diff options
Diffstat (limited to 'Fluid_Mechanics/Chapter8.ipynb')
-rwxr-xr-x | Fluid_Mechanics/Chapter8.ipynb | 358 |
1 files changed, 0 insertions, 358 deletions
diff --git a/Fluid_Mechanics/Chapter8.ipynb b/Fluid_Mechanics/Chapter8.ipynb deleted file mode 100755 index 6972a7f7..00000000 --- a/Fluid_Mechanics/Chapter8.ipynb +++ /dev/null @@ -1,358 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:74db613da6801f860dadcdbf59265a8239e5864c8922257a769d0c0fa0f7c4e0" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Chapter 8 : Laminar Flow" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 8.1 Page no 286" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "from math import *\n", - "\n", - "P1 = 200 # Pressure at inlet in kPa\n", - "\n", - "P2 = 260 # Pressure at outlet in kPa\n", - "\n", - "d = 0.004 # diameter in m\n", - "\n", - "L = 8 # length of pipe in meters\n", - "\n", - "z = 6 # height of the pipe from the ground\n", - "\n", - "g = 9.81 # acceleration due to gravity in m/s**2\n", - "\n", - "\n", - "mu = 19.1*10**-4 # viscosity of kerosene at 20 deg C\n", - "\n", - "S = 0.81 # specific gravity of kerosene\n", - "\n", - "rho = 1000 # density in kg/m**3\n", - "\n", - "\n", - "\n", - "p1 = (P1+g*z*S)*1000 # point 1\n", - "\n", - "p2 = (P2)*1000 # point 2\n", - "\n", - "\n", - "\n", - "Sp = -((p1-p2)/sqrt(L**2+z**2))\n", - "\n", - "r = d/2\n", - "\n", - "Tau_max = r*Sp/2\n", - "\n", - "print \"(a) Maximum shear stress =\",round(Tau_max,3),\"N/m**2\"\n", - "\n", - "\n", - "Vmax = r**2*Sp/(4*mu)\n", - "\n", - "print \"(b) Maximum velocity =\",round(Vmax,3),\"m/s\"\n", - "\n", - "\n", - "Q = pi*r**4*Sp/(8*mu)\n", - "\n", - "print \"(c) Discharge = \",round(Q,7),\"m**3/s\"\n", - "\n", - "\n", - "V = Vmax/2\n", - "\n", - "R = rho*V*d*S/mu\n", - "\n", - "print \"Reynolds number =\",round(R,0),\"is less than 2000, the flow is laminar and the calculations are valid\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Maximum shear stress = 1.232 N/m**2\n", - "(b) Maximum velocity = 0.645 m/s\n", - "(c) Discharge = 4.1e-06 m**3/s\n", - "Reynolds number = 547.0 is less than 2000, the flow is laminar and the calculations are valid\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example no 8.2 Page no 289" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "d = 0.02 # diameter of the pipe in m\n", - "\n", - "l = 30 # length of the pipe in m\n", - "\n", - "v = 0.1 # velocity in m/s\n", - "\n", - "g = 9.81 # acceleration due to gravity in m/s**2\n", - "\n", - "\n", - "nu = 1.54*10**-6 # kinematic viscosity of water in m**2/s\n", - "\n", - "\n", - "R = v*d/nu\n", - "\n", - "print \"R = \",round(R,0),\"is lesss than 2000 , the flow is laminar\"\n", - "\n", - "f = 64/R # friction factor\n", - "\n", - "Hf = f*l*v**2/(2*g*d) # head loss due to friction\n", - "\n", - "H=Hf*100\n", - "\n", - "print \"Head loss = \",round(H,2),\"cm of water\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "R = 1299.0 is lesss than 2000 , the flow is laminar\n", - "Head loss = 3.77 cm of water\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 8.3 Page no 290" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "from math import *\n", - "\n", - "\n", - "S = 0.92 # specific gravity\n", - "\n", - "gma = S*62.4 # density in lbs/ft**3\n", - "\n", - "nu=0.0205 # viscosity in ft**2/s\n", - "\n", - "W = 50 # weight of oil\n", - "\n", - "d = 9 # diameter of the pipe in inches\n", - "\n", - "g = 32.2 # acceleration due to gravity in ft/s**2\n", - "\n", - "\n", - "Q = W*2000/(gma*3600) # discharge in ft**3/s\n", - "\n", - "A = pi*d**2/(4*144) # area of pipe\n", - "\n", - "V = Q*1000/(A) # velocity in ft/s\n", - "\n", - "R = V*0.75/(nu*1000) # Reynolds number\n", - "\n", - "print \"R =\",round(R,2),\"is less than 2000 and hence flow is laminar\"\n", - "\n", - "f = 64/R # friction factor\n", - "\n", - "Hf = (f*5280*(V/1000)**2)/(2*g*0.75)\n", - "\n", - "Hp = gma*Q*Hf/(550)\n", - "\n", - "print \"Horse power required to pump the oil = \",round(Hp,1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "R = 40.07 is less than 2000 and hence flow is laminar\n", - "Horse power required to pump the oil = 10.6\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 8.4 Page no 291" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "from math import *\n", - "\n", - "V = 50 # Volume in m**3\n", - "\n", - "d = 5 # diameter in m\n", - "\n", - "d1 = 0.1 # diameter of bore\n", - "\n", - "l = 10 # length of the tube\n", - "\n", - "t = 20*60 # time in seconds\n", - "\n", - "rho = 0.88 # density in g/cm**3\n", - "\n", - "H1 = 5 # height from the base in m\n", - "\n", - "A = pi*d**2/4\n", - "\n", - "a = pi*d1**2/4\n", - "\n", - "\n", - "\n", - "H2 = H1-(V/A)\n", - "\n", - "mu = t*rho*a*(0.1)*98.1/(32*A*10*log(H1/H2))\n", - "\n", - "print \"Viscosity of the liquid =\",round(mu,4),\"poise\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Viscosity of the liquid = 0.0182 poise\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 8.5 Page no 297" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "from math import *\n", - "\n", - "\n", - "S = 0.81 # specific gravity of oil\n", - "\n", - "mu = 4*10**-5 # viscosity of oil in lb.s/ft**2\n", - "\n", - "gma = 62.4*S # density in lbs/ft**3\n", - "\n", - "p1 = 6.51 # pressure at point 1 in psia\n", - "\n", - "p2 = 8 # pressure at point 2 in psia\n", - "\n", - "h = 0.006 # distance between the plate in ft\n", - "\n", - "l = 4 # length of the plate in ft\n", - "\n", - "theta = pi/6 # angle of inclination\n", - "\n", - "\n", - "\n", - "P1 = p1*144 + gma*l*sin(theta)\n", - "\n", - "\n", - "P2 = p2*144\n", - "\n", - "\n", - "Sp = (P2-P1)/4\n", - "\n", - "\n", - "y = h\n", - "\n", - "\n", - "q = (2154.75*y**2/2) - (359125*y**3/3)\n", - "\n", - "print \"Discharge q = \",round(q,3),\"per unit ft of the plate\"\n", - "\n", - "\n", - "dV = 2154.75 - 718250*h\n", - "\n", - "\n", - "T = -mu*dV\n", - "\n", - "print \"Shear stress on the plate = \",round(T,3),\"lbs/ft**2 and resisting the motion of the plate\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Discharge q = 0.013 per unit ft of the plate\n", - "Shear stress on the plate = 0.086 lbs/ft**2 and resisting the motion of the plate\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |