diff options
Diffstat (limited to 'Engineering_Physics_by_K._Rajagopal/Chapter_8.ipynb')
-rwxr-xr-x | Engineering_Physics_by_K._Rajagopal/Chapter_8.ipynb | 231 |
1 files changed, 231 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K._Rajagopal/Chapter_8.ipynb b/Engineering_Physics_by_K._Rajagopal/Chapter_8.ipynb new file mode 100755 index 00000000..36c3530d --- /dev/null +++ b/Engineering_Physics_by_K._Rajagopal/Chapter_8.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8:Conducting Materials" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1, Page 266" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "n = 5.8*1e28; # Electrons density in electrons per cube meter\n", + "rho = 1.58*1e-8; #Resistivity of wire in ohm meter\n", + "m = 9.1*1e-31; # Mass of electron \n", + "e = 1.6*1e-19; # Charge of electron in coloumb\n", + "E = 1e2; # Electric field\n", + "\n", + "#Calculations\n", + "t = round((m/(rho*n*e**2))/1e-14);\n", + "u = (e*t*10**-14)/m;\n", + "v = u*E; \n", + "\n", + "#Results\n", + "print 'The relaxation time is ',t,'*10^-14 s'\n", + "print 'The mobility of electrons ',round(u/1e-3,2),'*10^-3 m^2/volt sec'\n", + "print 'The average drift velocity for an electric field of 1V/cm is ',round(v,3),'m/s'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The relaxation time is 4.0 *10^-14 s\n", + "The mobility of electrons 7.03 *10^-3 m^2/volt sec\n", + "The average drift velocity for an electric field of 1V/cm is 0.703 m/s\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2, Page 267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "#Variable declaration\n", + "e = 1.6*1e-19; # Charge on electron in coulumb\n", + "m = 9.1*1e-31; # Mass of electron in kg \n", + "rho = 1.54*1e-8; #Resistivity of material at room temperature in ohm . meter\n", + "n = 5.8*1e28; # Number of electrons per cubic meter\n", + "Ef = 5.5; # The fermi energy of the conductor in eV\n", + "\n", + "#Calculations\n", + "vf = sqrt((2*Ef*e)/m);\n", + "t = (m/(n*e**2*rho));\n", + "MFP = vf*t;\n", + "\n", + "#Results\n", + "print 'Velocity of electron is',round(vf/1e6,2),'*10^6 m/s'\n", + "print 'Mean free path of electron is',round(MFP/1e-8,2),'*10^-8 m'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Velocity of electron is 1.39 *10^6 m/s\n", + "Mean free path of electron is 5.53 *10^-8 m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3, Page 267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "m = 9.1*1e-31; #Mass of electron in kg\n", + "e = 1.6*1e-19; # Charge on electron in coulumb\n", + "t = 3*1e-14; # Relaxation time in seconds\n", + "n = 5.8*1e28; #Number of electrons in cubic meter\n", + "\n", + "#Calculations\n", + "rho =m/(n*t*e*e);#The resistivity of metal \n", + "u = 1/(n*e*rho);#The mobility of electron \n", + "\n", + "#Result\n", + "print 'The resistivity of metal is',round(rho/1e-8,2),'*10^-8 Ohm.meter' #incorrect answer in textbook\n", + "print 'The mobility of electron is',round(u/1e-3,2),'*10^-3 sqaure meter per volt.second' \n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The resistivity of metal is 2.04 *10^-8 Ohm.meter\n", + "The mobility of electron is 5.27 *10^-3 sqaure meter per volt.second\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4, Page 268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "#Variable declaration\n", + "e = 1.6*1e-19; # Charge of electrons in coloumbs\n", + "m = 9.1*1e-31; # Mass of electrons in Kg\n", + "Ef = 7*e ; #Fermi energy in electrons volt\n", + "t = 3*1e-14; # Relaxation time in seconds\n", + "\n", + "#Calculations\n", + "vf = sqrt(Ef*2/m);\n", + "lamda = vf*t;#The mean free path of electrons \n", + "\n", + "#Result\n", + "print 'The mean free path of electrons is',round(lamda/1e-10),'A'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The mean free path of electrons is 471.0 A\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.5, Page 268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "rhoC = 1.65*1e-8; # Electrical resistivity of cpooer in ohm meter\n", + "rhoN = 14*1e-8; # Electrical resistivity of Nickel in ohm meter\n", + "T = 300; # Room temperature in kelvin\n", + "\n", + "#Calculations\n", + "KCu =(2.45*1e-8*T)/rhoC;#Thermal conductivity of Cu\n", + "KNi =2.45*1e-8*T/rhoN;#Thermal conductivity of Ni\n", + "\n", + "#Results\n", + "print 'Thermal conductivity of Cu is ',round(KCu),'W/(m*degree)' #incorrect answer in textbook\n", + "print 'Thermal conductivity of Ni is ',KNi,'W/(m*degree)'\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thermal conductivity of Cu is 445.0 W/(m*degree)\n", + "Thermal conductivity of Ni is 52.5 W/(m*degree)\n" + ] + } + ], + "prompt_number": 5 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |