summaryrefslogtreecommitdiff
path: root/Engineering_Thermodynamics/ch13.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Thermodynamics/ch13.ipynb')
-rwxr-xr-xEngineering_Thermodynamics/ch13.ipynb590
1 files changed, 590 insertions, 0 deletions
diff --git a/Engineering_Thermodynamics/ch13.ipynb b/Engineering_Thermodynamics/ch13.ipynb
new file mode 100755
index 00000000..4c7ec6db
--- /dev/null
+++ b/Engineering_Thermodynamics/ch13.ipynb
@@ -0,0 +1,590 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:20c7c69ec3c2fcafe0d93dd099c65cc40aeef92c301c25a624e4ebbb2e24b55e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13 : Gas Power Cycles"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1 Page No : 543"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T1 = 273.+35;\n",
+ "P1 = 100e03; \t\t\t# in kN/m2\n",
+ "Q1 = 2100.;\n",
+ "R = 0.287;\n",
+ "v1 = 0.884\n",
+ "v2 = 0.11\n",
+ "v3 = v2;\n",
+ "rk = 8.\n",
+ "g = 1.4; \t\t\t# gamma\n",
+ "\n",
+ "# Calculation\n",
+ "n_cycle = 1-(1./rk**(1.4-1));\n",
+ "v12 = 8; \t\t\t# v1./v2\n",
+ "v1 = (R*T1)/P1;\n",
+ "v2 = v1/8;\n",
+ "T2 = T1*(v1/v2)**(g-1);\n",
+ "cv = 0.718;\n",
+ "T3 = Q1/cv + T2\n",
+ "P21 = (v1/v2)**g;\n",
+ "P2 = P21*P1;\n",
+ "P3 = P2*(T3/T2);\n",
+ "Wnet = Q1*n_cycle;\n",
+ "Pm = Wnet/(v1-v2);\n",
+ "\n",
+ "# Results\n",
+ "print \"Maximum pressure is %.2f mPa\"%(P3/1e06)\n",
+ "print \"Temperature of the cycle is %.2f K\"%T3,\"K\"\n",
+ "print \"Cycle efficiency is %.2f %%\"%(n_cycle*100)\n",
+ "print \"Mean effective pressure is %.3f MPa\"%(Pm/1e06)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum pressure is 9.43 mPa\n",
+ "Temperature of the cycle is 3632.39 K K\n",
+ "Cycle efficiency is 56.47 %\n",
+ "Mean effective pressure is 1.533 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2 Page No : 544"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "rk = 14.;\n",
+ "k = 0.06\n",
+ "rc = k*(14-1)+1;\n",
+ "g = 1.4;\n",
+ "\n",
+ "# Calculation\n",
+ "n_diesel = 1-((1./g))*(1./rk**(g-1))*((rc**(g-1))/(rc-1));\n",
+ "\n",
+ "# Results\n",
+ "print \"Air standard efficiency is %.f %%\"%(n_diesel*100)\n",
+ "\n",
+ "# note : rounding off error. please check."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Air standard efficiency is 60 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.3 Page No : 544"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "rk = 16.;\n",
+ "T1 = 273.+15;\n",
+ "P1 = 100.; \t\t\t# in kN/m2\n",
+ "T3 = 1480.+273;\n",
+ "g = 1.4; \t\t\t# gamma \n",
+ "R = 0.287;\n",
+ "T2 = 288*(rk**(g-1));\n",
+ "\n",
+ "# Calculation\n",
+ "rc = T3/T2 ;\n",
+ "cp = 1.005; cv = 0.718;\n",
+ "Q1 = cp*(T3-T2);\n",
+ "T4 = T3*((rc/rk)**(g-1));\n",
+ "Q2 = cv*(T4-T1);\n",
+ "n = 1-(Q2/Q1); \t\t\t# cycle efficiency\n",
+ "n_ = 1-((1./g))*(1./rk**(g-1))*((rc**(g-1))/(rc-1)); \t\t\t# cycle efficiency from another formula\n",
+ "Wnet = Q1*n;\n",
+ "v1 = (R*T1)/P1 ;\n",
+ "v2 = v1/rk;\n",
+ "Pm = Wnet/(v1-v2);\n",
+ "\n",
+ "# Results\n",
+ "print \"cut-off ratio is %.2f\"%rc\n",
+ "print \"Heat supplied per kg of air is %.1f kJ/Kg\"%Q1\n",
+ "print \"Cycle efficiency is %.1f %%\"%(n*100)\n",
+ "print \"Mean effective pressure is %.2f Kpa\"%Pm\n",
+ "\n",
+ "# rounding off error is there."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cut-off ratio is 2.01\n",
+ "Heat supplied per kg of air is 884.3 kJ/Kg\n",
+ "Cycle efficiency is 61.3 %\n",
+ "Mean effective pressure is 699.97 Kpa\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.4 Page No : 546"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T1 = 273.+50;\n",
+ "rk = 16.;\n",
+ "g = 1.4; \t\t\t# gamma\n",
+ "P3 = 70.; \n",
+ "cv = 0.718; \n",
+ "cp = 1.005; \n",
+ "R = 0.287;\n",
+ "\n",
+ "# Calculation\n",
+ "T2 = T1*((rk**(g-1)));\n",
+ "P1 = 1; \t\t\t# in bar\n",
+ "P2 = P1*(rk)**g;\n",
+ "T3 = T2*(P3/P2);\n",
+ "Q23 = cv*(T3-T2);\n",
+ "T4 = (Q23/cp)+T3;\n",
+ "v43 = T4/T3; \t\t\t# v4/v3\n",
+ "v54 = rk/v43; \t\t\t# v5/v4 = (v1./v2)*(v3/v4)\n",
+ "T5 = T4*(1./v54)**(g-1);\n",
+ "P5 = P1*(T5/T1);\n",
+ "Q1 = cv*(T3-T2)+cp*(T4-T3);\n",
+ "Q2 = cv*(T5-T1);\n",
+ "n_cycle = 1-(Q2/Q1);\n",
+ "v1 = (R*T1)/P1;\n",
+ "v12 = (15./16)*v1; \t\t\t# v1-v2\n",
+ "Wnet = Q1*n_cycle;\n",
+ "Pm = Wnet/(v12);\n",
+ "\n",
+ "# Results\n",
+ "print \"Efficiency of the cycle is %.2f %%\"%(n_cycle*100)\n",
+ "print \"Mean effective pressure is %.2f\"%Pm,\"bar\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Efficiency of the cycle is 66.31 %\n",
+ "Mean effective pressure is 4.76 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.5 Page No : 547"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "P1 = 0.1e06;\n",
+ "T1 = 303.;\n",
+ "T3 = 1173.;\n",
+ "PR = 6.; \t\t\t# Pressure ratio\n",
+ "rp = 6.; \n",
+ "nt = 0.8; \n",
+ "nc = 0.8;\n",
+ "g = 1.4; \n",
+ "cv = 0.718; \n",
+ "cp = 1.005; \n",
+ "R = 0.287;\n",
+ "\n",
+ "# Calculation\n",
+ "j = (PR)**((g-1)/g);\n",
+ "T2s = j*T1;\n",
+ "T4s = T3/j;\n",
+ "T21 = (T2s-T1)/nc ; \t\t\t# T2-T1\n",
+ "T34 = nt*(T3-T4s); \t\t\t# T3-T4\n",
+ "Wt = cp*T34;\n",
+ "Wc = cp*T21;\n",
+ "T2 = T21+T1;\n",
+ "Q1 = cp*(T3-T2);\n",
+ "n = (Wt-Wc)/Q1;\n",
+ "T4 = T3-375;\n",
+ "T6 = 0.75*(T4-T2) + T2 ;\n",
+ "Q1_ = cp*(T3-T6);\n",
+ "n_ = (Wt-Wc)/Q1_;\n",
+ "I = (n_-n)/n ;\n",
+ "\n",
+ "# Results\n",
+ "print \"The percentage efficiency in cycle efficiency due to regeneration is %.f %%\"%(I*100)\n",
+ "\n",
+ "# note : rounding off error is there."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage efficiency in cycle efficiency due to regeneration is 42 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.6 Page No : 549"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "cp = 1.005;\n",
+ "Tmax = 1073.\n",
+ "Tmin = 300.;\n",
+ "\n",
+ "# Calculation\n",
+ "Wnet_max = cp*(math.sqrt(Tmax)-math.sqrt(Tmin))**2;\n",
+ "n_cycle = 1-math.sqrt(Tmin/Tmax);\n",
+ "n_carnot = 1-(Tmin/Tmax);\n",
+ "r = n_cycle/n_carnot;\n",
+ "\n",
+ "# Results\n",
+ "print \"Maximum work done per kg of air is %.2f kJ/Kg\"%Wnet_max\n",
+ "print \"cycle efficiency is %.0f %%\"%(n_cycle*100)\n",
+ "print \"ratio of brayton and carnot efficiency is %.3f\"%r\n",
+ "\n",
+ "# note : rounding off error is there."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum work done per kg of air is 239.47 kJ/Kg\n",
+ "cycle efficiency is 47 %\n",
+ "ratio of brayton and carnot efficiency is 0.654\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.7 Page No : 549"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "rp = 6.;\n",
+ "g = 1.4; \n",
+ "cv = 0.718; \n",
+ "cp = 1.005; \n",
+ "R = 0.287;\n",
+ "T1 = 300.; \n",
+ "T3 = 1100.; \n",
+ "T0 = 300.;\n",
+ "\n",
+ "# Calculation\n",
+ "n_cycle = 1-(1./rp**((g-1)/g));\n",
+ "j = rp**((g-1)/g);\n",
+ "T2 = T1*j;\n",
+ "T4 = T3/j;\n",
+ "Wc = cp*(T2-T1);\n",
+ "Wt = cp*(T3-T4);\n",
+ "WR = (Wt-Wc)/Wt;\n",
+ "Q1 = 100; \t\t\t# in MW\n",
+ "PO = n_cycle*Q1;\n",
+ "m_dot = (Q1*1e06)/(cp*(T3-T2));\n",
+ "R = m_dot*cp*T0*((T4/T0)-1-math.log(T4/T0));\n",
+ "\n",
+ "# Results\n",
+ "print \"The thermal efficiency of the cycle is %.1f %%\"%(n_cycle*100)\n",
+ "print \"Work ratio is %.3f\"%WR\n",
+ "print \"Power output is %.1f MW\"%PO\n",
+ "print \"Energy flow rate of the exhaust gas stream is %.2f MW\"%(R/1e06)\n",
+ "\n",
+ "# rounding error is there."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thermal efficiency of the cycle is 40.1 %\n",
+ "Work ratio is 0.545\n",
+ "Power output is 40.1 MW\n",
+ "Energy flow rate of the exhaust gas stream is 20.53 MW\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.8 Page No : 550"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "nc = 0.87; \n",
+ "nt = 0.9; \n",
+ "T1 = 311.; \n",
+ "rp = 8.; \t\t\t# P2/P1\n",
+ "P1 = 1.; \n",
+ "P2 = 8.; \n",
+ "P3 = 0.95*P2; \n",
+ "P4 = 1;\n",
+ "T3 = 1100.; \n",
+ "g = 1.4; \n",
+ "cv = 0.718; \n",
+ "cp = 1.005; \n",
+ "R = 0.287;\n",
+ "\n",
+ "# Calculation\n",
+ "# With no cooling\n",
+ "T2s = T1*((P2/P1)**((g-1)/g));\n",
+ "T2 = T1 + (T2s-T1)/0.87;\n",
+ "T4s = T3*(P4/P3)**((g-1)/g);\n",
+ "n = (((T3-T4s)*nt)-((T2s-T1)/nc))/(T3-T2);\n",
+ "# With cooling\n",
+ "n_cycle = n-0.05;\n",
+ "x = 0.13;\n",
+ "r = 0.13/1.13;\n",
+ "\n",
+ "# Results\n",
+ "print \"Percentage of air that may be taken from the compressor is %.1f%%\"%(r*100)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage of air that may be taken from the compressor is 11.5%\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.10 Page No : 555"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T1 = 233.; \n",
+ "V1 = 300.; \n",
+ "cp = 1.005; \n",
+ "g = 1.4;\n",
+ "\n",
+ "# Calculation and Results\n",
+ "T2 = T1+((V1**2)/(2*cp))*1e-03 ;\n",
+ "P1 = 35;\n",
+ "P2 = P1*(T2/T1)**(g/(g-1));\n",
+ "rp = 10; \t\t\t# Pressure ratio\n",
+ "P3 = rp*P2;\n",
+ "T3 = T2*(P3/P2)**((g-1)/g);\n",
+ "T4 = 1373;\n",
+ "T5 = T4-T3+T2;\n",
+ "P4 = P3;\n",
+ "P5 = P4*(T5/T4)**(g/(g-1));\n",
+ "print \"Temperature at the turbine exit is %.2f K\"%T5\n",
+ "print \"Pressure at the turbine exit is %.2f kPa\"%P5\n",
+ "P6 = P1;\n",
+ "T6 = T5*(P6/P5)**((g-1)/g);\n",
+ "V6 = (2*cp*1000*(T5-T6))**0.5 ;\n",
+ "\n",
+ "print \"Velocity of the gas at the nozzle exit is %.1f m/s\"%V6\n",
+ "w = 50.;\n",
+ "Ve = V6; Vi = 300.;\n",
+ "Wp_dot = w*Vi*(Ve-Vi);\n",
+ "h4 = 1373.; \n",
+ "h3 = 536.66;\n",
+ "Q1 = w*cp*(h4-h3); \t\t\t# in kJ/kg\n",
+ "np = Wp_dot/(Q1*1000);\n",
+ "print \"The propulsive efficiency of the cycle is %.1f %%\"%(np*100)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature at the turbine exit is 1114.47 K\n",
+ "Pressure at the turbine exit is 312.00 kPa\n",
+ "Velocity of the gas at the nozzle exit is 1020.3 m/s\n",
+ "The propulsive efficiency of the cycle is 25.7 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.11 Page No : 556"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "Ta = 288.;\n",
+ "rp = 8.; \t\t\t# Pb/Pa\n",
+ "g = 1.33; \n",
+ "g1 = 1.44; \n",
+ "cv = 0.718; \n",
+ "cpa = 1.005; \n",
+ "cpg = 1.11; \n",
+ "R = 0.287;\n",
+ "\n",
+ "# Calculation\n",
+ "Tb = Ta*(rp)**((g1-1)/g1);\n",
+ "Tc = 1073.; \n",
+ "Tm = 800.+273; \n",
+ "Tmin = 100.+273;\n",
+ "Td = Tc/(rp**((g-1)/g));\n",
+ "Wgt = cpg*(Tc-Td)-cpa*(Tb-Ta);\n",
+ "Q1 = cpg*(Tc-Tb);\n",
+ "Q1_ = cpg*(Tc-Td);\n",
+ "h1 = 3775.; h2 = 2183.; h3 = 138.; h4 = h3;\n",
+ "Q1_st = h1-h3; \t\t\t# Q1'\n",
+ "Q_fe = cpg*(Tm-Tmin);\n",
+ "was = Q1_st/Q_fe; \t\t\t# wa/ws\n",
+ "Wst = h1-h2;\n",
+ "PO = 190e03; \t\t\t# in kW\n",
+ "ws = PO/(was*Wgt+Wst);\n",
+ "wa = 322.5;\n",
+ "CV = 43300.; \t\t\t# in kJ/kg\n",
+ "waf = round(CV/(1095.),1)\n",
+ "FEI = (wa/waf)*CV;\n",
+ "noA = PO/FEI;\n",
+ "\n",
+ "# Results\n",
+ "print \"Air fuel ratio is %.2f\"%waf\n",
+ "print \"Overall efficiency of combined plant is %.1f %%\"%(noA*100)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Air fuel ratio is 39.50\n",
+ "Overall efficiency of combined plant is 53.7 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file