.8 #drop in speed from no load to 80% full load torque\n", + "Ns1=120*f1/P #synchronous speed at the given frequency f1=30 Hz\n", + "N1=Ns1-d #required motor speed \n", + "\n", + "#(ii)when the speed is 1000 rpm for a full load torque\n", + "N2=1000 #given speed in rpm\n", + "Ns2=N2+D #synchronous speed\n", + "f2=P*Ns2/120 #required frequency\n", + "\n", + "#when the speed is 1100 rpm and the frequency is 40 Hz\n", + "N3=1100 #given speed in rpm\n", + "f3=40 #given frequency in Hz\n", + "Ns3=120*f3/P #synchronous speed at the given frequency f1=40 Hz\n", + "D1=Ns3-N3 #drop in speed from no load to N1=1100 rpm\n", + "x=(Rs+Rr_/s)**2+(Xs+Xr_)**2\n", + "Tf=(3/Wms)*(Vl/math.sqrt(3))**2*(Rr_/s)/x #full load torque\n", + "T1=D1/D*Tf #required torque \n", + "\n", + "\n", + "#results\n", + "print\"(i)Hence the required motor speed is :\",round(N1),\"rpm\"\n", + "print\"\\n(ii)Hence the required frequency is :\",round(f2,2),\"Hz\"\n", + "print\"\\n(iii)Hence the required torque is :\",round(T1,2),\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Hence the required motor speed is : 796.0 rpm\n", + "\n", + "(ii)Hence the required frequency is : 37.67 Hz\n", + "\n", + "(iii)Hence the required torque is : 19.52 N-m\n" + ] + } + ], + "prompt_number": 210 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.12,Page No:204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor is same as that of Ex-6.9\n", + "f=50 # frequency in HZ\n", + "Vl=400 #line voltage in V\n", + "P=4 # number of poles\n", + "N=1370 #rated speed\n", + "\n", + "#parameters referred to the stator\n", + "Xr_=3.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=3 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed\n", + "N1=Ns-N #increase in speed from no load to full torque rpm\n", + "#(i)when f1=30Hz and 80% of full load\n", + "Ns=120*f/P\n", + "f1=30 #frequency \n", + "N2=0.8*N1 #increase in speed from no load to 80% of full torque rpm\n", + "Ns1=f1/f*Ns\n", + "N=Ns1+N2 #machine speed\n", + "\n", + "#(ii)at a speed of 1000rpm\n", + "N2=1000 #given speed in rpm\n", + "N3=N2-N1 #synchronous speed\n", + "f3=P*N3/120 #required frequency\n", + "\n", + "#(iii)when frequency is 40Hz and speed is 1300 rpm\n", + "f4=40 #frequency in hz\n", + "N2=1300 #speed in rpm\n", + "Ns=120*f4/P #required synchronous speed in rpm\n", + "N4=N2-Ns #increase in speed from no load speed in rpm\n", + "Tf=25.37 #full load torque as calculated in Ex-6.11\n", + "Tm=-N4/N1*Tf #motor torque\n", + "\n", + "#(iv) when the motor is under dynamic braking\n", + "\n", + "\n", + "#results\n", + "print\"(i)Required speed is :\",N,\"rpm\"\n", + "print\"\\n(ii)required frequency is:\",f3,\"Hz\"\n", + "print\"\\n(iii)Required motor torque :\",round(Tm,2),\"N-m\"\n", + "print\"\\n(iv)The value of the frequency,speed and motor torque calculated in (i),(ii) and(iii)\"\n", + "print\" will be the same when the motor is operated under dynamic braking\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Required speed is : 1004.0 rpm\n", + "\n", + "(ii)required frequency is: 29.0 Hz\n", + "\n", + "(iii)Required motor torque : -19.52 N-m\n", + "\n", + "(iv)The value of the frequency,speed and motor torque calculated in (i),(ii) and(iii)\n", + " will be the same when the motor is operated under dynamic braking\n" + ] + } + ], + "prompt_number": 211 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.13,Page No:204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor is same as that of Ex-6.9\n", + "f=50 # frequency in HZ\n", + "Vl=400 #line voltage in V\n", + "P=4 # number of poles\n", + "N=1370 #rated speed\n", + "#parameters referred to the stator\n", + "Xr_=3.