diff options
Diffstat (limited to 'Engineering_Physics_Aruldhas/Chapter2_1.ipynb')
-rw-r--r-- | Engineering_Physics_Aruldhas/Chapter2_1.ipynb | 162 |
1 files changed, 146 insertions, 16 deletions
diff --git a/Engineering_Physics_Aruldhas/Chapter2_1.ipynb b/Engineering_Physics_Aruldhas/Chapter2_1.ipynb index f002fd31..fdbf44b5 100644 --- a/Engineering_Physics_Aruldhas/Chapter2_1.ipynb +++ b/Engineering_Physics_Aruldhas/Chapter2_1.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "Chapter2" + "name": "", + "signature": "sha256:de195a4faed398c9714bc27769421926f24c448f7ad7f1d4cb04dd3cfbb18334" }, "nbformat": 3, "nbformat_minor": 0, @@ -11,25 +12,61 @@ "cell_type": "heading", "level": 1, "metadata": {}, - "source": "2: Electromagnetic Theory" + "source": [ + "2: Electromagnetic Theory" + ] }, { "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 2.1, Page number 46" + "source": [ + "Example number 2.1, Page number 46" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To determine the peak value of displacement current\n\n#importing modules\nfrom __future__ import division\nfrom sympy import *\nimport math\n\n#Variable declaration\nC = 10; #Capacitance of the capacitor(pF)\n#given V=0.2*sin(120*math.pi*t) in volts\n\n#Calculation\nC=C*10**-12; #Capacitance of the capacitor(F)\nx, y, z, t = symbols('x y z t')\nk, m, n = symbols('k m n', integer=True)\nf, g, h = symbols('f g h', cls=Function)\n#I = C*dV/dt\n#let dV/dt be a\na=diff(0.2*sin(120*math.pi*t),t) #dV/dt\n#value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n#for cosine function peak value occurs when 120*math.pi*t = 0\n#therefore value of dV/dt becomes d = 75.398223686155\nd = 75.398223686155; #value of dV/dt \nI=C*d; #displacement current(A)\n\n#Result\nprint \"value of dV/dt is\",a\nprint \"displacement current is\",I, \"A\"", + "input": [ + "\n", + "\n", + "#importing modules\n", + "from __future__ import division\n", + "from sympy import *\n", + "import math\n", + "\n", + "#Variable declaration\n", + "C = 10; #Capacitance of the capacitor(pF)\n", + "#given V=0.2*sin(120*math.pi*t) in volts\n", + "\n", + "#Calculation\n", + "C=C*10**-12; #Capacitance of the capacitor(F)\n", + "x, y, z, t = symbols('x y z t')\n", + "k, m, n = symbols('k m n', integer=True)\n", + "f, g, h = symbols('f g h', cls=Function)\n", + "#I = C*dV/dt\n", + "#let dV/dt be a\n", + "a=diff(0.2*sin(120*math.pi*t),t) #dV/dt\n", + "#value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n", + "#for cosine function peak value occurs when 120*math.pi*t = 0\n", + "#therefore value of dV/dt becomes d = 75.398223686155\n", + "d = 75.398223686155; #value of dV/dt \n", + "I=C*d; #displacement current(A)\n", + "\n", + "#Result\n", + "print \"value of dV/dt is\",a\n", + "print \"displacement current is\",I, \"A\"" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "value of dV/dt is 75.398223686155*cos(376.991118430775*t)\ndisplacement current is 7.53982236862e-10 A\n" + "text": [ + "value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n", + "displacement current is 7.53982236862e-10 A\n" + ] } ], "prompt_number": 2 @@ -38,19 +75,54 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 2.2, Page number 46" + "source": [ + "Example number 2.2, Page number 46" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the peak value of displacement current density in a good conductor\n\n#importing modules\nfrom __future__ import division\nfrom sympy import *\nimport math\n\n#Variable declaration\nepsilon_r = 1; #Relative electrical permittivity of free space\nepsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n#given E=sin(120*math.pi*t) in volts\n\n#Calculation\nx, y, z, t = symbols('x y z t')\nk, m, n = symbols('k m n', integer=True)\nf, g, h = symbols('f g h', cls=Function)\n#J2 = epsilon*dE/dt\nepsilon=epsilon_0*epsilon_r;\n#let dE/dt be a\na=diff(sin(120*math.pi*t),t) #dE/dt\n#value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n#for cosine function peak value occurs when 120*math.pi*t = 0\n#therefore value of dE/dt becomes d = 376.991118430775\nd = 376.991118430775; #value of dE/dt\nJ2=epsilon*d; #displacement current density(A/m**2)\n\n#Result\nprint \"value of dE/dt is\",a\nprint \"The peak value of displacement current density is\",J2, \"A/m**2\"", + "input": [ + "\n", + "\n", + "#importing modules\n", + "from __future__ import division\n", + "from sympy import *\n", + "import math\n", + "\n", + "#Variable declaration\n", + "epsilon_r = 1; #Relative electrical permittivity of free space\n", + "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", + "#given E=sin(120*math.pi*t) in volts\n", + "\n", + "#Calculation\n", + "x, y, z, t = symbols('x y z t')\n", + "k, m, n = symbols('k m n', integer=True)\n", + "f, g, h = symbols('f g h', cls=Function)\n", + "#J2 = epsilon*dE/dt\n", + "epsilon=epsilon_0*epsilon_r;\n", + "#let dE/dt be a\n", + "a=diff(sin(120*math.pi*t),t) #dE/dt\n", + "#value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n", + "#for cosine function peak value occurs when 120*math.pi*t = 0\n", + "#therefore value of dE/dt becomes d = 376.991118430775\n", + "d = 376.991118430775; #value of dE/dt\n", + "J2=epsilon*d; #displacement current density(A/m**2)\n", + "\n", + "#Result\n", + "print \"value of dE/dt is\",a\n", + "print \"The peak value of displacement current density is\",J2, \"A/m**2\"" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "value of dE/dt is 376.991118430775*cos(376.991118430775*t)\nThe peak value of displacement current density is 3.33787936259e-09 A/m**2\n" + "text": [ + "value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n", + "The peak value of displacement current density is 3.33787936259e-09 A/m**2\n" + ] } ], "prompt_number": 3 @@ -59,25 +131,49 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 2.3, Page number 47 (Theoritical proof)" + "source": [ + "Example number 2.3, Page number 47 (Theoritical proof)" + ] }, { "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 2.4, Page number 47" + "source": [ + "Example number 2.4, Page number 47" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To determine the peak value of displacement current\n\n#importing modules\nfrom __future__ import division\nimport math\n\n#Variable declaration\np = 60; #Power rating of bulb(W)\nd = 0.5; #Distance from the bulb(m)\n\n#Calculation\nA=4*math.pi*d**2; #area(m**2)\nP = p/A; #Value of Poynting vector(W/m**2)\nP = math.ceil(P*100)/100; #rounding off value of P to 1 decimal\n\n#Result\nprint \"The value of Poynting vector is\",P, \"W/m**2\"", + "input": [ + "\n", + "\n", + "#importing modules\n", + "from __future__ import division\n", + "import math\n", + "\n", + "#Variable declaration\n", + "p = 60; #Power rating of bulb(W)\n", + "d = 0.5; #Distance from the bulb(m)\n", + "\n", + "#Calculation\n", + "A=4*math.pi*d**2; #area(m**2)\n", + "P = p/A; #Value of Poynting vector(W/m**2)\n", + "P = math.ceil(P*100)/100; #rounding off value of P to 1 decimal\n", + "\n", + "#Result\n", + "print \"The value of Poynting vector is\",P, \"W/m**2\"" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "The value of Poynting vector is 19.1 W/m**2\n" + "text": [ + "The value of Poynting vector is 19.1 W/m**2\n" + ] } ], "prompt_number": 4 @@ -86,19 +182,53 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 2.5, Page number 47" + "source": [ + "Example number 2.5, Page number 47" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To determine the velocity of wave, intrinsic impedence and peak value of magnetic intensity\n\n#importing modules\nfrom __future__ import division\nimport math\n\n#Variable declaration\nE_peak = 6; #Peak value of electric field intensity(V/m)\nc = 3*10**8; #Speed of electromagnetic wave in free space(m/s)\nmew_0 = 4*math.pi*10**-7; #Absolute permeability of free space(Tm/A)\nepsilon_0 = 8.854*10**-12; #Absolute permittivity of free space(F/m)\nmew_r = 1; #Relative permeability of medium\nepsilon_r = 3; #Relative permittivity of the medium\n\n#Calculation\nv = c/math.sqrt(mew_r*epsilon_r); #Wave velocity(m/s)\nv = v/10**8;\nv = math.ceil(v*10**4)/10**4; #rounding off the value of v to 4 decimals\neta = math.sqrt((mew_0/epsilon_0)*(mew_r/epsilon_r)); #Intrinsic impedance of the medium(ohm)\neta = math.ceil(eta*10)/10; #rounding off the value of v to 1 decimal\nH_P = E_peak/eta; #Peak value of the magnetic intensity(A/m)\nH_P = H_P*10**2;\nH_P = math.ceil(H_P*10**2)/10**2; #rounding off the value of v to 2 decimals\n\n#Result\nprint \"The wave velocity is\",v,\"*10**8 m/s\"\nprint \"The intrinsic impedance of the medium is\",eta, \"ohm\"\nprint \"The peak value of the magnetic intensity is\",H_P,\"*10**-2 A/m\"", + "input": [ + "\n", + "#importing modules\n", + "from __future__ import division\n", + "import math\n", + "\n", + "#Variable declaration\n", + "E_peak = 6; #Peak value of electric field intensity(V/m)\n", + "c = 3*10**8; #Speed of electromagnetic wave in free space(m/s)\n", + "mew_0 = 4*math.pi*10**-7; #Absolute permeability of free space(Tm/A)\n", + "epsilon_0 = 8.854*10**-12; #Absolute permittivity of free space(F/m)\n", + "mew_r = 1; #Relative permeability of medium\n", + "epsilon_r = 3; #Relative permittivity of the medium\n", + "\n", + "#Calculation\n", + "v = c/math.sqrt(mew_r*epsilon_r); #Wave velocity(m/s)\n", + "v = v/10**8;\n", + "v = math.ceil(v*10**4)/10**4; #rounding off the value of v to 4 decimals\n", + "eta = math.sqrt((mew_0/epsilon_0)*(mew_r/epsilon_r)); #Intrinsic impedance of the medium(ohm)\n", + "eta = math.ceil(eta*10)/10; #rounding off the value of v to 1 decimal\n", + "H_P = E_peak/eta; #Peak value of the magnetic intensity(A/m)\n", + "H_P = H_P*10**2;\n", + "H_P = math.ceil(H_P*10**2)/10**2; #rounding off the value of v to 2 decimals\n", + "\n", + "#Result\n", + "print \"The wave velocity is\",v,\"*10**8 m/s\"\n", + "print \"The intrinsic impedance of the medium is\",eta, \"ohm\"\n", + "print \"The peak value of the magnetic intensity is\",H_P,\"*10**-2 A/m\"" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "The wave velocity is 1.7321 *10**8 m/s\nThe intrinsic impedance of the medium is 217.6 ohm\nThe peak value of the magnetic intensity is 2.76 *10**-2 A/m\n" + "text": [ + "The wave velocity is 1.7321 *10**8 m/s\n", + "The intrinsic impedance of the medium is 217.6 ohm\n", + "The peak value of the magnetic intensity is 2.76 *10**-2 A/m\n" + ] } ], "prompt_number": 11 @@ -106,7 +236,7 @@ { "cell_type": "code", "collapsed": false, - "input": "", + "input": [], "language": "python", "metadata": {}, "outputs": [] |