summaryrefslogtreecommitdiff
path: root/Fluidization_Engineering/ch13.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fluidization_Engineering/ch13.ipynb')
-rw-r--r--Fluidization_Engineering/ch13.ipynb313
1 files changed, 313 insertions, 0 deletions
diff --git a/Fluidization_Engineering/ch13.ipynb b/Fluidization_Engineering/ch13.ipynb
new file mode 100644
index 00000000..06efb739
--- /dev/null
+++ b/Fluidization_Engineering/ch13.ipynb
@@ -0,0 +1,313 @@
+{
+ "metadata": {
+ "name": "ch13"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter 13 : Heat Transfer between Fluidized Beds and Surfaces"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 1, Page 331\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#h on a Horizontal Tube Bank\n",
+ "\n",
+ "#Variable declaration\n",
+ "dp=57.0; #Particle size in micrometer\n",
+ "rhos=940.0; #Density of solids in kg/m**3\n",
+ "Cps=828.0; #Specific heat capacity of the solid in J/kg K\n",
+ "ks=0.20; #Thermal conductivity of solids in W/m k\n",
+ "kg=0.035; #Thermal concuctivity of gas in W/m k\n",
+ "umf=0.006; #Velocity at minimum fluidization condition in m/s\n",
+ "ephsilonmf=0.476;#Void fraction at minimum fluidization condition\n",
+ "do1=0.0254; #Outside diameter of tube in m\n",
+ "L=1;\n",
+ "uo=[0.05,0.1,0.2,0.35];#Superficial gas velocity in m/s\n",
+ "nw=[2.,3.1,3.4,3.5]; #Bubble frequency in s**-1\n",
+ "g=9.81; #Acceleration due to gravity in square m/s**2\n",
+ "\n",
+ "\n",
+ "#CALCULATION\n",
+ "dte=4.*do1*L/2.*L; #Hydraulic diameter from Eqn.(6.13)\n",
+ "db=(1+1.5)*0.5*dte; #Rise velocity of the bubble\n",
+ "ubr=0.711*(g*db)**0.5; #Rise velocity of bubble from Eqn.(6.7)\n",
+ "phib=0.19;#From Fig.(15) for ks/kg=5.7\n",
+ "ke=ephsilonmf*kg+(1-ephsilonmf)*ks*(1/((phib*(ks/kg))+(2/3.0)))\n",
+ " #Effective thermal conductivity of bed from Eqn.(3) \n",
+ " \n",
+ "n=len(uo);\n",
+ "i=0;\n",
+ "ub = [0,0,0,0]\n",
+ "delta = [0,0,0,0]\n",
+ "h = [0,0,0,0]\n",
+ "while i<n:\n",
+ " ub[i]=uo[i]-umf+ubr; #Velocity of bubbles in bubbling beds in Eqn.(6.8)\n",
+ " delta[i]=uo[i]/ub[i];#Fraction of bed in bubbles from Eqn.(6.29)\n",
+ " h[i]=1.13*(ke*rhos*(1-ephsilonmf)*Cps*nw[i]*(1-delta[i]))**0.5;\n",
+ " #Heat transfer coefficinet from Eqn.(18)\n",
+ " i=i+1;\n",
+ "\n",
+ "#OUTPUT\n",
+ "print 'Superficial gas velocity(m/s)',\n",
+ "print '\\tHeat transfer coefficient(W/m**2 k)'\n",
+ "i=0;\n",
+ "while i<n:\n",
+ " print '%f'%uo[i],\n",
+ " print '\\t\\t\\t%f'%h[i]\n",
+ " i=i+1;\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Superficial gas velocity(m/s) \tHeat transfer coefficient(W/m**2 k)\n",
+ "0.050000 \t\t\t270.297375\n",
+ "0.100000 \t\t\t323.421769\n",
+ "0.200000 \t\t\t315.487604\n",
+ "0.350000 \t\t\t292.370761\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2, Page 332\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Effect of Gas Properties on h\n",
+ "\n",
+ "#Variable declaration\n",
+ "dp=80.; #Particle size in micrometer\n",
+ "rhos=2550.; #Density of solids in kg/m**3\n",
+ "Cps=756.; #Specific heat capacity of the solid in J/kg K\n",
+ "ks=1.21; #Thermal conductivity of solids in W/m k\n",
+ "kg=[0.005,0.02,0.2]; #Thermal concuctivity of gas in W/m k\n",
+ "ephsilonmf=0.476; #Void fraction at minimum fluidization condition\n",
+ "\n",
+ "#CALCULATION\n",
+ "delta=0.5*(0.1+0.3);#For a gently fluidized bed\n",
+ "nw=3.;#Bubble frequency in s**-1 from Fig.(5.12) at about 30cm above the distributor\n",
+ "n=len(kg);\n",
+ "i=0;\n",
+ "x = [0,0,0]\n",
+ "while i<n:\n",
+ " x[i]=ks/kg[i];#To find different values of ks/kg\n",
+ " i=i+1;\n",
+ "\n",
+ "phib=[0.08,0.10,0.20];#From Fig.(15) for different values of ks/kg\n",
+ "i=0;\n",
+ "ke = [0,0,0]\n",
+ "h1 =[0,0,0]\n",
+ "while i<n:\n",
+ " ke[i]=ephsilonmf*kg[i]+(1-ephsilonmf)*ks*(1/((phib[i]*(ks/kg[i]))+(2.0/3)))\n",
+ " #Effective thermal conductivity of bed from Eqn.(3)\n",
+ " \n",
+ " h1[i]=1.13*(ke[i]*rhos*(1-ephsilonmf)*Cps*nw*(1-delta))**0.5;#Heat transfer coefficinet from Eqn.(18)\n",
+ " i=i+1;\n",
+ "\n",
+ "#OUTPUT\n",
+ "print 'Thermal conductivity of Gas(W/m K))',\n",
+ "print '\\tMax. heat transfer coefficient(W/m**2 k)'\n",
+ "i=0;\n",
+ "while i<n:\n",
+ " print '%f'%kg[i],\n",
+ " print '\\t\\t\\t\\t%d'%h1[i]\n",
+ " i=i+1;\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thermal conductivity of Gas(W/m K)) \tMax. heat transfer coefficient(W/m**2 k)\n",
+ "0.005000 \t\t\t\t324\n",
+ "0.020000 \t\t\t\t567\n",
+ "0.200000 \t\t\t\t1157\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3, Page 332\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Effect of Particle Size on h\n",
+ "\n",
+ "#Variable declaration\n",
+ "rhos=2700.; #Density of solids in kg/m**3\n",
+ "Cps=755.; #Specific heat capacity of the solid in J/kg K\n",
+ "ks=1.2; #Thermal conductivity of solids in W/m k\n",
+ "kg=0.028; #Thermal concuctivity of gas in W/m k\n",
+ "ephsilonmf=0.476; #Void fraction at minimum fluidization condition\n",
+ "dp1=10E-3; #Particle size for which h=hmax in m\n",
+ "hmax=250.; #Max. heat transfer coefficient in W/m**2 K \n",
+ "nw=5.; #Bubble frequency in s**-1\n",
+ "delta=0.1; #Fraction of bed in bubbles\n",
+ "deltaw=0.1; #Fraction of bed in bubbles in wall region\n",
+ "dp=2E-3; #Diameter of particle in m\n",
+ "\n",
+ "#CALCULATION\n",
+ "x=ks/kg;\n",
+ "phib=0.11;\n",
+ "phiw=0.17;\n",
+ "ke=ephsilonmf*kg+(1-ephsilonmf)*ks*(1/((phib*(ks/kg))+(2.0/3)));\n",
+ "#Effective thermal conductivity of bed from Eqn.(3)\n",
+ "\n",
+ "hpacket=1.13*(ke*rhos*(1-ephsilonmf)*Cps*nw/(1-deltaw))**0.5;\n",
+ "#Heat transfer coefficient for the packet of emulsion from Eqn.(11)\n",
+ "\n",
+ "ephsilonw=ephsilonmf;#Void fraction in the wall region\n",
+ "\n",
+ "kew=ephsilonw*kg+(1-ephsilonw)*ks*((phiw*(ks/kg)+(1.0/3))**-1);\n",
+ "#Effective thermal conductivity in the wall region with stagnant gas from Eqn.(4)\n",
+ "\n",
+ "y=(2*kew/dp1)+(hmax*hpacket)/(((1-deltaw)*hpacket)-hmax);\n",
+ "#Calculating the term alphaw*Cpg*rhog*uo from Eqn.(16) by rearranging it\n",
+ "\n",
+ "h=(1-deltaw)/((2*kew/dp+y*(dp/dp1)**0.5)**-1+hpacket**-1);\n",
+ "#Heat transfer coeeficient from Eqn.(11) by using the value of y \n",
+ "\n",
+ "#OUTPUT\n",
+ "print 'The heat transfer coefficient for paricle size of %fm = %fW/m**2 K'%(dp,h);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The heat transfer coefficient for paricle size of 0.002000m = 194.873869W/m**2 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 4, Page 334\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Freeboard Heat Exchange\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Hf=4.0; #Height of freeboard in m\n",
+ "uo=2.4; #Superficial gas velocity in m/s\n",
+ "ho=350.0; #Heat transfer coefficient at the bottom of freeboard region in W/m**2 K\n",
+ "hg=20.0; #Heat transfer coefficient in equivalent gas stream, but free of solids in W/m**2 K\n",
+ "\n",
+ "#CALCULATION\n",
+ "zf=[0,0.5,1,1.5,2,2.5,3,3.5,Hf];#Height above the top of the dense bubbling fluidized bed\n",
+ "hr=0;#Assuming heat transfer due to radiation is negligible\n",
+ "a=1.5/uo;#Since decay coefficient from Fig.(7.12), a*uo=1.5s**-1 \n",
+ "n=len(zf);\n",
+ "i=0;\n",
+ "h = []\n",
+ "while i<n:\n",
+ " h.append((hr+hg)+(ho-hr-hg)*math.exp(-a*zf[i]/2.0));#Heat transfer coefficient from Eqn.(24) for zf=Hf\n",
+ " i=i+1;\n",
+ "\n",
+ "hbar=(hr+hg)+2*(ho-hr-hg)*(1-math.exp(-a*Hf/2.0))/(a*Hf);#Mean heat transfer coefficient for the 4-m high freeboard from Eqn.(26)\n",
+ "\n",
+ "#OUTPUT\n",
+ "print 'The required relationship is h(W/m**2 K) vs. zf(m) as in Fig.(9a)'\n",
+ "print 'Height above the dense bubbling fluidized bed(m))',\n",
+ "print '\\tHeat transfer coefficient(W/m**2 k)'\n",
+ "i=0;\n",
+ "while i<n:\n",
+ " print '%f'%zf[i],\n",
+ " print '\\t\\t\\t\\t\\t\\t%f'%h[i]\n",
+ " i=i+1;\n",
+ "\n",
+ "print '\\nThe mean heat transfer coefficient for the 4-m high freeboard =%d W/m**2 K'%hbar\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required relationship is h(W/m**2 K) vs. zf(m) as in Fig.(9a)\n",
+ "Height above the dense bubbling fluidized bed(m)) \tHeat transfer coefficient(W/m**2 k)\n",
+ "0.000000 \t\t\t\t\t\t350.000000\n",
+ "0.500000 \t\t\t\t\t\t302.263958\n",
+ "1.000000 \t\t\t\t\t\t261.433158\n",
+ "1.500000 \t\t\t\t\t\t226.508723\n",
+ "2.000000 \t\t\t\t\t\t196.636271\n",
+ "2.500000 \t\t\t\t\t\t171.085009\n",
+ "3.000000 \t\t\t\t\t\t149.229857\n",
+ "3.500000 \t\t\t\t\t\t130.536154\n",
+ "4.000000 \t\t\t\t\t\t114.546583\n",
+ "\n",
+ "The mean heat transfer coefficient for the 4-m high freeboard =208 W/m**2 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file