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=3 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "\n", + "#calculation\n", + "Wms=4*math.pi*f/P\n", + "f1=60 #frequency in Hz during speed control of the motor\n", + "K=f1/f #the value of K at 60Hz \n", + "x=Rs+math.sqrt(Rs**2+K**2*(Xs+Xr_)**2)\n", + "Tmax_=3/(2*K*Wms)*(Vl/math.sqrt(3))**2/x #torque at 60 Hz frequency\n", + "z=Rs+math.sqrt(Rs**2+(Xs+Xr_)**2)\n", + "Tmax=3/(2*Wms)*(Vl/math.sqrt(3))**2/z #maximum torque\n", + "ratio=Tmax_/Tmax #ratio\n", + "\n", + "#results\n", + "print\"Ratio of Motor breakdown torque at 60Hz to rated torque at 50Hz is:\",round(ratio,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ratio of Motor breakdown torque at 60Hz to rated torque at 50Hz is: 0.727\n" + ] + } + ], + "prompt_number": 212 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.14,Page No:209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "print\"When operating at a frequency K times rated frequency f then\"\n", + "print\"Im**2=[((Rr_/Ksf)**2+(2*pi*Lr_)**2)/((Rr_/Ksf)**2+(2*pi*Lm+2*Pi*Lr_)**2)]*Is**2----(1)\"\n", + "print\"Since Im is constant for constant flux therefore\"\n", + "print\"K*s*f=constant--------(2)\"\n", + "print\"K*Wms*s=constant-------(3) which is the slip speed\"\n", + "print\"s*K=constant----------(4)\"\n", + "print\"Thereofre for a frequency K*f\"\n", + "print\"T=(3/K/Wms)*[(Is*K*Xm)**2*(Rr_/s)/((Rr_/s)**2+K**2*(Xm+Xr_)**2]\"\n", + "print\"T=(3/K/Wms*s)*[(Is*Xm)**2*(Rr_)/((Rr_/s/K)**2+(Xm+Xr_)**2]-------(5)\"\n", + "print\"\\nHence for a given slip speed (K*Wms*s),K*s is constant and from (1) for a given K*s*f and constant flux\"\n", + "print\"operation Is is fixed. Now from (5) T is also fixed. Thus, motor develps a constant torque and draws a\"\n", + "print\"constant current from the inverter at all frequencies for a given slip speed\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When operating at a frequency K times rated frequency f then\n", + "Im**2=[((Rr_/Ksf)**2+(2*pi*Lr_)**2)/((Rr_/Ksf)**2+(2*pi*Lm+2*Pi*Lr_)**2)]*Is**2----(1)\n", + "Since Im is constant for constant flux therefore\n", + "K*s*f=constant--------(2)\n", + "K*Wms*s=constant-------(3) which is the slip speed\n", + "s*K=constant----------(4)\n", + "Thereofre for a frequency K*f\n", + "T=(3/K/Wms)*[(Is*K*Xm)**2*(Rr_/s)/((Rr_/s)**2+K**2*(Xm+Xr_)**2]\n", + "T=(3/K/Wms*s)*[(Is*Xm)**2*(Rr_)/((Rr_/s/K)**2+(Xm+Xr_)**2]-------(5)\n", + "\n", + "Hence for a given slip speed (K*Wms*s),K*s is constant and from (1) for a given K*s*f and constant flux\n", + "operation Is is fixed. Now from (5) T is also fixed. Thus, motor develps a constant torque and draws a\n", + "constant current from the inverter at all frequencies for a given slip speed\n" + ] + } + ], + "prompt_number": 213 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.15,Page No:210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor \n", + "f=50 # frequency in HZ\n", + "Vl=400 #line voltage in V\n", + "P=4 # number of poles\n", + "N=1370 #rated speed\n", + "#parameters referred to the stator\n", + "Xr_=3.5 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=3 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "Xm=55 # magnetizing reactance in ohm\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed in rpm\n", + "s=(Ns-N)/Ns #full load slip\n", + "x=1j*Xm*(Rr_/s+1j*Xr_)\n", + "y=Rr_/s+1j*(Xr_+Xm)\n", + "Z=Rs+1j*Xs+x/y #total motor impedance\n", + "Isf=(Vl/math.sqrt(3))/abs(Z) #full load stator current\n", + "Irf_=Isf*(1j*Xm)/(Rr_/s+1j*(Xr_+Xm)) #full load rotor current\n", + "Tf=(3/Wms)*abs(Irf_)**2*Rr_/s #full load torque\n", + "N1=Ns-N #full load slip speed\n", + "#(i) when the motor is operating at 30Hz\n", + "f1=30 #given frequency in Hz\n", + "#at rated slep speedvalue of torque and stator current is same as the rated value\n", + "T=Tf \n", + "Is=abs(Isf) \n", + "Ns1=f1/f*Ns #synchronous at f1=30Hz\n", + "N2=Ns1-N1 #required motor speed at 30Hz\n", + "\n", + "#(ii)at a speed of 1200 rpm\n", + "N3=1200 #speed in rpm\n", + "Ns1=N3+N1 #required synchronous speed\n", + "f1=Ns1/Ns*f #required frequency at N2=1200rpm\n", + "\n", + "#(iii)when speed-torque curves are assumed to be straight lines at 30Hz at half the rated motor torque\n", + "f2=30 #frequency in Hz\n", + "N1_=N1/2 #slip at half the rated torque\n", + "Ns1=f2/f*Ns #synchronous at f1=30Hz\n", + "N4=Ns1-N1_ #required motor speed\n", + "\n", + "#(iv) When the motor is operating at 45hz and braking torque is equal to rated torque\n", + "f3=45 #given frequency in Hz\n", + "N1_=-N1 #slip speed when braking at rated torque\n", + "Ns1=f3/f*Ns #synchronous at f1=45Hz\n", + "N5=Ns1-N1_ #required motor speed\n", + "\n", + "\n", + "#results\n", + "print\"(i)At 30Hz the required value of Torque is T:\",round(T,2),\"N-m \"\n", + "print\" Stator current is Is:\",round(Is,4),\"A\"\n", + "print\" Motor speed is :\",N2,\"rpm\"\n", + "print\"\\n(ii)Required inverter frequency is :\",round(f1,2),\"Hz\"\n", + "print\"\\n(iii)Required motor speed at 30Hz is:\",N4,\"rpm\"\n", + "print\"\\n(iv)Required motor speed at 45Hz is:\",N5,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)At 30Hz the required value of Torque is T: 22.71 N-m \n", + " Stator current is Is: 7.2442 A\n", + " Motor speed is : 770.0 rpm\n", + "\n", + "(ii)Required inverter frequency is : 44.33 Hz\n", + "\n", + "(iii)Required motor speed at 30Hz is: 835.0 rpm\n", + "\n", + "(iv)Required motor speed at 45Hz is: 1480.0 rpm\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.16,Page No:215" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import cmath\n", + "from __future__ import division\n", + "\n", + "#variable declaration\n", + "#ratings of the Delta connected slipring Induction motor\n", + "f=50 # frequency in HZ\n", + "Vl=400 #line voltage in V\n", + "P=6 # number of poles\n", + "SR=2.2 #ratio of stator to rotor\n", + "#parameters referred to the stator\n", + "Xr_=1 # rotor winding reactance in ohm \n", + "Rr_=0.2 # resistance of the rotor windings in ohm\n", + "s=0.04 # given slip when motor runs at full load\n", + "\n", + "#calculation\n", + "Ns=120*f/P #synchronous speed\n", + "Wms=2*math.pi*Ns/60\n", + "x=(Rr_/s)**2+Xr_**2\n", + "Tf=(3/Wms)*(Vl)**2*(Rr_/s)/x #full load torque\n", + "K=Tf/(Ns*(1-s))**2\n", + "N=850 #speed of the motor in rpm\n", + "Tl=K*N**2 #torque at the given speed N\n", + "s=(Ns-N)/Ns #slip at the given speed N\n", + "y=Tl*(Wms/3)/Vl**2 #y=X/(X**2+Xr_**2) and X=(Re+Rr_)/s\n", + "print\"The torque at the given speed of 850rpm is:\",round(Tl),\"N-m\"\n", + "print\"With a slip of s:\",s\n", + "print\"To find the external resistance connected the given quadratic equation is X**2-6.633X+1=0\"\n", + "print\"With X=(Re-Rr_)/s where Re is the required external resistance\" \n", + "a = 1\n", + "b = -1/y\n", + "c = 1\n", + "# calculate the discriminant\n", + "d = (b**2) - (4*a*c)\n", + "# find two solutions\n", + "X1 = (-b-cmath.sqrt(d))/(2*a)\n", + "X2 = (-b+cmath.sqrt(d))/(2*a)\n", + "\n", + "#results\n", + "print\"The solution for X are \",round(X1.real,4),\"and\",round(X2.real,4)\n", + "Re1=X1*s-Rr_\n", + "Re2=X2*s-Rr_\n", + "\n", + "if (Re1.real>0) :\n", + " print\"\\nThe number Re1:\",round(abs(Re1),3),\"ohm is feasible:\"\n", + " R=Re1.real/SR**2\n", + " print\"Rotor referred value of the external resistance is:\",round(R,3),\"ohm\"\n", + "\n", + "if (Re2.real>0) :\n", + " print\"\\nThen Re2:\",round(abs(Re2),3),\"ohm is feasible\" \n", + " R=Re2.real/SR**2\n", + " print\"Hence Rotor referred value of the external resistance is:\",round(R,3),\"ohm\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The torque at the given speed of 850rpm is: 691.0 N-m\n", + "With a slip of s: 0.15\n", + "To find the external resistance connected the given quadratic equation is X**2-6.633X+1=0\n", + "With X=(Re-Rr_)/s where Re is the required external resistance\n", + "The solution for X are 0.1544 and 6.4786\n", + "\n", + "Then Re2: 0.772 ohm is feasible\n", + "Hence Rotor referred value of the external resistance is: 0.159 ohm\n" + ] + } + ], + "prompt_number": 217 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.17,Page No:217" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor \n", + "f=50 # frequency in HZ\n", + "Vl=440 #line voltage in V\n", + "P=6 # number of poles\n", + "Ns=120*f/P #synchronous speed\n", + "#parameters referred to the stator\n", + "Xr_=1.2 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=0.4 # resistance of the rotor windings in ohm\n", + "Rs=0.5 # resistance of the stator windings in ohm\n", + "Xm=50 # magnetizing reatance\n", + "a=3.5 # stator to rotor turns ratio\n", + "delta=0 # duty ratio at the given breakdown torque\n", + "Sm=1 # slip at standstill\n", + "#calculation\n", + "#slip at maximum torque without an external resistance is Sm=Rr_/math.sqrt(Rs**2+(Xs+Xr_)**2) \n", + "#when an external resistanc Re referred to the stator is connected \n", + "x=Sm*math.sqrt(Rs**2+(Xs+Xr_)**2) #x=Re+Rr_\n", + "Re=x-Rr_\n", + "y=0.5*a**2*(1-delta) # y=0.5*a**2*R*(1-delta) #y=Re\n", + "R=Re/y\n", + "\n", + "N = Symbol('N')\n", + "Sm=(Ns-N)/Ns\n", + "c=(x*Sm-Rr_)/(0.5*a**2*R) #c=(1-delta)\n", + "delta=1-c #given duty ratio\n", + "\n", + "#results\n", + "print\"variation of the duty ratio is\",round(delta*1000/N,3),\"*N*10**(-3)\"\n", + "print\"Hence the duty ratio must change linearly with speed N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "variation of the duty ratio is 1.195 *N*10**(-3)\n", + "Hence the duty ratio must change linearly with speed N\n" + ] + } + ], + "prompt_number": 218 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.18,Page No:223" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor \n", + "f=50 # frequency in HZ\n", + "Vl=440 # line voltage in V\n", + "P=6 # number of poles\n", + "N=970 # rated speed\n", + "n=2 # ratio of stator to rotor\n", + "Sm=0.25 # it is given the speed range is 25% below the synchronous speed which is proportional to the Slip\n", + "#parameters referred to the stator\n", + "Xr_=0.4 # rotor winding reactance in ohm\n", + "Xs=0.3 # stator winding reactance in ohm\n", + "Rr_=0.08 # resistance of the rotor windings in ohm\n", + "Rs=0.1 # resistance of the stator windings in ohm\n", + "alpha=165 # maximum value of the firing angle in degress\n", + "\n", + "#calculation\n", + "Ns=120*f/P # synchronous speed\n", + "Wms=2*math.pi*Ns/60\n", + "#(i) transformer turns ratio\n", + "a=-Sm/math.cos(math.radians(alpha)) #since Sm=a*math.cos(alpha) \n", + "m=n/a #since a=n/m where m is the transformer ratio\n", + "\n", + "#(ii)When speed is 780 rpm and firing angle is 140 degrees\n", + "N1=780 #given speed\n", + "alpha1=140 #given firing angle\n", + "s1=(Ns-N1)/Ns #slip at the given speed N1\n", + "Vd1=(3*math.sqrt(6)/math.pi)*s1*(Vl/math.sqrt(3))/n\n", + "Vd2=(3*math.sqrt(6)/math.pi)*(Vl/math.sqrt(3))/m*math.cos(math.radians(alpha1))\n", + "Rs_=Rs*(1/n)**2 #stator resistance referred to the rotor\n", + "Rr=Rr_*(1/n)**2 #rotor resistance referred to the rotor\n", + "Rd=0.01 #equivalent resistance of the DC link inductor\n", + "Id=(Vd1+Vd2)/(2*(s1*Rs_+Rr)+Rd)\n", + "T1=abs(Vd2)*Id/s1/Wms #required torque\n", + "\n", + "#(iii)when speed is 800rpm and firing angle is half the rated motor torque\n", + "N1=800 #given speed\n", + "s=(Ns-N)/Ns #rated slip\n", + "x=(Rs+Rr_/s)**2+(Xs+Xr_)**2\n", + "Trated=(3/Wms)*(Vl/math.sqrt(3))**2*(Rr_/s)/x #rated torque\n", + "T_half=Trated/2 #half rated torque\n", + "s1=(Ns-N1)/Ns #given slip at speed N1=800rpm\n", + "Vd1=(3*math.sqrt(6)/math.pi)*s1*(Vl/math.sqrt(3))/n\n", + "cos_alpha1 = Symbol('cos_alpha1')\n", + "Vd2=(3*math.sqrt(6)/math.pi)*(Vl/math.sqrt(3))/m*cos_alpha1\n", + "Id=(Vd1+Vd2)/(2*(s1*Rs_+Rr)+Rd)\n", + "T=abs(Vd2)*Id/s1/Wms #required torque\n", + "#let cos_alpha1=-X\n", + "X=-cos_alpha1\n", + "#since the given torque is half of the rated value\n", + "#To find the find the firing angle we assumed cos(alpha1)=-X\n", + "#The given quadratic equation is X**2-0.772X+0.06425=0\n", + "a = 1\n", + "b = -0.772\n", + "c = 0.06425\n", + "# calculate the discriminant\n", + "d = (b**2) - (4*a*c)\n", + "# find two solutions\n", + "X1 = (-b-cmath.sqrt(d))/(2*a)\n", + "X2 = (-b+cmath.sqrt(d))/(2*a)\n", + "alpha1=-math.acos(X2.real) #since cos(alpha1)=-X where alpha1 is radians\n", + "alpha1=math.degrees(alpha1) #angle in degrees\n", + "alpha1=180+alpha1 #required firing angle\n", + "\n", + "\n", + "#results\n", + "print\"(i)Transformer ratio is: \",round(m,3)\n", + "print\"\\n(ii)Required torque is :\",round(T1),\"N-m\"\n", + "print\" There is a slight difference in the answer for the torque due to accuracy i.e more number of decimal place\"\n", + "print\"\\n(iii)The half rated torque at the given speed of\",N1,\"rpm is:\",round(T_half,2),\"N-m\"\n", + "print\" With a slip of s:\",s1\n", + "print\"The solution for X are \",round(X1.real,4),\"and\",round(X2.real,4)\n", + "print\"For X1:\",round(X1.real,4),\" the motor is unstable hence we discard this value and we use X2:\",round(X2.real,4)\n", + "print\"\\nHence the required firing angle is :\",round(alpha1,1),\"\u00b0\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)Transformer ratio is: 7.727\n", + "\n", + "(ii)Required torque is : 271.0 N-m\n", + " There is a slight difference in the answer for the torque due to accuracy i.e more number of decimal place\n", + "\n", + "(iii)The half rated torque at the given speed of 800 rpm is: 302.66 N-m\n", + " With a slip of s: 0.2\n", + "The solution for X are 0.0949 and 0.6771\n", + "For X1: 0.0949 the motor is unstable hence we discard this value and we use X2: 0.6771\n", + "\n", + "Hence the required firing angle is : 132.6 \u00b0\n" + ] + } + ], + "prompt_number": 219 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.19,Page No:225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the star connected Induction motor is same as that of Ex-6.17\n", + "f=50 # frequency in HZ\n", + "Vs=440 # line voltage in V\n", + "P=4 # number of poles\n", + "#parameters referred to the stator\n", + "Xr_=1.2 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=0.4 # resistance of the rotor windings in ohm\n", + "Rs=0.5 # resistance of the stator windings in ohm\n", + "Xm=50 # magnetizing reatance\n", + "a=3.5 # stator to rotor turns ratio\n", + "\n", + "#calculation\n", + "Ns=120*f/P # synchronous speed in rpm\n", + "Wms=2*math.pi*Ns/60 # synchronous speed in rad/s\n", + "#(i)when motor speed is 1200rpm with a voltage of 15+0j V\n", + "V=cmath.rect(15,0)\n", + "N1=1200 #speed in rpm\n", + "Vr_=a*V #rotor voltage\n", + "s1=(Ns-N1)/Ns #slip at the given speed N1=1200 rpm\n", + "Z=Rs+Rr_/s1+1j*(Xs+Xr_) #total impedance\n", + "Ir_=(Vs/math.sqrt(3)-Vr_/s1)/Z #rotor current\n", + "phi_r=cmath.phase(Vr_)-cmath.phase(Ir_) #angle between Vr_ and Ir_\n", + "Pr=3*(abs(Ir_))**2*Rr_ #rotor copper loss\n", + "P1=3*abs(Vr_)*abs(Ir_)*math.cos(phi_r) #power absorbed by Vr_\n", + "Pg=(Pr+P1)/s1 #gross power \n", + "T=Pg/Wms #required motor torque\n", + "\n", + "#(ii)when motor speed is 1200rpm with a unity power factor \n", + "N1=1200 #speed in rpm\n", + "Ir_=cmath.rect(abs(Ir_),0) #machine is operating at unity power factor\n", + "x=Ir_*Z #x=(Vs-Vr_/s1)*phi_r where phi_r is the angle between Vr_ and Ir_\n", + "\n", + "#x=a+b\n", + "d=(Vs/math.sqrt(3)-Vr_/s1*math.cos(phi_r))**2\n", + "e=(Vr_/s1*math.sin(phi_r))**2\n", + "f=x/(d+e)\n", + "theta=cmath.phase(f) #required angle in radian\n", + "\n", + "#Now we should solve for the quadratice equation for the rotor current\n", + "# 0.9*Ir_**2 + 50.8*Ir_ + 90.12 = 0\n", + "a1 = 0.9\n", + "b1 = 50.8\n", + "c1 = 90.12\n", + "# calculate the discriminant\n", + "d = (b1**2) - (4*a1*c1)\n", + "# find two solutions\n", + "Ir_1 = (-b1-cmath.sqrt(d))/(2*a1)\n", + "Ir_2 = (-b1+cmath.sqrt(d))/(2*a1)\n", + "\n", + "Ir_=Ir_2 #Ir_2 is chosen because for Ir_1 the motor is unstable\n", + "Vr_sin_phi_r=abs(Ir_)/2.083\n", + "Vr_cos_phi_r=s1*(Vs/math.sqrt(3)+2.5*Vr_sin_phi_r)\n", + "Vr_=Vr_cos_phi_r+1j*Vr_sin_phi_r #total rotor voltage referred to the stator\n", + "Vr_=Vr_/a #total rotor voltage referred to the rotor\n", + "phase=round(math.degrees(cmath.phase(Vr_))) #required phase of the voltage in degrees\n", + "\n", + "#results\n", + "print\"(i)The torque is :\",round(T,2),\"N-m and since it is negative the motor is operating in regenerative braking \"\n", + "print\"\\n(ii)Now theta \u03b8:\",round(math.degrees(theta),2),\"\u25e6\"\n", + "print\" The solution for Ir_ are \",round(Ir_1.real,3),\"and\",round(Ir_2.real,3)\n", + "print\" We choose Ir_:\",round(Ir_2.real,3),\"A since higher value corresponds to unstable region\"\n", + "print\"\\n Hence the required voltage magnitude is Vr:\",round(abs(Vr_),2),\"V\",\";phase:\",phase,\"\u25e6\"\n", + "print\"\\n Note :There is a slight difference in the answers due to accuracy i.e more number of decimal place\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)The torque is : -8.61 N-m and since it is negative the motor is operating in regenerative braking \n", + "\n", + "(ii)Now theta \u03b8: 43.83 \u25e6\n", + " The solution for Ir_ are -54.611 and -1.834\n", + " We choose Ir_: -1.834 A since higher value corresponds to unstable region\n", + "\n", + " Hence the required voltage magnitude is Vr: 14.64 V ;phase: 1.0 \u25e6\n", + "\n", + " Note :There is a slight difference in the answers due to accuracy i.e more number of decimal place\n" + ] + } + ], + "prompt_number": 220 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No:6.20,Page No:234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "import cmath\n", + "\n", + "#variable declaration\n", + "#ratings of the single phase Induction motor \n", + "f=50 # frequency in HZ\n", + "Vs=220 # supply voltage in V\n", + "P=4 # number of poles\n", + "N=1425 # rated speed in rpm\n", + "#parameters referred to the stator\n", + "Xr_=6 # rotor winding reactance in ohm\n", + "Xs=Xr_ # stator winding reactance in ohm\n", + "Rr_=5 # resistance of the rotor windings in ohm\n", + "Rs=2 # resistance of the stator windings in ohm\n", + "Xm=60 # magnetizing reatance\n", + "\n", + "#calculation\n", + "N1=1200 #when the motor is operating at the given speed in rpm\n", + "Ns=120*f/P # synchronous speed\n", + "Wms=2*math.pi*Ns/60\n", + "s=(Ns-N)/Ns #rated slip\n", + "\n", + "Zf=1j*(Xm)*(Rr_/s+1j*Xr_)/2/(Rr_/s+1j*(Xr_+Xm))\n", + "Rf=Zf.real ; Xf=Zf.imag\n", + "Zb=1j*(Xm)*(Rr_/(2-s)+1j*Xr_)/2/(Rr_/(2-s)+1j*(Xr_+Xm))\n", + "Rb=Zb.real ; Xb=Zb.imag\n", + "Zs=Rs+1j*Xs\n", + "Z=Zs+Zf+Zb\n", + "Is=(Vs)/Z\n", + "T=(abs(Is))**2/Wms*(Rf-Rb)\n", + "Tl=T\n", + "K=Tl/N**2\n", + "\n", + "#therefore for a speed of of N1=1200 rpm we get \n", + "Tl=K*N1**2 #required load torque for the given speed N1\n", + "s1=(Ns-N1)/Ns # slip for the given speed N1\n", + "\n", + "Zf=1j*(Xm)*(Rr_/s1+1j*Xr_)/2/(Rr_/s1+1j*(Xm))\n", + "Rf=Zf.real ; Xf=Zf.imag\n", + "Zb=1j*(Xm)*(Rr_/(2-s1)+1j*Xr_)/2/(Rr_/(2-s1)+1j*(Xr_+Xm))\n", + "Rb=Zb.real ; Xb=Zb.imag\n", + "x=(Wms*Tl)/(Rf-Rb) #since Tl=(abs(Is))**2/Wms*(Rf-Rb) and x=Is**2\n", + "Is=math.sqrt(x)\n", + "Z=Zs+Zf+Zb\n", + "V=Is*abs(Z)\n", + "\n", + "#results\n", + "print\"Hence the motor terminal voltage at the speed of\",N1,\"rpm is : \",round(V,1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hence the motor terminal voltage at the speed of 1200 rpm is : 127.9 V\n" + ] + } + ], + "prompt_number": 221 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |