diff options
Diffstat (limited to 'Fluidization_Engineering/ch3.ipynb')
-rw-r--r-- | Fluidization_Engineering/ch3.ipynb | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/Fluidization_Engineering/ch3.ipynb b/Fluidization_Engineering/ch3.ipynb new file mode 100644 index 00000000..cd21b1dd --- /dev/null +++ b/Fluidization_Engineering/ch3.ipynb @@ -0,0 +1,272 @@ +{ + "metadata": { + "name": "ch3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3 : Fluidization and Mapping of Regimes" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1, Page 68\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Size Measure of Nonuniform Solids\n", + "\n", + "#INPUT\n", + "weight = [0,60,150,270,330,360.0]; # Weight in grams for the oversized particles\n", + "psize = [50,75,100,125,150,175]; #PSD in micrometers\n", + "\n", + "#CALCULATION\n", + "l = len(psize); # To obtain the size of input array\n", + "# Computation of sauter mean diameter for the given PSD\n", + "i = 0;\n", + "dpi = [0,0,0,0,0,0]\n", + "weightf = [0,0,0,0,0,0]\n", + "dp = [0,0,0,0,0,0]\n", + "while i<l-1:\n", + " dpi[i]=(psize[i]+ psize[i+1])/2.0;\n", + " weightf[i]=(weight[i+1]-weight[i])/weight[5]; \n", + " dp[i]=weightf[i]/float(dpi[i]); \n", + " i=i+1;\n", + "\n", + "dpbar=1/sum(dp); #Calculation of average particle daimeter Eq.(15)\n", + "\n", + "#OUTPUT\n", + "print '\\n The Sauter mean diameter of the material with the given particle size distribution = %.0f micrometer'%dpbar\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " The Sauter mean diameter of the material with the given particle size distribution = 98 micrometer\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2, Page 76\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Estimation of Minimum fluidizing velocity\n", + "\n", + "#INPUT\n", + "ephsilon=0.55; #Void fraction of bed\n", + "rhog=0.0012; #Density of gas in g/cc\n", + "myu=.00018; #Viscosity of gas in g/cm s\n", + "dpbar=0.016; #Mean diameter of solids in centimeter\n", + "phis=0.67; #Sphericity of solids\n", + "rhos=2.6; #Density of solids in g/cc\n", + "g=980; #Acceleration due to gravity in square cm/s**2\n", + "\n", + "#CALCULATION\n", + "#Computation of umf using the simplified equation for small particles\n", + "umf=((dpbar**2)*(rhos-rhog)*g*(ephsilon**3)*(phis**2))/(150*myu*(1-ephsilon));#Simplified equation to calculate minimum fluidizing velocity \n", + " #for small particles Eq.(21)\n", + "Re=(dpbar*umf*rhog)/myu;#To calculate Reynolds number for particle\n", + "\n", + "#Computation of umf if neither void fraction of bed nor sphericity is known\n", + "c1=28.7\n", + "c2=0.0494; #Value of constants from Table 4, page 70\n", + "umf1=(myu/(dpbar*rhog))*(((c1**2)+((c2*(dpbar**3)*rhog*(rhos-rhog)*g)/(myu**2)))**0.5-c1); #Equation to calculate minimum fluidizing velocity \n", + " #for coarse particles Eq.(25)\n", + "err=((umf-umf1)/umf)*100; #Calculation of error from experimental value\n", + "\n", + "#OUTPUT\n", + "if Re<20:\n", + "\tprint 'The particle Reynolds no = %f'%Re\n", + "\tprint 'The simplified equation used for calculating minimum fluidizing velocity is valid.'\n", + "\n", + "print 'The minimum fluidizing velocity by simplified equation for small particles = %.2fcm/s'%umf\n", + "print 'The minimum fluidizing velocity by equation for coarse partilces = %.2fcm/s'%umf1\n", + "print 'This value is %d percent below the experimentally reported value.'%err\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The particle Reynolds no = 0.427493\n", + "The simplified equation used for calculating minimum fluidizing velocity is valid.\n", + "The minimum fluidizing velocity by simplified equation for small particles = 4.01cm/s\n", + "The minimum fluidizing velocity by equation for coarse partilces = 3.10cm/s\n", + "This value is 22 percent below the experimentally reported value.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3, Page 82\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Estimation of terminal velocity of falling particles\n", + "\n", + "#INPUT\n", + "rhog=1.2e-3; #Density of air in g/cc\n", + "myu=1.8e-4 #Viscosity of air in g/cm s\n", + "dpbar=0.016 #Mean diameter of solids in centimeter\n", + "phis=0.67; #Sphericity of solids\n", + "rhos=2.6; #Density of solids in g/cc\n", + "g=980 #Acceleration due to gravity in square cm/s**2\n", + "\n", + "#CALCULATION\n", + "dpstar=dpbar*((rhog*(rhos-rhog)*g)/myu**2)**(1/3.0); #Calculation of dimensionless particle size Eq.(31)\n", + "utstar=((18/(dpstar**2))+(2.335-(1.744*phis))/(dpstar**0.5))**-1; #Calculation of dimensionless gas velocity Eq.(33)\n", + "ut=utstar*((myu*(rhos-rhog)*g)/rhog**2)**(1/3.0); #Calculation of terminal velocity of falling particles Eq.(32)\n", + "\n", + "\n", + "#OUTPUT\n", + "print 'The dimensionless particle size = %.2f'%dpstar\n", + "print 'The dimensionless gas velocity = %.3f'%utstar\n", + "print 'The terminal velocity of falling particles = %d cm/s'%ut\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The dimensionless particle size = 7.28\n", + "The dimensionless gas velocity = 1.296\n", + "The terminal velocity of falling particles = 88 cm/s\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4, Page 91\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Prediction of flow regime\n", + "\n", + "#INPUT\n", + "rhos=1.5; #Density of Solid in g/cc\n", + "uo1=40; uo2=80; #Superficial gas velocity in cm/s\n", + "dp1=0.006; dp2=0.045; #Particle size in centimeter\n", + "rhog1=1.5E-3; rhog2=1E-3; #Density of gas in g/cc\n", + "myu1=2E-4; myu2=2.5E-4; #Viscosity of air in g/cm s\n", + "g=980; #Acceleration due to gravity in square cm/s**2\n", + "\n", + "#CALCULATION\n", + "#for smaller particles\n", + "dpstar1=dp1*((rhog1*(rhos-rhog1)*g)/myu1**2)**(1/3.0); #Calculation of dimensionless particle diamter Eq.(31)\n", + "uostar1=uo1*((rhog1**2)/((myu1)*(rhos-rhog1)*g))**(1/3.0);\n", + "uostar2=uo2*((rhog1**2)/((myu1)*(rhos-rhog1)*g))**(1/3.0); #Calculation of dimensionless superficial gas velocity Eq.(32)\n", + "\n", + "#for larger particles \n", + "dpstar2=dp2*((rhog2*(rhos-rhog2)*g)/myu2**2)**(1/3.0); #Calculation of dimensionless particle diamter Eq.(31)\n", + "uostar3=uo1*((rhog2**2)/((myu2)*(rhos-rhog2)*g))**(1/3.0);\n", + "uostar4=uo2*((rhog2**2)/((myu2)*(rhos-rhog2)*g))**(1/3.0); #Calculation of dimensionless superficial gas velocity Eq.(32)\n", + "\n", + "\n", + "#OUTPUT\n", + "print 'For particle of size %.3f centimeter'%dp1\n", + "print 'The dimensionless particle diameter = %.2f'%dpstar1\n", + "print 'The dimensionless superficial gas velocity = %.4fcm/s(for superficial gas velocity of %dcm/s)'%(uostar1,uo1)\n", + "print 'The dimensionless superficial gas velocity = %.3fcm/s(for superficial gas velocity of %dcm/s)'%(uostar2,uo2)\n", + "print 'From Fig.16(page 89)comparing u*=%.4f vs dp*=%.2f'%(uostar1,dpstar1)\n", + "print 'For Superficial gas velocity =%d Mode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed'%(uo1)\n", + "print 'From Fig.16(page 89)comparing u* =%.3f vs dp* =%f'%(uostar2,dpstar1)\n", + "print 'For Superficial gas velocity =%f Mode of Fluidization:Fast fluidization(requires a circulating solid system)'%(uo2)\n", + "print 'For particle of size %f centimeter'%(dp2)\n", + "print 'The dimensionless particle diameter = %f'%(dpstar2)\n", + "print 'The dimensionless superficial gas velocity = %fcm/s(for superficial gas velocity of %fcm/s)'%(uostar3,uo1)\n", + "print 'The dimensionless superficial gas velocity = %fcm/s(for superficial gas velocity of %fcm/s)'%(uostar4,uo2)\n", + "print 'From Fig.16(page 89)comparing u*=%f vs dp*=%f'%(uostar3,dpstar2)\n", + "print 'For Superficial gas velocity =%f Mode of Fluidization:Bublling Fluidization'%(uo1)\n", + "print 'From Fig.16(page 89)comparing u* =%f vs dp* =%f'%(uostar4,dpstar2)\n", + "print 'For Superficial gas velocity =%f Mode of Fluidization:Bubbling Fluidization'%(uo2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For particle of size 0.006 centimeter\n", + "The dimensionless particle diameter = 2.28\n", + "The dimensionless superficial gas velocity = 0.7885cm/s(for superficial gas velocity of 40cm/s)\n", + "The dimensionless superficial gas velocity = 1.577cm/s(for superficial gas velocity of 80cm/s)\n", + "From Fig.16(page 89)comparing u*=0.7885 vs dp*=2.28\n", + "For Superficial gas velocity =40 Mode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed\n", + "From Fig.16(page 89)comparing u* =1.577 vs dp* =2.282737\n", + "For Superficial gas velocity =80.000000 Mode of Fluidization:Fast fluidization(requires a circulating solid system)\n", + "For particle of size 0.045000 centimeter\n", + "The dimensionless particle diameter = 12.890262\n", + "The dimensionless superficial gas velocity = 0.558561cm/s(for superficial gas velocity of 40.000000cm/s)\n", + "The dimensionless superficial gas velocity = 1.117122cm/s(for superficial gas velocity of 80.000000cm/s)\n", + "From Fig.16(page 89)comparing u*=0.558561 vs dp*=12.890262\n", + "For Superficial gas velocity =40.000000 Mode of Fluidization:Bublling Fluidization\n", + "From Fig.16(page 89)comparing u* =1.117122 vs dp* =12.890262\n", + "For Superficial gas velocity =80.000000 Mode of Fluidization:Bubbling Fluidization\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |