summaryrefslogtreecommitdiff
path: root/Fundamental_of_Electronics_Devices/Ch8.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamental_of_Electronics_Devices/Ch8.ipynb')
-rw-r--r--Fundamental_of_Electronics_Devices/Ch8.ipynb228
1 files changed, 228 insertions, 0 deletions
diff --git a/Fundamental_of_Electronics_Devices/Ch8.ipynb b/Fundamental_of_Electronics_Devices/Ch8.ipynb
new file mode 100644
index 00000000..f4ce4661
--- /dev/null
+++ b/Fundamental_of_Electronics_Devices/Ch8.ipynb
@@ -0,0 +1,228 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Photonic Devices"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.1 Page no 293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Exa 8.1\n",
+ "#Find Steady state photocurrent density\n",
+ "\n",
+ "#given data \n",
+ "NA=10**22 #in atoms/m**3\n",
+ "ND=10**22 #in atoms/m**3\n",
+ "De=25*10**-4 \t#in m**2/s\n",
+ "Dh=10**-3\t\t#in m**2/s\n",
+ "TAUeo=500\t\t#in ns\n",
+ "TAUho=100\t\t#in ns\n",
+ "ni=1.5*10**16\t\t#in atoms/m**3\n",
+ "VR=-10\t\t\t#in Volt\n",
+ "epsilon=11.6*8.854*10**-12\t#in F/m\n",
+ "e=1.6*10**-19\t\t\t#in Coulamb\n",
+ "VT=26\t\t\t\t#in mV\n",
+ "GL=10**27\t\t\t#in m**-3 s**-1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "import math\n",
+ "Le=math.sqrt(De*TAUeo*10**-9)\t#in um\n",
+ "Le=Le*10**6\t\t\t#in um\n",
+ "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in um\n",
+ "Lh=Lh*10**6\t\t\t#in um\n",
+ "Vbi=VT*10**-3*math.log(NA*ND/ni**2)\t#in Volt\n",
+ "Vo=Vbi\t\t\t\t#in Volt\n",
+ "VB=Vo-VR\t\t\t#in Volt\n",
+ "W=math.sqrt((2*epsilon*VB/e)*(1/NA+1/ND))\t#in um\n",
+ "W=W*10**6\t\t\t#in um\n",
+ "JL=e*(W+Le+Lh)*10**-6*GL\t#in A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print \"Steady state photocurrent density is \",round(JL/10**4,3),\"A/cm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Steady state photocurrent density is 0.726 A/cm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.2 Page no 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Exa 8.2\n",
+ "#Find Steady state photocurrent density\n",
+ "\n",
+ "#given data \n",
+ "import math\n",
+ "W=25\t\t\t#in um\n",
+ "PhotonFlux=10**21\t#in m**2s**-1\n",
+ "alfa=10**5\t\t#in m**-1\n",
+ "e=1.6*10**-19\t\t#in Coulambs\n",
+ "\n",
+ "#calculation\n",
+ "GL1=alfa*PhotonFlux\t#in m**-3s**-1\n",
+ "GL2=alfa*PhotonFlux*math.exp(-alfa*W*10**-6)\t#in m**-3s**-1\n",
+ "JL=e*PhotonFlux*(1-math.exp(-alfa*W*10**-6))\t#in mA/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print\"Steady state photocurrent density is \",round(JL/10,2),\"mA/cm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Steady state photocurrent density is 14.69 mA/cm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.3 Page no 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Exa 8.3\n",
+ "#DEtermine Open circuit voltage .\n",
+ "\n",
+ "#given data \n",
+ "NA=7.5*10**24\t\t#in atoms/m**3\n",
+ "ND=1.5*10**22\t\t#in atoms/m**3\n",
+ "De=25.0*10**-4\t\t#in m**2/s\n",
+ "Dh=10.0**-3\t\t#in m**2/s\n",
+ "TAUeo=500.0\t\t#in ns\n",
+ "TAUho=100.0\t\t#in ns\n",
+ "ni=1.5*10**16\t\t#in atoms/m**3\n",
+ "VR=-10.0\t\t\t#in Volt\n",
+ "epsilon=11.6*8.854*10**-12\t#in F/m\n",
+ "e=1.6*10**-19\t\t#in Coulamb\n",
+ "VT=26.0\t\t\t#in mV\n",
+ "GL=10.0**27\t\t#in m**-3 s**-1\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "Le=math.sqrt(De*TAUeo*10**-9)\t#in m\n",
+ "Le=Le*10**6\t\t\t#in um\n",
+ "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in m\n",
+ "Lh=Lh*10**6\t\t\t#in um\n",
+ "JS=e*(ni**2)*(De/(Le*10**-6*NA)+Dh/(Lh*10**-6*ND))\t#in A/cm**2\n",
+ "JL=12.5\t\t\t\t#in mA/cm**2\n",
+ "VOC=VT*math.log(1.0+((JL*10**-3)/(JS*10**-4)))\t\t#in Volt\n",
+ "\n",
+ "#Result\n",
+ "print\"Open circuit voltage is\",round(VOC/1000,3),\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Open circuit voltage is 0.522 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.4 Page no 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Exa 8.4\n",
+ "#Find The total no. of cells required\n",
+ "#given data \n",
+ "Vout=28\t\t\t#in Volts\n",
+ "Vcell=0.45\t\t#in Volt\n",
+ "n=Vout/Vcell\t\t#Unitless\n",
+ "Iout=1\t\t\t#in A\n",
+ "Icell=50\t\t#in mA\n",
+ "\n",
+ "#Calculation\n",
+ "m=Iout/(Icell*10**-3)\t#unitless\n",
+ "\n",
+ "#Result\n",
+ "print\"The total no. of cells required : \",round(m*n)\n",
+ "#Note : Answer in the book is wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total no. of cells required : 1244.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file