summaryrefslogtreecommitdiff
path: root/Engineering_Physics_Aruldhas/Chapter9_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_Aruldhas/Chapter9_1.ipynb')
-rw-r--r--Engineering_Physics_Aruldhas/Chapter9_1.ipynb219
1 files changed, 190 insertions, 29 deletions
diff --git a/Engineering_Physics_Aruldhas/Chapter9_1.ipynb b/Engineering_Physics_Aruldhas/Chapter9_1.ipynb
index 50e4b6bd..af5adbcc 100644
--- a/Engineering_Physics_Aruldhas/Chapter9_1.ipynb
+++ b/Engineering_Physics_Aruldhas/Chapter9_1.ipynb
@@ -1,6 +1,7 @@
{
"metadata": {
- "name": "Chapter9"
+ "name": "",
+ "signature": "sha256:d58e11c98e937b7ff914fc9567035f99fc6ab344053f332f140829887d0ef6cc"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -11,25 +12,46 @@
"cell_type": "heading",
"level": 1,
"metadata": {},
- "source": "9: Quantum Mechanics"
+ "source": [
+ "9: Quantum Mechanics"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.1, Page number 202"
+ "source": [
+ "Example number 9.1, Page number 202"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the De-Broglie wavelength of electron\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nV = 100; #Accelerating potential for electron(volt)\n\n#Calculation\nlamda = math.sqrt(150/V)*10**-10; #de-Broglie wavelength of electron(m)\n\n#Result\nprint \"The De-Broglie wavelength of electron is\",lamda, \"m\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 100; #Accelerating potential for electron(volt)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = math.sqrt(150/V)*10**-10; #de-Broglie wavelength of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The De-Broglie wavelength of electron is\",lamda, \"m\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The De-Broglie wavelength of electron is 1.22474487139e-10 m\n"
+ "text": [
+ "The De-Broglie wavelength of electron is 1.22474487139e-10 m\n"
+ ]
}
],
"prompt_number": 1
@@ -38,19 +60,44 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.2, Page number 203"
+ "source": [
+ "Example number 9.2, Page number 203"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the De-Broglie wavelength of electron\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nh = 6.626*10**-34; #Planck's constant(Js)\nm = 9.11*10**-31; #Mass of the electron(kg)\nEk = 10; #Kinetic energy of electron(eV)\n\n#Calculation\np = math.sqrt(2*m*Ek*e); #Momentum of the electron(kg-m/s)\nlamda = h/p ; #de-Broglie wavelength of electron from De-Broglie relation(m)\nlamda = lamda*10**9; #de-Broglie wavelength of electron from De-Broglie relation(nm)\nlamda = math.ceil(lamda*10**2)/10**2; #rounding off the value of lamda to 2 decimals\n\n#Result\nprint \"The de-Broglie wavelength of electron is\",lamda, \"nm\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "m = 9.11*10**-31; #Mass of the electron(kg)\n",
+ "Ek = 10; #Kinetic energy of electron(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "p = math.sqrt(2*m*Ek*e); #Momentum of the electron(kg-m/s)\n",
+ "lamda = h/p ; #de-Broglie wavelength of electron from De-Broglie relation(m)\n",
+ "lamda = lamda*10**9; #de-Broglie wavelength of electron from De-Broglie relation(nm)\n",
+ "lamda = math.ceil(lamda*10**2)/10**2; #rounding off the value of lamda to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The de-Broglie wavelength of electron is\",lamda, \"nm\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The de-Broglie wavelength of electron is 0.39 nm\n"
+ "text": [
+ "The de-Broglie wavelength of electron is 0.39 nm\n"
+ ]
}
],
"prompt_number": 2
@@ -59,25 +106,52 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.3, Page number 203. theoritical proof"
+ "source": [
+ "Example number 9.3, Page number 203. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.4, Page number 203"
+ "source": [
+ "Example number 9.4, Page number 203"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the uncertainty in position of electron\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nh = 6.626*10**-34; #Planck's constant(Js)\nm = 9.11*10**-31; #Mass of the electron(kg)\nv = 1.1*10**6; #Speed of the electron(m/s)\npr = 0.1; #precision in percent\n\n#Calculation\np = m*v; #Momentum of the electron(kg-m/s)\ndp = pr/100*p; #Uncertainty in momentum(kg-m/s)\nh_bar = h/(2*math.pi); #Reduced Planck's constant(Js)\ndx = h_bar/(2*dp); #Uncertainty in position(m)\n\n#Result\nprint \"The uncertainty in position of electron is\",dx, \"m\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "m = 9.11*10**-31; #Mass of the electron(kg)\n",
+ "v = 1.1*10**6; #Speed of the electron(m/s)\n",
+ "pr = 0.1; #precision in percent\n",
+ "\n",
+ "#Calculation\n",
+ "p = m*v; #Momentum of the electron(kg-m/s)\n",
+ "dp = pr/100*p; #Uncertainty in momentum(kg-m/s)\n",
+ "h_bar = h/(2*math.pi); #Reduced Planck's constant(Js)\n",
+ "dx = h_bar/(2*dp); #Uncertainty in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The uncertainty in position of electron is\",dx, \"m\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The uncertainty in position of electron is 5.26175358211e-08 m\n"
+ "text": [
+ "The uncertainty in position of electron is 5.26175358211e-08 m\n"
+ ]
}
],
"prompt_number": 3
@@ -86,19 +160,43 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.5, Page number 203"
+ "source": [
+ "Example number 9.5, Page number 203"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the uncertainty in energy of the excited state\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nh = 6.626*10**-34; #Planck's constant(Js)\ndt = 10**-8; #Uncertainty in time(s)\n\n#Calculation\nh_bar = h/(2*math.pi); #Reduced Planck's constant(Js)\ndE = h_bar/(2*dt*e); #Uncertainty in energy of the excited state(m)\n\n#Result\nprint \"The uncertainty in energy of the excited state is\",dE, \"eV\"\n\n#answer given in the book is wrong",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "dt = 10**-8; #Uncertainty in time(s)\n",
+ "\n",
+ "#Calculation\n",
+ "h_bar = h/(2*math.pi); #Reduced Planck's constant(Js)\n",
+ "dE = h_bar/(2*dt*e); #Uncertainty in energy of the excited state(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The uncertainty in energy of the excited state is\",dE, \"eV\"\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The uncertainty in energy of the excited state is 3.2955020404e-08 eV\n"
+ "text": [
+ "The uncertainty in energy of the excited state is 3.2955020404e-08 eV\n"
+ ]
}
],
"prompt_number": 4
@@ -107,19 +205,44 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.6, Page number 204"
+ "source": [
+ "Example number 9.6, Page number 204"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the width of spectral line\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nc = 3*10**8; #Speed of light(m/s)\ndt = 10**-8; #Average lifetime(s)\nlamda = 400; #Wavelength of spectral line(nm)\n\n#Calculation\nlamda = lamda*10**-9; #Wavelength of spectral line(m)\n#From Heisenberg uncertainty principle,\n#dE = h_bar/(2*dt) and also dE = h*c/lambda^2*d_lambda, which give\n#h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for d_lambda\nd_lamda = (lamda**2)/(4*math.pi*c*dt); #Width of spectral line(m)\n\n#Result\nprint \"The width of spectral line is\",d_lamda, \"m\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c = 3*10**8; #Speed of light(m/s)\n",
+ "dt = 10**-8; #Average lifetime(s)\n",
+ "lamda = 400; #Wavelength of spectral line(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = lamda*10**-9; #Wavelength of spectral line(m)\n",
+ "#From Heisenberg uncertainty principle,\n",
+ "#dE = h_bar/(2*dt) and also dE = h*c/lambda^2*d_lambda, which give\n",
+ "#h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for d_lambda\n",
+ "d_lamda = (lamda**2)/(4*math.pi*c*dt); #Width of spectral line(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The width of spectral line is\",d_lamda, \"m\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The width of spectral line is 4.24413181578e-15 m\n"
+ "text": [
+ "The width of spectral line is 4.24413181578e-15 m\n"
+ ]
}
],
"prompt_number": 5
@@ -128,61 +251,99 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.7, Page number 204. theoritical proof"
+ "source": [
+ "Example number 9.7, Page number 204. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.8, Page number 204. theoritical proof"
+ "source": [
+ "Example number 9.8, Page number 204. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.9, Page number 205. theoritical proof"
+ "source": [
+ "Example number 9.9, Page number 205. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.10, Page number 205. theoritical proof"
+ "source": [
+ "Example number 9.10, Page number 205. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.11, Page number 205. theoritical proof"
+ "source": [
+ "Example number 9.11, Page number 205. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.12, Page number 206. theoritical proof"
+ "source": [
+ "Example number 9.12, Page number 206. theoritical proof"
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.13, Page number 206. theoritical proof "
+ "source": [
+ "Example number 9.13, Page number 206. theoritical proof "
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 9.14, Page number 207"
+ "source": [
+ "Example number 9.14, Page number 207"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the probability of finding the electron\n\n#importing modules\nimport math\nfrom __future__ import division\nfrom scipy.integrate import quad\n\n#Variable declaration\na = 2*10**-10; # Width of 1D box(m)\nx1=0; # Position of first extreme of the box(m)\nx2=1*10**-10; # Position of second extreme of the box(m)\n\n#Calculation\ndef intg(x):\n return ((2/a)*(math.sin(2*math.pi*x/a))**2)\nS=quad(intg,x1,x2)[0]\n\n#Result\nprint \"The probability of finding the electron between x = 0 and x = 10**-10 is\",S",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from scipy.integrate import quad\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 2*10**-10; # Width of 1D box(m)\n",
+ "x1=0; # Position of first extreme of the box(m)\n",
+ "x2=1*10**-10; # Position of second extreme of the box(m)\n",
+ "\n",
+ "#Calculation\n",
+ "def intg(x):\n",
+ " return ((2/a)*(math.sin(2*math.pi*x/a))**2)\n",
+ "S=quad(intg,x1,x2)[0]\n",
+ "\n",
+ "#Result\n",
+ "print \"The probability of finding the electron between x = 0 and x = 10**-10 is\",S"
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The probability of finding the electron between x = 0 and x = 10**-10 is 0.5\n"
+ "text": [
+ "The probability of finding the electron between x = 0 and x = 10**-10 is 0.5\n"
+ ]
}
],
"prompt_number": 7
@@ -190,7 +351,7 @@
{
"cell_type": "code",
"collapsed": false,
- "input": "",
+ "input": [],
"language": "python",
"metadata": {},
"outputs": []