diff options
Diffstat (limited to 'Engineering_Physics_by_Bhattacharya_Bhaskaran')
13 files changed, 2485 insertions, 0 deletions
diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb new file mode 100755 index 00000000..7df93df9 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb @@ -0,0 +1,705 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.1, Page number 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of a submerged submarine\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.33; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of submarine(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",d1, \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 237.6 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.2, Page number 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the natural frequency \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 40; #length of iron rod(mm)\n",
+ "E = 115*10**9; #Young's modulus(N/m**2)\n",
+ "rho = 7.25*10**3; #density of pure iron(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz)\n",
+ "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 49.785 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.3, Page number 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the fundamental frequency \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 1; #length of quartz crystal(mm)\n",
+ "E = 7.9*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-6; \n",
+ "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"fundamental frequency of crystal is\",new, \"*10**6 Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fundamental frequency of crystal is 2.73 *10**6 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.4, Page number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the velocity of waves\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 0.55; #distance between 2 constructive antinodes(mm)\n",
+ "new = 1.5; #frequency of crystal(MHz)\n",
+ " \n",
+ "#Calculation\n",
+ "new = new*10**6; #frequency of crystal(Hz)\n",
+ "d = d*10**-3; #distance between 2 constructive antinodes(m)\n",
+ "#distance between 2 antinodes is given by lamda/2\n",
+ "lamda = 2*d; #wavelength of ultrasonic waves(m)\n",
+ "v = new*lamda; #velocity of waves(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of waves is\",int(v), \"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of waves is 1650 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.5, Page number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the natural frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 50; #length of rod(mm)\n",
+ "E = 11.5*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 7250; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz)\n",
+ "new = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"natural frequency of rod is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "natural frequency of rod is 39.83 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.6, Page number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 2; #length of crystal(mm)\n",
+ "E = 7.9*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-6; #natural frequency of the rod(MHz)\n",
+ "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of crystal is\",new, \"MHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of crystal is 1.365 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.7, Page number 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 3; #length of crystal(mm)\n",
+ "E = 8*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2500; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz) \n",
+ "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of crystal is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of crystal is 942.81 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.8, Page number 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 1.5; #length of crystal(mm)\n",
+ "E = 7.9*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-6; #natural frequency of the rod(MHz) \n",
+ "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of crystal is\",new, \"MHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of crystal is 1.82 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.9, Page number 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of the sea\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.95; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of sea(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",int(d1), \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 684 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.10, Page number 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of a submerged submarine\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.83; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of submarine(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",d1, \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 597.6 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.11, Page number 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the reverberation time of hall\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "aS = 1050; #total absorption inside hall(Sabine)\n",
+ "V = 9000; #volume of cinema hall(m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "T = 0.165*V/aS; #reverberation time of hall(s)\n",
+ "T = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"reverberation time of the hall is\",T, \"s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "reverberation time of the hall is 1.4143 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.12, Page number 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the area of interior surface\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.65; #average absorption coefficient(Sabine/m**2)\n",
+ "V = 13500; #volume of auditorium(m**3)\n",
+ "T = 1.2; #reverberation time of hall(s)\n",
+ "\n",
+ "#Calculation\n",
+ "S = 0.165*V/(a*T); #reverberation time of hall(s)\n",
+ "S = math.ceil(S*10)/10; #rounding off to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"total area of interior surface is\",S, \"m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "total area of interior surface is 2855.8 m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.13, Page number 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the new reverberation time of hall\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 15000; #volume of cinema hall(m**3)\n",
+ "T1 = 1.3; #initial reverberation time of hall(s)\n",
+ "a1S1 = 300; #number of chairs placed\n",
+ "\n",
+ "#Calculation\n",
+ "aS = 0.165*V/T1; #total absorption of hall\n",
+ "T2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\n",
+ "T2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"reverberation time of the hall after adding chairs is\",T2, \"s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "reverberation time of the hall after adding chairs is 1.1231 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.14, Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of a submerged submarine\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.5; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of submarine(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",int(d1), \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 360 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.15, Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the velocity of waves\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 0.4; #distance between 2 constructive antinodes(mm)\n",
+ "new = 1.5; #frequency of crystal(MHz)\n",
+ " \n",
+ "#Calculation\n",
+ "new = new*10**6; #frequency of crystal(Hz)\n",
+ "d = d*10**-3; #distance between 2 constructive antinodes(m)\n",
+ "#distance between 2 antinodes is given by lamda/2\n",
+ "lamda = 2*d; #wavelength of ultrasonic waves(m)\n",
+ "v = new*lamda; #velocity of waves(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of waves is\",int(v), \"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of waves is 1200 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.16, Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the natural frequency \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 40; #length of iron rod(mm)\n",
+ "E = 11.5*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 7250; #density of pure iron(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz)\n",
+ "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 49.785 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter10.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter10.ipynb new file mode 100755 index 00000000..e90b7dfe --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter10.ipynb @@ -0,0 +1,70 @@ +{ + "metadata": { + "name": "Chapter10" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Dielectric Materials" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 10.1, Page number 289" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electronic polarizability of He atoms\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0000684; #dielectric constant\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "electronic polarizability is 2.242e-41 Fm**2\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 10.2, Page number 290" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electronic polarizability of Argon gas\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0024; #relative permittivity\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "electronic polarizability is 7.86666666667e-40 Fm**2\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter2.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter2.ipynb new file mode 100755 index 00000000..a5d2bc97 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter2.ipynb @@ -0,0 +1,175 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Lasers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.1, Page number 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the relative population \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 590; #wavelength(nm)\n",
+ "h = 6.625*10**-34; #planck's constant\n",
+ "c = 3*10**8; #velocity of light(m/s)\n",
+ "k = 1.38*10**-23; #boltzmann's constant\n",
+ "T = 523; #temperature(Kelvin)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = lamda*10**-9; #wavelength(m) \n",
+ "#n1byn2 = math.exp(-(E2-E1)/(k*T))\n",
+ "#but E2-E1 = h*new and new = c/lamda\n",
+ "#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\n",
+ "n1byn2 = math.exp(-h*c/(lamda*k*T));\n",
+ "\n",
+ "#Result\n",
+ "print \"relative population of Na atoms is\",n1byn2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative population of Na atoms is 5.36748316686e-21\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.2, Page number 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the ratio of stimulated to spontaneous emission \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 590; #wavelength(nm)\n",
+ "h = 6.625*10**-34; #planck's constant\n",
+ "c = 3*10**8; #velocity of light(m/s)\n",
+ "k = 1.38*10**-23; #boltzmann's constant\n",
+ "T = 523; #temperature(Kelvin)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = lamda*10**-9; #wavelength(m) \n",
+ "#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n",
+ "#but new = c/lamda\n",
+ "#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\n",
+ "A = math.exp(h*c/(lamda*k*T))-1;\n",
+ "n21dashbyn21 = 1/A; \n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\n",
+ "print \"answer given in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio of stimulated to spontaneous emission is 5.36748316686e-21\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.3, Page number 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the number of photons emitted \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 632.8; #wavelength of laser(nm)\n",
+ "h = 6.625*10**-34; #planck's constant\n",
+ "c = 3*10**8; #velocity of light(m/s)\n",
+ "p = 3.147; #output power(mW)\n",
+ "\n",
+ "#Calculation\n",
+ "p = p*10**-3; #output power(W)\n",
+ "lamda = lamda*10**-9; #wavelength(m) \n",
+ "new = c/lamda; #frequency(Hz)\n",
+ "E = h*new; #energy of each photon(J)\n",
+ "Em = p*60; #energy emitted per minute(J/min)\n",
+ "N = Em/E; #number of photons emitted per second\n",
+ "\n",
+ "#Result\n",
+ "print \"number of photons emitted per second is\",N"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "number of photons emitted per second is 6.01183879245e+17\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter3.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter3.ipynb new file mode 100755 index 00000000..4f695418 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter3.ipynb @@ -0,0 +1,91 @@ +{ + "metadata": { + "name": "Chapter3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Fibre Optics and Applications" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 3.1, Page number 84" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the numerical aperture, critical angle,acceptance angle\n\n#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 3.2, Page number 85" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the pulse broadening \n\n#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 3.3, Page number 85" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the minimum and maximum number of total internal reflections\n\n#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"rays travelling with alpha = 0 suffer no reflection. therefore minimum number of reflections per metre is 0.\"\nprint \"for rays travelling with alpha = alpha_m, the total number of internal reflections for 1m is\",int(n),\"m-1\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "rays travelling with alpha = 0 suffer no reflection. therefore minimum number of reflections per metre is 0.\nfor rays travelling with alpha = alpha_m, the total number of internal reflections for 1m is 2041 m-1\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter4.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter4.ipynb new file mode 100755 index 00000000..79f4bf10 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter4.ipynb @@ -0,0 +1,217 @@ +{ + "metadata": { + "name": "Chapter4" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Quantum Physics" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.1, Page number 117" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the energy and momentum of photon\n\n#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.62*10**-34; #planck's constant\nlamda = 1.2; #wavelength of photon(Angstrom)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = (h*c)/(lamda*e); #energy of photon(eV)\nE=math.ceil(E*10)/10; #rounding off to 1 decimal\np = h/lamda; #momentum of photon(kg m/s)\n\n#Result\nprint \"energy of the photon is\",E,\"eV\"\nprint \"momentum of the photon is\",p,\"kg m/s\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "energy of the photon is 10343.8 eV\nmomentum of the photon is 5.51666666667e-24 kg m/s\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.2, Page number 117" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the number of photons emitted \n\n#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nnew = 900; #frequency(kHz)\nE1 = 10; #power radiated(kW)\n\n#Calculation\nE1 = E1*10**3; #power radiated(W)\nnew = new*10**3; #frequency(Hz)\nE = h*new; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "number of photons emitted per second is 1.67714884696e+31\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.3, Page number 118" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the number of photons emitted \n\n#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.63*10**-34; #planck's constant\nlamda = 5893; #wavelength of photon(Angstrom)\nE1 = 100; #power of lamp(W) \n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = h*c/lamda; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "number of photons emitted per second is 2.96279537456e+20\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.4, Page number 118" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the wavelength of scattered radiation\n\n#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.6*10**-34; #planck's constant\nm0 = 9.1*10**-31; #mass of photon(kg)\ntheta = 30; #viewing angle(degrees)\nlamda = 2.8*10**-10; #wavelength of photon(m)\n\n#Calculation\nx = math.pi/180; #conversion factor from degrees to radians\ntheta = theta*x; #viewing angle(radian) \nlamda_dash = (2*h*(math.sin(theta/2))**2/(m0*c))+lamda; #wavelength of scattered radiation(m)\nlamda_dash = lamda_dash*10**10; #wavelength of scattered radiation(Angstrom)\nlamda_dash=math.ceil(lamda_dash*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"wavelength of scattered radiation is\",lamda_dash,\"Angstrom\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "wavelength of scattered radiation is 2.80324 Angstrom\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.5, Page number 119" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the deBroglie wavelength\n\n#importing modules\nimport math\n\n#Variable declaration\nh = 6.6*10**-34; #planck's constant\nm = 0.040; #mass of bullet(kg)\nv = 1; #speed of bullet(km/s)\n\n#Calculation\nv = v*10**3; #speed of bullet(m/s)\np = m*v; #momemtun of bullet(kg m/s)\nlamda = h/p; #deBroglie wavelength(m)\nlamda = lamda*10**10; #deBroglie wavelength(Angstrom)\n\n#Result\nprint \"deBroglie wavelength is\",lamda,\"Angstrom\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "deBroglie wavelength is 1.65e-25 Angstrom\n" + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.6, Page number 119" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the energy of particle\n\n#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of particle(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy of particle is\",E,\"J or\",E_eV,\"eV\" ", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "energy of particle is 6.02231407794e-18 J or 37.6 eV\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.7, Page number 120" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the minimum energy of an electron\n\n#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 4; #width of well(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.6025*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"minimum energy of electron is\",E,\"J or\",E_eV,\"eV\" ", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "minimum energy of electron is 3.76394629871e-21 J or 0.0235 eV\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.8, Page number 120" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the energy required to excite the electron\n\n#importing modules\nimport math\n\n#Variable declaration\nn1 = 1; #lowest energy state\nn2 = 6; #for 6th excited state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE1 = (n1**2)*(h**2)/(8*m*(a**2)); #energy of electron in ground state(J)\nE6 = (n2**2)*(h**2)/(8*m*(a**2)); #energy of electron in excited state(J)\nE = E6-E1; #energy required to excite the electron(J)\nE_eV = E/e; #energy required to excite the electron(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy required to excite the electron is\",E,\"J or\",E_eV,\"eV\" \nprint \"answer for energy in eV given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "energy required to excite the electron is 2.10780992728e-16 J or 1315.8 eV\nanswer for energy in eV given in the book is wrong\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 4.9, Page number 121" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the change in wavelength\n\n#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/sec)\nm0 = 9.11*10**-31; #rest mass of electron(kg)\nphi = 90; #angle of scattering(degrees)\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi = phi*x; ##angle of scattering(radian)\ndelta_lamda = h*(1-math.cos(phi))/(m0*c); #change in wavelength(m)\n\n#Result\nprint \"change in wavelength of X-ray photon is\",delta_lamda,\"m\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "change in wavelength of X-ray photon is 2.42407610684e-12 m\n" + } + ], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter5.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter5.ipynb new file mode 100755 index 00000000..57b4a5f8 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter5.ipynb @@ -0,0 +1,175 @@ +{ + "metadata": { + "name": "Chapter5" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Crystal Physics" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.1, Page number 149" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Miller indices\n\n#Calculation\n#The plane has intercepts a,2b,3c along 3 crystal axes\n#lattice points are r = pa+qb+sc\n#therefore p = 1 q = 2 s = 3\n#miller indices are [1/p,1/q,1/s]\n\n#Result\nprint \"lattice points are p = 1 q = 2 s = 3\"\nprint \"miller indices are [1/p,1/q,1/s] or [1,1/2,1/3] or [6,3,2]\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "lattice points are p = 1 q = 2 s = 3\nmiller indices are [1/p,1/q,1/s] or [1,1/2,1/3] or [6,3,2]\n" + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.2, Page number 150" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the density of Si\n\n#importing modules\nimport math\n\n#Variable declaration\nn = 8; #number of atoms per cell\na = 5.43*10**-8; #lattice constant(cm)\nw = 28.1; #atomic weight(gm)\nN = 6.02*10**23; #avagadro number\n\n#Calculation\nac = n/(a**3); #atomic concentration(atoms/cm**3)\nd = ac*w/N; #density of Si(g/cm**3)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"density of Si is\",d,\"g/cm**3\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "density of Si is 2.333 g/cm**3\n" + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.3, Page number 151" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the surface density of atoms\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\na = 5; #lattice constant(Angstrom)\n\n#Calculation\na = a*10**-10; #lattice constant(m)\n#to calculate the planar concentration, only equilateral triangular region is considered of length a*math.sqrt(2) and height a*math.sqrt(3/2)\nl = a*math.sqrt(2); #length of face diagonal(m)\nh = a*math.sqrt(3/2); #height of triangle(m)\nA = l*h/2; #area of shaded portion(m**2)\n#every atom at the corner contributes 1/6 to this area.\nn111 = (3/6)*(1/A); #planar concentration(atoms/m**2)\n\n#Result\nprint \"surface density of atoms is\",n111,\"atoms/m**2\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "surface density of atoms is 2.30940107676e+18 atoms/m**2\n" + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.4, Page number 152" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the spacing of planes\n\n#importing modules\nimport math\n\n#Variable declaration\na = 4.049; #lattice constant(Angstrom)\nh = 2;\nk = 2;\nl = 0; #miller indices of(2 2 0)\n\n#Calculation\nd = a/math.sqrt(h**2+k**2+l**2); #spacing of planes(Angstrom)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"spacing of planes is\",d,\"Angstrom\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "spacing of planes is 1.432 Angstrom\n" + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.5, Page number 152" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the size of unit cell\n\n#importing modules\nimport math\n\n#Variable declaration\nd110 = 2.03; #distance between planes(Angstrom)\nh = 1;\nk = 1;\nl = 0; #miller indices of(1 1 0)\n\n#Calculation\na = d110*math.sqrt(h**2+k**2+l**2); #size of unit cell(Angstrom)\na=math.ceil(a*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"size of unit cell is\",a,\"Angstrom\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "size of unit cell is 2.871 Angstrom\n" + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.6, Page number 152" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the spacing of planes\n\n#importing modules\nimport math\n\n#Variable declaration\na = 5.64; #lattice constant(Angstrom)\nh1 = 1;\nk1 = 0;\nl1 = 0; #miller indices of(1 0 0)\nh2 = 1;\nk2 = 1;\nl2 = 0; #miller indices of(1 1 0)\nh3 = 1;\nk3 = 1;\nl3 = 1; #miller indices of(1 1 1)\n\n#Calculation\nd100 = a/math.sqrt(h1**2+k1**2+l1**2); #spacing of planes[100](Angstrom)\nd110 = a/math.sqrt(h2**2+k2**2+l2**2); #spacing of planes[110](Angstrom)\nd111 = a/math.sqrt(h3**2+k3**2+l3**2); #spacing of planes[111](Angstrom)\nd111=math.ceil(d111*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"spacing of plane [100] is\",d100,\"Angstrom\"\nprint \"spacing of plane [110] is\",round(d110),\"Angstrom\"\nprint \"spacing of plane [111] is\",d111,\"Angstrom\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "spacing of plane [100] is 5.64 Angstrom\nspacing of plane [110] is 4.0 Angstrom\nspacing of plane [111] is 3.26 Angstrom\n" + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 5.7, Page number 153" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the volume of unit cell\n\n#importing modules\nimport math\n\n#Variable declaration\nr = 1.605; #radius of atom(Angstrom)\n\n\n#Calculation\nr = r*10**-10; #radius of atom(m)\na = 2*r; #size of unit cell(m)\nc = a*math.sqrt(8/3);\nV = 3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n\n#Result\nprint \"volume of unit cell is\",V,\"m**3\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "volume of unit cell is 1.40330266432e-28 m**3\n" + } + ], + "prompt_number": 23 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter6.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter6.ipynb new file mode 100755 index 00000000..33260c42 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter6.ipynb @@ -0,0 +1,364 @@ +{ + "metadata": { + "name": "Chapter6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Conducting Materials" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.1, Page number 170" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Fermi energy\n\n#importing modules\nimport math\n\n#Variable declaration\nm = 9.1*10**-31; #mass of electron\nvf = 1*10**6; #Fermi velocity(m/s)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = m*(vf**2)/(2*e); #Fermi energy(eV)\nEF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Fermi energy is 2.85 eV\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.2, Page number 170" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Fermi energy\n\n#importing modules\nimport math\n\n#Variable declaration\nEF0 = 7.04; #Fermi energy at 0K(eV)\nT = 300; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)\nEF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Fermi energy is 7.03993 eV\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.3, Page number 171" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\nd = 2.7*10**3; #density of Al(kg/m**3)\nMat = 27; #atomic weight of Al\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 3*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"conductivity of Al is\",sigma,\"*10**7 ohm m\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "conductivity of Al is 5.0824 *10**7 ohm m\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.4, Page number 171" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Lorentz number\n\n#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.5, Page number 172" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electrical conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\nd = 8900; #density of Cu(kg/m**3)\nMat = 63.5; #atomic weight of Cu\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 1*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #electrical conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm m\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "electrical conductivity is 2.3745 *10**7 ohm m\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.6, Page number 172" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the relaxation time, mobility of electrons, average drift, velocity and mean free path\n\n#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nEF = 5.5; #fermi energy(eV)\nme = 9.1*10**-31; #mass of electron\nepsilon = 100;\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\ntow = me/(rho*n*e**2); #relaxation time(sec)\nmew = e*tow/me; #mobility of electrons(m**2/Vs)\nmew = mew*10**3;\nvd = e*tow*epsilon/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nEF = EF*e; #fermi energy((J)\nvF = math.sqrt(2*EF/me); #fermi velocity(m/s)\nvf = vF*10**-6;\nvf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals\nlamda_m = vF*tow; #mean free path(m)\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"drift velocity given in the book is wrong\"\nprint \"fermi velocity of electrons is\",vf,\"*10**6 m/s\"\nprint \"mean free path is\",lamda_m,\"m\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "relaxation time of electrons is 3.97972178683e-14 sec\nmobility of electrons is 6.9973130318 *10**-3 m**2/Vs\ndrift velocity of electrons is 0.7 m/s\ndrift velocity given in the book is wrong\nfermi velocity of electrons is 1.391 *10**6 m/s\nmean free path is 5.53462691011e-08 m\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.7, Page number 174" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the thermal conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\nrho = 1.72*10**-8; #electrical resistivity(ohm m)\nL = 2.26*10**-8; #Lorentz number(ohm W/K**2)\nT = 27; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nK = L*T/rho; #thermal conductivity(W/mK)\n\n#Result\nprint \"thermal conductivity is\",int(K),\"W/mK\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "thermal conductivity is 394 W/mK\n" + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.8, Page number 174" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Lorentz number\n\n#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.9, Page number 174" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the value of F(E)\n\n#importing modules\nimport math\n\n#Variable declaration\nE_EF = 0.01; #energy(eV)\ne = 1.6*10**-19; #conversion factor from eV to J\nT = 200; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nE_EF = E_EF*e; #energy(J)\nA = E_EF/(k*T);\nFofE = 1/(1+(math.exp(A))); #value of F(E)\nFofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"value of F(E) is\",FofE", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "value of F(E) is 0.36\n" + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.10, Page number 175" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electrical conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\nlamda = 4*10**-8; #mean free path(m)\nn = 8.4*10**28; #density(per m**3)\nvthbar = 1.6*10**6; #average thermal velocity(m/s)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.11*10**-31; #mass of electron\n\n#Calculation\nsigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm-1 m-1\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "electrical conductivity is 5.91 *10**7 ohm-1 m-1\n" + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.11, Page number 176" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electrical,thermal conductivity and Lorentz number\n\n#importing modules\nimport math\n\n#Variable declaration\ntow = 10**-14; #relaxation time(sec)\nT = 300; #temperature(K)\nn = 6*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nme = 9.1*10**-31; #mass of electron\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nsigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)\nsigmaa = sigma*10**-7;\nsigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals\nK = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)\nK=math.ceil(K*10)/10; #rounding off to 1 decimal\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"electrical conductivity is\",sigmaa,\"*10**7 ohm-1 m-1\"\nprint \"thermal conductivity is\",K,\"W/mK\"\nprint \"Lorentz number is\",L,\"W ohm/K**2\"\nprint \"answer for thermal conductivity and Lorentz number given in the book are wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "electrical conductivity is 1.69 *10**7 ohm-1 m-1\nthermal conductivity is 56.6 W/mK\nLorentz number is 1.11775173611e-08 W ohm/K**2\nanswer for thermal conductivity and Lorentz number given in the book are wrong\n" + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.12, Page number 177" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the relaxation time\n\n#importing modules\nimport math\n\n#Variable declaration\nn = 5.8*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.1*10**-31; #mass of electron\nrho = 1.54*10**-8; #resistivity of metal(ohm m)\n\n#Calculation\ntow = m/(n*rho*e**2); #relaxation time(sec)\n\n#Result\nprint \"relaxation time is\",tow,\"sec\"\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "relaxation time is 3.97972178683e-14 sec\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.13, Page number 177" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the relaxation time, mobility of electrons, drift velocity \n\n#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nE = 1; #electric field(V/cm)\nme = 9.1*10**-31; #mass of electron\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\nE = E*10**2; #electric field(V/m)\ntow = me/(rho*n*e**2); #relaxation time(sec)\nvd = e*E*tow/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nmew = vd/E; #mobility of electrons(m**2/Vs)\nmew = mew*10**2;\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "relaxation time of electrons is 3.97972178683e-14 sec\ndrift velocity of electrons is 0.7 m/s\nmobility of electrons is 0.7 *10**-2 m**2/Vs\n" + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.14, Page number 178" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the drift velocity \n\n#importing modules\nimport math\n\n#Variable declaration\nT = 300; #temperature(K)\nl = 2; #length of wire(m)\nR = 0.02; #resistance(ohm)\nI = 15; #current(amp)\nmew = 4.3*10**-3; #mobility(m**2/Vs)\n\n#Calculation\nV = I*R; #voltage drop(V)\nE = V/l; #electric field(V/m)\nvd = mew*E; #drift velocity(m/s)\nvd = vd*10**3;\nvd=math.ceil(vd*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"drift velocity of electrons is\",vd,\"*10**-3 m/s\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "drift velocity of electrons is 0.65 *10**-3 m/s\n" + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.15, Page number 179" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Fermi energy and Fermi temperature\n\n#importing modules\nimport math\n\n#Variable declaration\nvf = 0.86*10**6; #fermi velocity(m/s)\nm = 9.1*10**-31; #mass of electron(kg)\ne = 1.6*10**-19; #charge of electron(C)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nEF = m*vf**2/(2*e); #fermi energy(eV)\nEF=math.ceil(EF*100)/100; #rounding off to 2 decimals\nTF = EF*e/k; #fermi temperature(K)\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"\nprint \"Fermi temperature is\",int(TF),\"K\"\nprint \"answer for fermi temperature given in the book is wrong due to rounding off the value of EF\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Fermi energy is 2.11 eV\nFermi temperature is 24463 K\nanswer for fermi temperature given in the book is wrong due to rounding off the value of EF\n" + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 6.16, Page number 179" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Fermi velocity\n\n#importing modules\nimport math\n\n#Variable declaration\nTF = 2460; #fermi temperature(K)\nm = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nvF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)\nvF = vF*10**-5;\nvF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"Fermi velocity is\",vF,\"*10**5 m/s\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Fermi velocity is 2.731 *10**5 m/s\n" + } + ], + "prompt_number": 25 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter7.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter7.ipynb new file mode 100755 index 00000000..4981fbf4 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter7.ipynb @@ -0,0 +1,485 @@ +{ + "metadata": { + "name": "Chapter7", + "signature": "sha256:043709ddd748250fcd3232cc251c6d71d665f281189e172a4c8d9b59233bdcee" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Semiconducting Materials" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.1, Page number 208" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the approximate donor binding energy\n\n#importing modules\nimport math\n\n#Variable declaration\nme = 9.11*10**-31; #mass of electron(kg)\nepsilon_r = 13.2; \nepsilon0 = 8.85*10**-12;\nh = 6.63*10**-34;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nm_nc = 0.067*me;\nE = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)\nE = E/e; #energy(eV)\nE = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals\nE_meV = E*10**3; #energy(meV)\n\n#Result\nprint \"donor binding energy is\",E,\"eV or\",E_meV,\"meV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "donor binding energy is 0.00521 eV or 5.21 meV\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.2, Page number 208" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the equilibrium hole concentration\n\n#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nNd = 10**16; #donor concentration(atoms/cm**3)\nni = 1.5*10**10; #concentration(per cm**3)\nT = 300; #temperature(K)\nkT = 0.0259;\n\n#Calculation\nn0 = Nd; #for Nd>>ni, assume n0=Nd\np0 = ni**2/n0; #equilibrium hole concentration(per cm**3)\np0 = p0*10**-4;\nEF_Ei = kT*np.log(n0/ni);\nEF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n\n#Result\nprint \"equilibrium hole concentration is\",p0,\"*10**4 per cm**3\"\nprint \"value of EF-Ei is\",EF_Ei,\"eV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "equilibrium hole concentration is 2.25 *10**4 per cm**3\nvalue of EF-Ei is 0.3474 eV\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.3, Page number 209" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the resistivity of sample\n\n#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nNd = 10**14; #donor density(atoms/cm**3)\nmew_n = 3900;\n\n#Calculation\nn = Nd;\nsigma = n*e*mew_n; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "resistivity of sample is 16.03 ohm cm\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.4, Page number 209" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the resistivity, Hall coefficient and Hall voltage\n\n#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nn0 = 5*10**16; #donor density(atoms/cm**3)\nmew_0 = 800;\nIx = 2; #current(mA)\nBz = 5*10**-5;\nd = 200; #thickness(micrometre)\n\n#Calculation\nIx = Ix*10**-3; #current(A)\nd = d*10**-4; #thickness(m)\nsigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\nRH = -1/(e*n0); #Hall coefficient(cm**3/C)\nVH = Ix*Bz*RH/d; #Hall voltage(V)\nVH = VH*10**5;\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"\nprint \"Hall coefficient is\",RH,\"cm**3/C\"\nprint \"Hall voltage is\",VH,\"*10**-5 V\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "resistivity of sample is 0.1563 ohm cm\nHall coefficient is -125.0 cm**3/C\nHall voltage is -62.5 *10**-5 V\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.5, Page number 210" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the intrinsic carrier concentration, intrinsic conductivity and resistivity\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\nEg = 0.7; #band gap(eV)\nme = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nh = 6.625*10**-34;\nkT = 0.0259;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\na = (2*math.pi*k*T/(h**2))**(3/2);\nb = (mn_star*mp_star)**(3/4);\nc = math.exp(-Eg/(2*kT));\nni = 2*a*b*c; #intrinsic concentration(per m**3)\nsigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)\nsigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\nrho = 1/sigma; #intrinsic resistivity(ohm m)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"intrinsic concentration is\",ni,\"per m**3\"\nprint \"intrinsic conductivity is\",sigma,\"per ohm m\"\nprint \"intrinsic resistivity is\",rho,\"ohm m\"\nprint \"answers given in the book are wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "intrinsic concentration is 1.02825111151e+19 per m**3\nintrinsic conductivity is 0.9872 per ohm m\nintrinsic resistivity is 1.013 ohm m\nanswers given in the book are wrong\n" + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.6, Page number 211" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Fermi energy\n\n#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nNd = 10**16; #donor concentration(per cm**3)\nni = 1.45*10**10; #concentration(per cm**3)\nkT = 0.0259;\n\n#Calculation\n#ni = Nc*math.exp(-(Ec-Ei)/kT)\n#Nd = Nc*(math.exp(-(Ec-Efd)/kT)\n#dividing Nd/ni we get \nEFd_Ei = kT*np.log(Nd/ni);\nEFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"Fermi energy is\",EFd_Ei,\"eV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Fermi energy is 0.3482 eV\n" + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.7, Page number 211" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the resistance\n\n#The given information in the question is not sufficient to solve the entire problem. And the problem is completely wrong in the book", + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.8, Page number 212" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the forbidden energy gap\n\n#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.36; #electron mobility(m**2/Vs)\nmew_p = 0.17; #hole mobility(m**2/Vs)\nrho = 2.12; #resistivity(ohm m)\nme = 9.11*10**-31; #mass of electron(kg)\nkT = 0.0259;\nh = 6.625*10**-34;\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\nsigma = 1/rho; #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\nni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)\na = (2*math.pi*kT/(h**2))**(3/2);\nNc = 2*a*(mn_star**(3/2)); \nNv = 2*a*(mp_star**(3/2)); \nb = (Nc*Nv)**(1/2);\nEg = 2*kT*np.log(b/ni);\n\n#Result\nprint \"forbidden energy gap is\",Eg,\"eV\"\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "forbidden energy gap is 4.09465494989 eV\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.9, Page number 213" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\nni = 2.4*10**19; #concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"conductivity of sample is\",sigma,\"ohm-1 m-1\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "conductivity of sample is 2.228 ohm-1 m-1\n" + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.10, Page number 214" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the new position of Fermi level\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nEc = 0.3; #initial position(eV)\nT1 = 300; #initial temperature(K)\nT2 = 330; #increased temperature\n\n#Calculation\n#Ec/T1 = Ec_EF330/T2\nEc_EF330 = Ec*T2/T1; #new position of Fermi level(eV)\n\n#Result\nprint \"new position of Fermi level is\",Ec_EF330,\"eV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "new position of Fermi level is 0.33 eV\n" + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.11, Page number 214" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the concentration in conduction band\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nme = 9.1*10**-31; #mass of electron(kg)\nh = 6.63*10**-34; #planck's constant\nEc_Ev = 1.1; #energy gap(eV)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nme_star = 0.31*me;\nA = (2*math.pi*k*T*me_star/(h**2))**(3/2);\nB = math.exp(-(Ec_Ev*e)/(2*k*T));\nni = A*B; #concentration in conduction band(per m**3)\n\n#Result\nprint \"intrinsic electron concentration is\",ni,\"per m**3\"\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "intrinsic electron concentration is 1.26605935487e+15 per m**3\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.12, Page number 214" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the drift mobility of electrons\n\n#importing modules\nimport math\n\n#Variable declaration\nRH = 0.55*10**-10; #Hall coefficient(m**3/As)\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nmew = RH*sigma; #drift mobility(m**2/Vs)\nmew = mew*10**3;\nmew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"drift mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "drift mobility of electrons is 3.25 *10**-3 m**2/Vs\n" + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.13, Page number 215" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the concentration and average number of electrons\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nA = 6.022*10**23; #avagadro constant\nd = 8.96*10**-9; #density(kg/m**3)\nn = 9.932*10**14; #no. of free electrons per atom\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\ne = 1.6*10**-19; #electron charge(C)\nmew = 3.2*10**-3; #drift mobility(m**2/Vs)\nw = 63.5; #atomic weight of Cu(kg)\n\n#Calculation\nni = sigma/(mew*e); #conductivity(per m**3)\nN = A*d*n/w; #concentration of free electrons in pure Cu\nAN = ni/N; #average number of electrons contributed per Cu atom\n\n#Result\nprint \"concentration of free electrons in pure Cu is\",N,\"per m**3\"\nprint \"average number of electrons contributed per Cu atom is\",int(AN)", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "concentration of free electrons in pure Cu is 8.43940339906e+28 per m**3\naverage number of electrons contributed per Cu atom is 1\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.14, Page number 215" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the charge carrier density and electron mobility\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nRH = 3.66*10**-11; #hall coefficient(m**3/As)\ne = 1.6*10**-19; #electron charge(C)\nsigma = 112*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nn = 1/(e*RH); #charge carrier density(per m**3)\nmew_n = sigma/(n*e); #electron mobility(m**2/As)\nmew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"charge carrier density is\",n,\"per m**3\"\nprint \"electron mobility is\",mew_n,\"m**2/As\"\nprint \"answers given in the book are wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "charge carrier density is 1.70765027322e+29 per m**3\nelectron mobility is 0.041 m**2/As\nanswers given in the book are wrong\n" + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.15, Page number 216" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the magnitude of Hall voltage\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nB = 1.5; #magnetic field(T)\nI = 50; #current(Amp)\nn = 8.4*10**28; #free electron concentration(per m**3)\nd = 0.2; #thickness of slab(cm)\n\n#Calculation\nd = d*10**-2; #thickness of slab(m)\nVH = B*I/(n*e*d); #hall voltage(V)\n\n#Result\nprint \"magnitude of Hall voltage is\",VH,\"V\"\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "magnitude of Hall voltage is 2.79017857143e-06 V\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.16, Page number 216" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the resistance of intrinsic Ge rod\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nn = 2.5*10**19; #free electron concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\nL = 1; #length(cm)\nw = 1; #width(mm)\nt = 1; #thickness(mm)\n\n#Calculation\nL = L*10**-2; #length(m)\nw = w*10**-3; #width(m)\nt = t*10**-3; #thickness(m)\nA = w*t; #area(m**2)\nsigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)\nR = L/(sigma*A); #resistance(ohm)\n\n#Result\nprint \"resistance of intrinsic Ge rod is\",int(R),\"ohm\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "resistance of intrinsic Ge rod is 4310 ohm\n" + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.17, Page number 216" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To determine the position of Fermi level\n\n#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nEg = 1.12; #band gap(eV)\nme = 1;\nmn_star = 0.12*me; #electron mobility(m**2/Vs)\nmp_star = 0.28*me; #hole mobility(m**2/Vs)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature\n\n#Calculation\na = mp_star/mn_star;\nEF = (Eg/2)+((3*k*T/(4*e))*np.log(a));\nEF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"position of Fermi level is\",EF,\"eV\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "position of Fermi level is 0.577 eV\n" + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.18, Page number 217" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electrical conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 1.5*10**16; #intrinsic carrier density(per m**3)\nmew_n = 0.13; #electron mobility(m**2/Vs)\nmew_p = 0.05; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\nsigma = sigma*10**4;\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**-4 ohm-1 m-1\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "electrical conductivity is 4.32 *10**-4 ohm-1 m-1\n" + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.19, Page number 217" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the intrinsic resistivity\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.15*10**-13; #intrinsic carrier density(per cm**3)\nmew_n = 3900; #electron mobility(cm**2/Vs)\nmew_p = 1900; #hole mobility(cm**2/Vs)\n\n#Calculation\nsigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)\nrhoi = 1/sigmai; #intrinsic resistivity(ohm cm)\n\n#Result\nprint \"intrinsic resistivity is\",rhoi,\"ohm cm\"\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "intrinsic resistivity is 5.01202886929e+27 ohm cm\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.20, Page number 217" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electrical conductivity\n\n#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.1*10**19; #intrinsic carrier density(per m**3)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\n\n#Result\nprint \"intrinsic resistivity is\",sigma,\"ohm-1 m-1\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "intrinsic resistivity is 2.016 ohm-1 m-1\n" + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.21, Page number 218" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Hall coefficient and electron mobility\n\n#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nV = 1.35; #voltage supply(V)\nI = 5; #current(mA)\nb = 5; #breadth(mm)\nd = 1; #thickness(mm)\nL = 1; #length(cm)\nH = 0.45; #magnetic field(Wb/m**2)\nVy =20; #Hall voltage(mV)\n\n#Calculation\nVy = Vy*10**-3; #Hall voltage(V)\nL = L*10**-2; #length(m)\nd = d*10**-3; #thickness(m)\nb = b*10**-3; #breadth(m)\nI = I*10**-3; #current(A)\nR = V/I; #resistance(ohm)\nA = b*d; #area(m**2)\nrho = R*A/L; #resistivity(ohm m)\nEy = Vy/d; #Hall field(V/m)\nJx = I/A; \na = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne \nRH = a; #Hall coefficient(m**3/C)\nRH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals\nmew_n = RH/rho; #electron mobility(m**2/Vs)\nmew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Hall coefficient is\",RH,\"m**3/C\"\nprint \"electron mobility is\",mew_n,\"m**2/Vs\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Hall coefficient is 0.0445 m**3/C\nelectron mobility is 0.33 m**2/Vs\n" + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 7.22, Page number 219" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Hall potential difference\n\n#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nIx = 200; #current(A)\nBz = 1.5; #magnetic field(Wb/m**2)\np = 8.4*10**28; #electron concentration(per m**3)\nd = 1; #thickness(mm)\n\n#Calculation\nd = d*10**-3; #thickness(m)\nVH = Ix*Bz/(e*p*d); #Hall potential(V)\nVH = VH*10**6; #Hall potential(micro V)\n\n#Result\nprint \"Hall potential is\",int(VH),\"micro V\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Hall potential is 22 micro V\n" + } + ], + "prompt_number": 24 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter8.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter8.ipynb new file mode 100755 index 00000000..00903a6d --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter8.ipynb @@ -0,0 +1,133 @@ +{ + "metadata": { + "name": "Chapter8" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Magnetic Materials" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 8.1, Page number 238" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the magnitude and direction of magnetic moment\n\n#importing modules\nimport math\n\n#Variable declaration\nI = 12; #current(Ampere)\nA = 7.5*10**-4 #area of loop(m**2)\n\n#Calculation\nM = I*A; #magnetic moment(Am**2)\nM = M*10**3;\n\n#Result\nprint \"magnetic moment is\",M,\"*10**-3 Am**2\"\nprint \"M is directed away from the observer and is perpendicular to the plane of the loop\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "magnetic moment is 9.0 *10**-3 Am**2\nM is directed away from the observer and is perpendicular to the plane of the loop\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 8.2, Page number 238" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the magnetic moment\n\n#importing modules\nimport math\n\n#Variable declaration\nr = 0.5; #radius of orbit(Angstrom)\ne = 1.6*10**-19; #charge of electron(C)\nnew = 10**16; #frequency(rps)\n\n#Calculation\nr = r*10**-10; #radius of orbit(m)\nI = e*new; #current(Ampere)\nA = math.pi*r**2; #area enclosed(m**2)\nM = I*A; #magnetic moment(Am**2)\n\n#Result\nprint \"magnetic moment is\",M,\"Am**2\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "magnetic moment is 1.25663706144e-23 Am**2\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 8.3, Page number 239" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the magnetic susceptibility\n\n#importing modules\nimport math\n\n#Variable declaration\nmew_r = 5000; #relative permeability\n\n#Calculation\nchi_m = mew_r-1; #magnetic susceptibility\n\n#Result\nprint \"magnetic susceptibility is\",chi_m", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "magnetic susceptibility is 4999\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 8.4, Page number 239" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the permeability\n\n#importing modules\nimport math\n\n#Variable declaration\nH = 1800; #magnetic field(A/m)\nphi = 3*10**-5; #magnetic flux(Wb)\nA = 0.2; #cross sectional area(cm**2)\n\n#Calculation\nA = A*10**-4; #cross sectional area(m**2)\nB = phi/A; #magnetic flux density(Wb/m**2)\nmew = B/H; #permeability(H/m)\nmew = mew*10**4;\nmew=math.ceil(mew*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"permeability is\",mew,\"*10**-4 H/m\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "permeability is 8.34 *10**-4 H/m\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 8.5, Page number 239" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the magnetic moment\n\n#importing modules\nimport math\n\n#Variable declaration\nB = 0.65; #magnetic induction(Wb/m**2)\nrho = 8906; #density(kg/m**3)\nM = 58.7; #atomic weight\nmew0 = 4*math.pi*10**-7;\nmb = 9.27*10**-24;\nNa = 6.023*10**26; #avagadro constant\n\n#Calculation\nN = rho*Na/M; #number of atoms per unit volume(atoms/m**3)\nmew_r = B/(N*mew0); #relative permeability(A/m**2)\nM = mew_r/mb; #magnetic moment in mew_B \nM=math.ceil(M*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"magnetic moment is\",M,\"mew_B\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "magnetic moment is 0.611 mew_B\n" + } + ], + "prompt_number": 6 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter9.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter9.ipynb new file mode 100755 index 00000000..3a5ba4c1 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter9.ipynb @@ -0,0 +1,70 @@ +{ + "metadata": { + "name": "Chapter9" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Superconducting Materials" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 9.1, Page number 255" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the critical magnetic field intensity\n\n#importing modules\nimport math\n\n#Variable declaration\nH0 = 6.5*10**4; #magnetic field intensity(A/m)\nT = 4.2; #temperature(K)\nTc = 7.18; #critical temperature(K)\n\n#Calculation\nHc = H0*(1-((T**2)/(Tc**2))); #critical magnetic field intensity(A/m)\nHc = Hc*10**-4;\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"critical magnetic field intensity is\",Hc,\"*10**4 A/m\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "critical magnetic field intensity is 4.276 *10**4 A/m\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 9.2, Page number 255" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the isotopic mass\n\n#importing modules\nimport math\n\n#Variable declaration\nTc1 = 4.185; #critical temperature for M1(K)\nTc2 = 4.133; #critical temperature for M2(K)\nM1 = 199.5; #isotopic mass\nalpha = 0.5;\n\n#Calculation\nA = math.pow(M1,alpha)*Tc1/Tc2;\nM2 = math.pow(A,1/alpha); #isotopic mass\nM2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"isotopic mass is\",M2\nprint \"answer given in the book is wrong\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "isotopic mass is 204.552\nanswer given in the book is wrong\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen1.png b/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen1.png Binary files differnew file mode 100755 index 00000000..cccb5c17 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen1.png diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen2.png b/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen2.png Binary files differnew file mode 100755 index 00000000..23204984 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen2.png diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen3.png b/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen3.png Binary files differnew file mode 100755 index 00000000..25a9f874 --- /dev/null +++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/screenshots/screen3.png |