diff options
Diffstat (limited to 'Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb')
-rw-r--r-- | Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb | 150 |
1 files changed, 24 insertions, 126 deletions
diff --git a/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb b/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb index 54f50fe3..869f8b29 100644 --- a/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb +++ b/Engineering_Thermodynamics:_A_Computer_Approach_(SI_Units_Version)/ch15.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:63b02b86d37296507c195a23c5c84302645481c443c7f5e7bd4fa711e72942f7" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,10 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the rate of heat transfer per m 2 of surface area of the wall, which is 220 mm thick.\n", "\n", - "'''\n", "\n", "# Variables\n", "t1 = 60.; \t\t\t#0C\n", @@ -69,10 +67,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Determine the thickness of fire brick and insulation \n", - "(ii) Calculate the heat loss \n", - "'''\n", + "\n", "\n", "# Variables\n", "t1 = 1325.; \t\t\t#0C\n", @@ -120,10 +115,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What thickness of loosely packed rock wool insulation should be added to\n", - "reduce the heat loss or (gain) \n", - "'''\n", + "\n", "\n", "# Variables\n", "L_A = 0.1; \t\t\t#m\n", @@ -164,10 +156,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''Find-\n", - "(i) To how many millimetres of insulation brick is the air layer equivalent ?\n", - "(ii) What is the temperature of the outer surface of the steel plate ?\n", - "'''\n", "\n", "# Variables\n", "L_A = 0.2; \t\t\t#m\n", @@ -218,9 +206,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the heat flow rate\n", - "'''\n", + "\n", "\n", "# Variables\n", "k_A = 150.; \t\t\t#W/m 0C\n", @@ -276,11 +262,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate-\n", - "(i) The rate of heat loss per m 2 of the tank surface area ;\n", - "(ii) The temperature of the outside surface of the tank.\n", - "'''\n", + "\n", "\n", "# Variables\n", "L = 0.012; \t\t\t#m\n", @@ -327,11 +309,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate\n", - "(i) The rate at which heat must be removed from the interior \n", - "(ii) The temperature on the outer surface of the metal sheet.\n", - "'''\n", + "\n", "# Variables\n", "L_A = 0.003; \t\t\t#m\n", "L_B = 0.05; \t\t\t#m\n", @@ -379,12 +357,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The unknown thermal conductivity \u2018k\u2019 ;\n", - "(ii) The overall heat transfer coefficient ;\n", - "(iii) All surface temperatures.\n", - "'''\n", "\n", "#Varaible Declaration\n", "L_A = 0.25; \t\t#m\n", @@ -456,9 +428,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the heat loss per metre of length\n", - "'''\n", + "\n", "\n", "import math\n", "\n", @@ -501,9 +471,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the rate of heat loss from 60 m length of pipe.\n", - "'''\n", + "\n", "\n", "import math\n", "\n", @@ -550,11 +518,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "How thick should the asbestos be provided in order to limit the heat losses to 2.1 kW/m 2 ?\n", - "'''\n", "\n", - "# Variables\n", "r1 = 0.06; \t\t\t#m\n", "r2 = 0.08; \t\t\t#m\n", "k_A = 42.; \t\t\t#W/m 0C\n", @@ -596,9 +560,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the rate of heat leakage\n", - "'''\n", "\n", "# Variables\n", "r2 = 0.7; \t\t\t#m\n", @@ -637,10 +598,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the critical thickness of insulation \n", "\n", - "'''\n", "\n", "import math \n", "\n", @@ -686,9 +644,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the rate of heat transfer\n", - "'''\n", "\n", "# Variables\n", "A = 1*1.5; \t\t\t#m**2\n", @@ -727,9 +682,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find how much electric power must be supplied to the wire to maintain the wire surface at 120\u00b0C ?\n", - "'''\n", + "\n", "\n", "import math\n", "\n", @@ -772,9 +725,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the heat transfer co-efficient and the rate of heat transfer \n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -825,9 +776,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the length of the tube required for developed flow.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -882,9 +831,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the area of the heat exchanger.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -934,12 +881,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find-\n", - "(i) The rate of heat transfer,\n", - "(ii) The mass flow rate of water, and\n", - "(iii) The surface area of the heat exchanger.\n", - "'''\n", + "\n", "\n", "# Variables\n", "t_c1 = 25.; \t\t\t#0C\n", @@ -992,9 +934,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the number of tubes required. \n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1053,13 +993,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate-\n", - "(i) Mass of cooling water circulated in kg/min,\n", - "(ii) Condenser surface area,\n", - "(iii) Number of tubes required per pass, and\n", - "(iv) Tube length.\n", - "'''\n", + "\n", "\n", "\n", "# Variables\n", @@ -1125,9 +1059,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the water exit temperature\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1182,12 +1114,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate-\n", - "(i) The total rate of energy emission.\n", - "(ii) The intensity of normal radiation, and\n", - "(iii) The wavelength of maximum monochromatic emissive power.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1233,11 +1160,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate-\n", - "(i) The surface temperature of the sun, and\n", - "(ii) The heat flux at surface of the sun.\n", - "'''\n", + "\n", "\n", "# Variables\n", "wavelength = 0.49; \t\t\t#\u03bcm\n", @@ -1276,14 +1199,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate-\n", - "(i) Monochromatic emissive power \n", - "(ii) Wavelength at which the emission is maximum,\n", - "(iii) Maximum emissive power,\n", - "(iv) Total emissive power, and\n", - "(v) Total emissive power of the furnance \n", - "'''\n", "\n", "import math\n", "\n", @@ -1345,10 +1260,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) When the body is assumed to be grey with \u03b5 = 0.42.\n", - "(ii) When the body is not grey.\n", - "'''\n", + "\n", "\n", "# Variables\n", "T1 = 1273.; \t\t\t#K\n", @@ -1395,9 +1307,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the time required for the heating operation.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1450,9 +1360,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the heat transfer rate \n", - "'''\n", + "\n", "\n", "# Variables\n", "r1 = 0.05; \t\t\t#m\n", @@ -1496,9 +1404,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the steady state temperature of cylinder surface \n", - "'''\n", + "\n", "\n", "# Variables\n", "r1 = 0.05; \t\t\t#m\n", @@ -1545,9 +1451,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the rate of evaporation of liquid air.\n", - "'''\n", "\n", "# Variables\n", "r1 = 0.105; \t\t\t#m\n", @@ -1592,9 +1495,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Estimate the rate of heat flow by radiation to the oxygen in the container.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1639,9 +1540,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the percentage reduction when a polished aluminium shield\n", - "'''\n", "\n", "# Variables\n", "e1 = 0.3;\n", |