summaryrefslogtreecommitdiff
path: root/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb')
-rw-r--r--Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb150
1 files changed, 24 insertions, 126 deletions
diff --git a/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb b/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb
index 54f50fe3..869f8b29 100644
--- a/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb
+++ b/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb
@@ -1,6 +1,7 @@
{
"metadata": {
- "name": ""
+ "name": "",
+ "signature": "sha256:63b02b86d37296507c195a23c5c84302645481c443c7f5e7bd4fa711e72942f7"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -27,10 +28,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the rate of heat transfer per m 2 of surface area of the wall, which is 220 mm thick.\n",
"\n",
- "'''\n",
"\n",
"# Variables\n",
"t1 = 60.; \t\t\t#0C\n",
@@ -69,10 +67,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) Determine the thickness of fire brick and insulation \n",
- "(ii) Calculate the heat loss \n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"t1 = 1325.; \t\t\t#0C\n",
@@ -120,10 +115,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "What thickness of loosely packed rock wool insulation should be added to\n",
- "reduce the heat loss or (gain) \n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"L_A = 0.1; \t\t\t#m\n",
@@ -164,10 +156,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''Find-\n",
- "(i) To how many millimetres of insulation brick is the air layer equivalent ?\n",
- "(ii) What is the temperature of the outer surface of the steel plate ?\n",
- "'''\n",
"\n",
"# Variables\n",
"L_A = 0.2; \t\t\t#m\n",
@@ -218,9 +206,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Find the heat flow rate\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"k_A = 150.; \t\t\t#W/m 0C\n",
@@ -276,11 +262,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate-\n",
- "(i) The rate of heat loss per m 2 of the tank surface area ;\n",
- "(ii) The temperature of the outside surface of the tank.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"L = 0.012; \t\t\t#m\n",
@@ -327,11 +309,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate\n",
- "(i) The rate at which heat must be removed from the interior \n",
- "(ii) The temperature on the outer surface of the metal sheet.\n",
- "'''\n",
+ "\n",
"# Variables\n",
"L_A = 0.003; \t\t\t#m\n",
"L_B = 0.05; \t\t\t#m\n",
@@ -379,12 +357,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine :\n",
- "(i) The unknown thermal conductivity \u2018k\u2019 ;\n",
- "(ii) The overall heat transfer coefficient ;\n",
- "(iii) All surface temperatures.\n",
- "'''\n",
"\n",
"#Varaible Declaration\n",
"L_A = 0.25; \t\t#m\n",
@@ -456,9 +428,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate the heat loss per metre of length\n",
- "'''\n",
+ "\n",
"\n",
"import math\n",
"\n",
@@ -501,9 +471,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Find the rate of heat loss from 60 m length of pipe.\n",
- "'''\n",
+ "\n",
"\n",
"import math\n",
"\n",
@@ -550,11 +518,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "How thick should the asbestos be provided in order to limit the heat losses to 2.1 kW/m 2 ?\n",
- "'''\n",
"\n",
- "# Variables\n",
"r1 = 0.06; \t\t\t#m\n",
"r2 = 0.08; \t\t\t#m\n",
"k_A = 42.; \t\t\t#W/m 0C\n",
@@ -596,9 +560,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Find the rate of heat leakage\n",
- "'''\n",
"\n",
"# Variables\n",
"r2 = 0.7; \t\t\t#m\n",
@@ -637,10 +598,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the critical thickness of insulation \n",
"\n",
- "'''\n",
"\n",
"import math \n",
"\n",
@@ -686,9 +644,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate the rate of heat transfer\n",
- "'''\n",
"\n",
"# Variables\n",
"A = 1*1.5; \t\t\t#m**2\n",
@@ -727,9 +682,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "find how much electric power must be supplied to the wire to maintain the wire surface at 120\u00b0C ?\n",
- "'''\n",
+ "\n",
"\n",
"import math\n",
"\n",
@@ -772,9 +725,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the heat transfer co-efficient and the rate of heat transfer \n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -825,9 +776,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the length of the tube required for developed flow.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -882,9 +831,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate the area of the heat exchanger.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -934,12 +881,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Find-\n",
- "(i) The rate of heat transfer,\n",
- "(ii) The mass flow rate of water, and\n",
- "(iii) The surface area of the heat exchanger.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"t_c1 = 25.; \t\t\t#0C\n",
@@ -992,9 +934,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "determine the number of tubes required. \n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -1053,13 +993,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate-\n",
- "(i) Mass of cooling water circulated in kg/min,\n",
- "(ii) Condenser surface area,\n",
- "(iii) Number of tubes required per pass, and\n",
- "(iv) Tube length.\n",
- "'''\n",
+ "\n",
"\n",
"\n",
"# Variables\n",
@@ -1125,9 +1059,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Determine the water exit temperature\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -1182,12 +1114,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate-\n",
- "(i) The total rate of energy emission.\n",
- "(ii) The intensity of normal radiation, and\n",
- "(iii) The wavelength of maximum monochromatic emissive power.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -1233,11 +1160,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate-\n",
- "(i) The surface temperature of the sun, and\n",
- "(ii) The heat flux at surface of the sun.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"wavelength = 0.49; \t\t\t#\u03bcm\n",
@@ -1276,14 +1199,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate-\n",
- "(i) Monochromatic emissive power \n",
- "(ii) Wavelength at which the emission is maximum,\n",
- "(iii) Maximum emissive power,\n",
- "(iv) Total emissive power, and\n",
- "(v) Total emissive power of the furnance \n",
- "'''\n",
"\n",
"import math\n",
"\n",
@@ -1345,10 +1260,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "(i) When the body is assumed to be grey with \u03b5 = 0.42.\n",
- "(ii) When the body is not grey.\n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"T1 = 1273.; \t\t\t#K\n",
@@ -1395,9 +1307,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "find the time required for the heating operation.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -1450,9 +1360,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the heat transfer rate \n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"r1 = 0.05; \t\t\t#m\n",
@@ -1496,9 +1404,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "calculate the steady state temperature of cylinder surface \n",
- "'''\n",
+ "\n",
"\n",
"# Variables\n",
"r1 = 0.05; \t\t\t#m\n",
@@ -1545,9 +1451,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Calculate the rate of evaporation of liquid air.\n",
- "'''\n",
"\n",
"# Variables\n",
"r1 = 0.105; \t\t\t#m\n",
@@ -1592,9 +1495,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Estimate the rate of heat flow by radiation to the oxygen in the container.\n",
- "'''\n",
+ "\n",
"\n",
"import math \n",
"\n",
@@ -1639,9 +1540,6 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "'''\n",
- "Find the percentage reduction when a polished aluminium shield\n",
- "'''\n",
"\n",
"# Variables\n",
"e1 = 0.3;\n",