diff options
Diffstat (limited to 'Fluid_Mechanics_/Chapter10.ipynb')
-rw-r--r-- | Fluid_Mechanics_/Chapter10.ipynb | 450 |
1 files changed, 450 insertions, 0 deletions
diff --git a/Fluid_Mechanics_/Chapter10.ipynb b/Fluid_Mechanics_/Chapter10.ipynb new file mode 100644 index 00000000..fc9fd648 --- /dev/null +++ b/Fluid_Mechanics_/Chapter10.ipynb @@ -0,0 +1,450 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:3b6a6304ae5564c5b042191e18c023d5d141ad8d64a979c29e54da09ebc8a32e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Chapter 10 : Open Channel Flow\n", + " " + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.1 Page no 363" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Top width, area of lfow, hydraulic radius\n", + "\n", + "from math import *\n", + "\n", + "from __future__ import division\n", + "\n", + "# Given\n", + "\n", + "b = 3 # base of the channel\n", + "\n", + "z = 0.5 # slope of the channel\n", + "\n", + "y = 2 # depth of the channel\n", + "\n", + "# Solution\n", + "\n", + "T = b + 2*z*y\n", + "\n", + "print \"Top width =\",round(T,0),\"m\"\n", + "\n", + "A = (b+z*y)*y\n", + "\n", + "print \"Area of flow =\",round(A,0),\"m**2\"\n", + "\n", + "P = b + 2*y*sqrt(1+z**2)\n", + "\n", + "print \"Wetted perimeter =\",round(P,3),\"m\"\n", + "\n", + "R = A/P\n", + "\n", + "print \"Hydraulic radius =\",round(R,2),\"m\"\n", + "\n", + "D = A/T\n", + "\n", + "print \"Hydraulic depth =\",round(D,2),\"m\"\n", + "\n", + "Z = A*sqrt(D)\n", + "\n", + "print \"Secton Factor =\",round(Z,2),\"m**2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Top width = 5.0 m\n", + "Area of flow = 8.0 m**2\n", + "Wetted perimeter = 7.472 m\n", + "Hydraulic radius = 1.07 m\n", + "Hydraulic depth = 1.6 m\n", + "Secton Factor = 10.12 m**2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.2 Page no 366" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Discharge for the trapezoidal channel\n", + "\n", + "from math import *\n", + "\n", + "from __future__ import division\n", + "\n", + "# Given\n", + "\n", + "z = 1.0 # slide slope\n", + "\n", + "b = 3.0 # base width\n", + "\n", + "y = 1.5 # depth\n", + "\n", + "S = 0.0009\n", + "\n", + "n = 0.012 # for concrete\n", + "\n", + "# Solution\n", + "\n", + "A = (b+z*y)*y\n", + "\n", + "P = P = b + 2*y*sqrt(1+z**2)\n", + "\n", + "R = A/P\n", + "\n", + "# from mannings eqquation\n", + "\n", + "Q = A*(1/n)*(R**(2/3)*S**(1/2))\n", + "\n", + "print \"Discharge for the channel =\",round(Q,2),\"m**3/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Discharge for the channel = 16.1 m**3/s\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.4 Page no 373" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Determine cross sectional area\n", + "\n", + "from __future__ import division\n", + "\n", + "from math import *\n", + "\n", + "# Given\n", + "\n", + "z = 1\n", + "\n", + "Q = 10000/60 # discharge of water in ft**#/s\n", + "\n", + "# Solution\n", + "\n", + "y = (Q/(1.828*2.25*sqrt(0.5)))**(2/5)\n", + "\n", + "print \"depth(y) =\",round(y,2),\"ft\"\n", + "\n", + "b = 0.828*y\n", + "\n", + "print \"base width(b) =\",round(b,2),\"ft\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "depth(y) = 5.05 ft\n", + "base width(b) = 4.18 ft\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.5 Page no 378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Calculate criticcal depth\n", + "\n", + "from math import *\n", + "\n", + "from __future__ import division\n", + "\n", + "# Given\n", + "\n", + "y = 2.5 # depth\n", + "\n", + "V = 8 # velocity in m/s\n", + "\n", + "g = 9.81 # acceleration due to gravity in m/s**2\n", + "\n", + "# Solution\n", + "\n", + "Yc = (20**2/g)**(1/3)\n", + "\n", + "print \"Critical depth =\",round(Yc,2),\"m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Critical depth = 3.44 m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.6 Page no 380" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# determine normal depth, flow regine, critical depth\n", + "\n", + "from math import *\n", + "\n", + "from __future__ import division\n", + "\n", + "# Given\n", + "\n", + "Q = 15 # flow rate in m**3/s\n", + "\n", + "w = 4.0 # bottom width\n", + "\n", + "S = 0.0008 # bed slope\n", + "\n", + "n = 0.025 # manning constant\n", + "\n", + "z = 0.5 # slope\n", + "\n", + "# Solution\n", + "\n", + "# We use a trial and error method here to find the value of y i.e. normal depth\n", + "\n", + "y = 2.22 # we take the value of y as 2.2 m\n", + "\n", + "Q = ((4+0.5*y)*(y/(n))*(((4+0.5*y)*y)/(4+2.236*y))**(0.667)*(S)**(0.5))\n", + "\n", + "print \"a )Normal Depth =\",round(y,2),\"m\"\n", + "\n", + "A = (4+0.5*y)*y\n", + "\n", + "T = (w+2*z*y)\n", + "\n", + "D = A/T\n", + "\n", + "V = (Q/A)\n", + "\n", + "F =V/(sqrt(9.81*D)) \n", + "\n", + "print \"b )F = \",round(F,2),\" Since the Froude number is less than 1, the flow is subcritical\"\n", + "\n", + "# we use trail and error to find the value of yc for critical depth\n", + "\n", + "yc = 1.08\n", + "\n", + "Q1 = (4+z*yc)*yc*sqrt((9.81*(4+0.5*yc)*yc)/(4+2*z*yc)) \n", + "\n", + "print \"c )Critical depth is = \",round(yc,2),\"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a )Normal Depth = 2.22 m\n", + "b )F = 0.31 Since the Froude number is less than 1, the flow is subcritical\n", + "c )Critical depth is = 1.08 m\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "\n", + "Example 10.8 Page no 390" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Height, type and length of jump and loss of energy\n", + "\n", + "from math import *\n", + "\n", + "from __future__ import division\n", + "\n", + "# Given\n", + "\n", + "b = 60 # base width in ft\n", + "\n", + "y1 = 2.5 # base depth in ft\n", + "\n", + "Q = 2500 # discharge in ft**3/s\n", + "\n", + "g = 32.2\n", + "\n", + "# Solution\n", + "\n", + "V1 = Q/(b*y1)\n", + "\n", + "F1 = V1/sqrt(g*y1)\n", + "\n", + "y2 = y1*0.5*(sqrt(1+8*F1**2)-1)\n", + "\n", + "V2 = Q/(b*y2)\n", + "\n", + "print \"Since F1 =\",round(F1,2),\" It is a weak jump\"\n", + "\n", + "L = y2*4.25\n", + "\n", + "print \"Length of the jump =\",round(L,0),\"ft\"\n", + "\n", + "E1 = y1+(V1**2/(2*g))\n", + "\n", + "E2 = y2+(V2**2/(2*g))\n", + "\n", + "El = E1-E2\n", + "\n", + "Te = El*62.4*Q/543\n", + "\n", + "print \"Total energy loss =\",round(Te,2),\"HP\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Since F1 = 1.86 It is a weak jump\n", + "Length of the jump = 23.0 ft\n", + "Total energy loss = 133.7 HP\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.12 Page no 409" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Determine flow rate\n", + "\n", + "from math import *\n", + "\n", + "from __future__ import division\n", + "\n", + "# Given\n", + "\n", + "d = 6 # depth of the channel\n", + "\n", + "w= 12 # width of the channel\n", + "\n", + "h = 1.0 # height of the channel\n", + "\n", + "p = 9 # pressure drop in m\n", + "\n", + "g = 32.2\n", + "\n", + "# Solution\n", + "\n", + "y2 = y1 - h - 0.75\n", + "\n", + "V1 = sqrt(2*g*0.75/((1.41)**2-1))\n", + "\n", + "Q = w*b*V1/10\n", + "\n", + "print \"Discharge =\",round(Q,0),\"cfs\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Discharge = 503.0 cfs\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |