diff options
Diffstat (limited to 'Engineering_Physics')
67 files changed, 0 insertions, 16195 deletions
diff --git a/Engineering_Physics/Chapter1.ipynb b/Engineering_Physics/Chapter1.ipynb deleted file mode 100755 index a3614569..00000000 --- a/Engineering_Physics/Chapter1.ipynb +++ /dev/null @@ -1,357 +0,0 @@ -{ - "metadata": { - "name": "Chapter1", - "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "1: Ultrasonics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.1, Page number 20" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.33; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 237.6 m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.2, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 115*10**9; #Young's modulus(N/m**2)\nrho = 7.25*10**3; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.3, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1; #length of quartz crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"fundamental frequency of crystal is\",new, \"*10**6 Hz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "fundamental frequency of crystal is 2.73 *10**6 Hz\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.4, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.55; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1650 m/s\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.5, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 50; #length of rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"natural frequency of rod is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "natural frequency of rod is 39.83 kHz\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.6, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 2; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.365 MHz\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.7, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 3; #length of crystal(mm)\nE = 8*10**10; #Young's modulus(N/m**2)\nrho = 2500; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 942.81 kHz\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.8, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1.5; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.82 MHz\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.9, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.95; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of sea(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 684 m\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.10, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.83; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 597.6 m\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.11, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\naS = 1050; #total absorption inside hall(Sabine)\nV = 9000; #volume of cinema hall(m**3)\n\n#Calculation\nT = 0.165*V/aS; #reverberation time of hall(s)\nT = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall is\",T, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall is 1.4143 s\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.12, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 0.65; #average absorption coefficient(Sabine/m**2)\nV = 13500; #volume of auditorium(m**3)\nT = 1.2; #reverberation time of hall(s)\n\n#Calculation\nS = 0.165*V/(a*T); #reverberation time of hall(s)\nS = math.ceil(S*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"total area of interior surface is\",S, \"m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "total area of interior surface is 2855.8 m**2\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.13, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nV = 15000; #volume of cinema hall(m**3)\nT1 = 1.3; #initial reverberation time of hall(s)\na1S1 = 300; #number of chairs placed\n\n#Calculation\naS = 0.165*V/T1; #total absorption of hall\nT2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\nT2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall after adding chairs is\",T2, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall after adding chairs is 1.1231 s\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.14, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.5; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 360 m\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.15, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.4; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1200 m/s\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.16, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 18 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter10.ipynb b/Engineering_Physics/Chapter10.ipynb deleted file mode 100755 index 051ee9c1..00000000 --- a/Engineering_Physics/Chapter10.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter10" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "10: Dielectric Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.1, Page number 289" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0000684; #dielectric constant\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 2.242e-41 Fm**2\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.2, Page number 290" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0024; #relative permittivity\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 7.86666666667e-40 Fm**2\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter10_1.ipynb b/Engineering_Physics/Chapter10_1.ipynb deleted file mode 100755 index 051ee9c1..00000000 --- a/Engineering_Physics/Chapter10_1.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter10" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "10: Dielectric Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.1, Page number 289" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0000684; #dielectric constant\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 2.242e-41 Fm**2\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.2, Page number 290" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0024; #relative permittivity\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 7.86666666667e-40 Fm**2\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter11_1.ipynb b/Engineering_Physics/Chapter11_1.ipynb deleted file mode 100755 index d9dc8a6d..00000000 --- a/Engineering_Physics/Chapter11_1.ipynb +++ /dev/null @@ -1,322 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9d08f8379ee15c99ce5ad85c8c37d7ad2a3a702f52e1db068a113b3963c85435" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "11: Lasers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.1, Page number 249" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "T = 300; #Temperature at absolute scale(K)\n", - "lamda1 = 5500; #Wavelength of visible light(A)\n", - "lamda2 = 10**-2; #Wavelength of microwave(m)\n", - "\n", - "#Calculation\n", - "lamda1 = lamda1*10**-10; #Wavelength of visible light(m)\n", - "rate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", - "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", - "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n", - "\n", - "#Result\n", - "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n", - "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n", - "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.2, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "lamda = 690; #Wavelength of laser light(nm)\n", - "E_lower = 30.5; #Energy of lower state(eV)\n", - "\n", - "#Calculation\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "E = h*c/lamda; #Energy of the laser light(J)\n", - "E = E/e; #Energy of the laser light(eV)\n", - "E_ex = E_lower + E; #Energy of excited state of laser system(eV)\n", - "E_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n", - "\n", - "#Result\n", - "print \"The energy of excited state of laser system is\",E_ex, \"eV\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy of excited state of laser system is 32.31 eV\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.3, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "\n", - "#Calculation\n", - "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n", - "#f/T = log(2)*k/h = A\n", - "A = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\n", - "A = A/10**10;\n", - "A = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n", - "\n", - "#Result\n", - "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.4, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda = 500; #Wavelength of laser light(nm)\n", - "f = 15; #Focal length of the lens(cm)\n", - "d = 2; #Diameter of the aperture of source(cm)\n", - "P = 5; #Power of the laser(mW)\n", - "\n", - "#Calculation\n", - "P = P*10**-3; #Power of the laser(W)\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "d = d*10**-2; #Diameter of the aperture of source(m)\n", - "f = f*10**-2; #Focal length of the lens(m)\n", - "a = d/2; #Radius of the aperture of source(m)\n", - "A = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\n", - "I = P/A; #Intensity at the focus(W/m**2)\n", - "I = I/10**7;\n", - "I = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n", - "\n", - "#Result\n", - "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n", - "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n", - "The intensity at the focus is 2.8295 *10**7 W/m**2\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.5, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "lamda = 1064; #Wavelength of laser light(nm)\n", - "P = 0.8; #Average power output per laser pulse(W)\n", - "dt = 25; #Pulse width of laser(ms)\n", - "\n", - "#Calculation\n", - "dt = dt*10**-3; #Pulse width of laser(s)\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "E = P*dt; #Energy released per pulse(J)\n", - "E1 = E*10**3;\n", - "N = E/(h*c/lamda); #Number of photons in a pulse\n", - "\n", - "#Result\n", - "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n", - "print \"The number of photons in a pulse is\", N\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy released per pulse is 20.0 *10**-3 J\n", - "The number of photons in a pulse is 1.07053023443e+17\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.6, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda = 693; #Wavelength of laser beam(nm)\n", - "D = 3; #Diameter of laser beam(mm)\n", - "d = 300; #Height of a satellite above the surface of earth(km)\n", - "\n", - "#Calculation\n", - "D = D*10**-3; #Diameter of laser beam(m)\n", - "lamda = lamda*10**-9; #Wavelength of laser beam(m)\n", - "d = d*10**3; #Height of a satellite above the surface of earth(m)\n", - "d_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\n", - "dtheta = d_theta*10**4;\n", - "dtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\n", - "a = d_theta*d; #Diameter of the beam on the satellite(m)\n", - "a = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n", - "\n", - "#Result\n", - "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n", - "print \"The diameter of the beam on the satellite is\",a, \"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n", - "The diameter of the beam on the satellite is 84.6 m\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter12_1.ipynb b/Engineering_Physics/Chapter12_1.ipynb deleted file mode 100755 index c394fc3a..00000000 --- a/Engineering_Physics/Chapter12_1.ipynb +++ /dev/null @@ -1,234 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:435dc2503f7ab5f5c4bb167df36c6ef12f8211207bc52e60997787c4d2bd8d5c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "12: Holography and Fibre Optics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.1, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1 = 1.43; #Refractive index of fibre core\n", - "n2 = 1.4; #Refractive index of fibre cladding\n", - "\n", - "#Calculation\n", - "#As sin (alpha_c) = n2/n1, solving for alpha_c\n", - "alpha_c = math.asin(n2/n1); #Critical angle for optical fibre(rad)\n", - "alpha_c = alpha_c*57.2957795; #Critical angle for optical fibre(degrees)\n", - "alpha_c = math.ceil(alpha_c*10**3)/10**3; #rounding off the value of alpha_c to 3 decimals\n", - "#AS cos(theta_c) = n2/n1, solving for theta_c\n", - "theta_c = math.acos(n2/n1); #Critical propagation angle for optical fibre(rad)\n", - "theta_c = theta_c*57.2957795; #Critical propagation angle for optical fibre(degrees)\n", - "theta_c = math.ceil(theta_c*10**2)/10**2; #rounding off the value of theta_c to 2 decimals\n", - "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n", - "NA = math.ceil(NA*10**3)/10**3; #rounding off the value of NA to 3 decimals\n", - "\n", - "#Result\n", - "print \"The critical angle for optical fibre is\",alpha_c, \"degrees\"\n", - "print \"The critical propagation angle for optical fibre is\",theta_c, \"degrees\"\n", - "print \"Numerical aperture for optical fibre is\",NA\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The critical angle for optical fibre is 78.244 degrees\n", - "The critical propagation angle for optical fibre is 11.76 degrees\n", - "Numerical aperture for optical fibre is 0.292\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.2, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1 = 1.45; #Refractive index of fibre core\n", - "n2 = 1.4; #Refractive index of fibre cladding\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n", - "NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n", - "#As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\n", - "theta_a = math.asin(math.sqrt(n1**2 - n2**2)); #Half of acceptance angle of optical fibre(rad)\n", - "theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n", - "theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n", - "theta_accp = math.ceil(theta_accp*10**2)/10**2; #rounding off the value of theta_accp to 2 decimals\n", - "Delta = (n1 - n2)/n1; #Relative refractive index difference\n", - "Delta = math.ceil(Delta*10**4)/10**4; #rounding off the value of Delta to 4 decimals\n", - "\n", - "#Result\n", - "print \"Numerical aperture for optical fibre is\", NA\n", - "print \"The acceptance angle of optical fibre is\",theta_accp, \"degrees\"\n", - "print \"Relative refractive index difference is\", Delta\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture for optical fibre is 0.3775\n", - "The acceptance angle of optical fibre is 44.36 degrees\n", - "Relative refractive index difference is 0.0345\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.3, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1 = 1.55; #Refractive index of fibre core\n", - "n2 = 1.53; #Refractive index of fibre cladding\n", - "n0 = 1.3; #Refractive index of medium\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n", - "NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n", - "#n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\n", - "theta_a = math.asin(math.sqrt(n1**2 - n2**2)/n0); #Half of acceptance angle of optical fibre(rad)\n", - "theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n", - "theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n", - "\n", - "#Result\n", - "print \"Numerical aperture for step index fibre is\",NA\n", - "print \"The acceptance angle of step index fibre is\",int(theta_accp), \"degrees\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture for step index fibre is 0.2482\n", - "The acceptance angle of step index fibre is 22 degrees\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.4, Page number 271 Theoritical proof" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.5, Page number 272" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "alpha = 2; #Power loss through optical fibre(dB/km)\n", - "P_in = 500; #Poer input of optical fibre(micro-watt)\n", - "z = 10; #Length of the optical fibre(km)\n", - "\n", - "#Calculation\n", - "#As alpha = 10/z*log10(P_in/P_out), solving for P_out\n", - "P_out = P_in/10**(alpha*z/10); #Output power in fibre optic communication(micro-Watt)\n", - "\n", - "#Result\n", - "print \"The output power in fibre optic communication is\",P_out, \"micro-Watt\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The output power in fibre optic communication is 5.0 micro-Watt\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter13_1.ipynb b/Engineering_Physics/Chapter13_1.ipynb deleted file mode 100755 index 75d0d1f7..00000000 --- a/Engineering_Physics/Chapter13_1.ipynb +++ /dev/null @@ -1,340 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:be254bf95838dd01a87a63582117a886c3167a80cf387f9901b2e2de7a990b8e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "13: Dielectric Properties of Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.1, Page number 287" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.85*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "R = 0.52; #Radius of hydrogen atom(A)\n", - "n = 9.7*10**26; #Number density of hydrogen(per metre cube)\n", - "\n", - "#Calculation\n", - "R = R*10**-10; #Radius of hydrogen atom(m)\n", - "alpha_e = 4*math.pi*epsilon_0*R**3; #Electronic polarizability of hydrogen atom(Fm**2)\n", - "\n", - "#Result\n", - "print \"The electronic polarizability of hydrogen atom is\", alpha_e, \"Fm**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic polarizability of hydrogen atom is 1.56373503182e-41 Fm**2\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.2, Page number 287" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "A = 100; #Area of a plate of parallel plate capacitor(cm**2)\n", - "d = 1; #Distance between the plates of the capacitor(cm)\n", - "V = 100; #Potential applied to the plates of the capacitor(V)\n", - "\n", - "#Calculation\n", - "A= A*10**-4; #Area of a plate of parallel plate capacitor(m**2)\n", - "d = d*10**-2; #Distance between the plates of the capacitor(m)\n", - "C = epsilon_0*A/d; #Capacitance of parallel plate capacitor(F)\n", - "Q = C*V; #Charge on the plates of the capacitor(C)\n", - "\n", - "#Result\n", - "print \"The capacitance of parallel plate capacitor is\",C, \"F\"\n", - "print \"The charge on the plates of the capacitor is\",Q, \"C\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The capacitance of parallel plate capacitor is 8.854e-12 F\n", - "The charge on the plates of the capacitor is 8.854e-10 C\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.3, Page number 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "epsilon_r = 5.0; #Dielectric constant of the material between the plates of capacitor\n", - "V = 15; #Potential difference applied between the plates of the capacitor(V)\n", - "d = 1.5; #Separation between the plates of the capacitor(mm)\n", - "\n", - "#Calculation\n", - "d = d*10**-3; #Separation between the plates of the capacitor(m)\n", - "#Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n", - "D = epsilon_0*epsilon_r*V/d; #Dielectric displacement(C/m**2)\n", - "\n", - "#Result\n", - "print \"The dielectric displacement is\",D, \"C/m**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The dielectric displacement is 4.427e-07 C/m**2\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.4, Page number 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "N = 3*10**28; #Number density of solid elemental dielectric(atoms/metre cube)\n", - "alpha_e = 10**-40; #Electronic polarizability(Fm**2)\n", - "\n", - "#Calculation\n", - "epsilon_r = 1 + (N*alpha_e/epsilon_0); #Relative dielectric constant of the material\n", - "epsilon_r = math.ceil(epsilon_r*10**3)/10**3; #rounding off the value of epsilon_r to 3 decimals\n", - "\n", - "#Result\n", - "print \"The Relative dielectric constant of the material is\",epsilon_r\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Relative dielectric constant of the material is 1.339\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.5, Page number 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N_A = 6.02*10**23; #Avogadro's number(per mole)\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "epsilon_r = 3.75; #Relative dielectric constant\n", - "d = 2050; #Density of sulphur(kg/metre cube)\n", - "y = 1/3; #Internal field constant\n", - "M = 32; #Atomic weight of sulphur(g/mol)\n", - "\n", - "#Calculation\n", - "N = N_A*10**3*d/M; #Number density of atoms of sulphur(per metre cube)\n", - "#Lorentz relation for local fields give E_local = E + P/(3*epsilon_0) which gives\n", - "#(epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", - "alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; #Electronic polarizability of sulphur(Fm**2)\n", - "\n", - "#Result\n", - "print \"The electronic polarizability of sulphur is\",alpha_e, \"Fm**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic polarizability of sulphur is 3.2940125351e-40 Fm**2\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.6, Page number 289" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 3*10**28; #Number density of atoms of dielectric material(per metre cube)\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "n = 1.6; #Refractive index of dielectric material\n", - "\n", - "#Calculation\n", - "#As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", - "alpha_e = (n**2 - 1)/(n**2 + 2)*3*epsilon_0/N; #Electronic polarizability of dielectric material(Fm**2)\n", - "\n", - "#Result\n", - "print \"The electronic polarizability of dielectric material is\",alpha_e, \"Fm**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic polarizability of dielectric material is 3.029e-40 Fm**2\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.7, Page number 289" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_r = 4.9; #Absolute relative dielectric constant of material(F/m)\n", - "n = 1.6; #Refractive index of dielectric material\n", - "\n", - "#Calculation\n", - "#As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2)\n", - "#let alpha_ratio = alpha_i/alpha_e\n", - "alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n**2 + 2)/(n**2 - 1) - 1)**(-1); #Ratio of electronic polarizability to ionic polarizability\n", - "alpha_ratio = math.ceil(alpha_ratio*10**3)/10**3; #rounding off the value of alpha_ratio to 3 decimals\n", - "\n", - "#Result\n", - "print \"The ratio of electronic polarizability to ionic polarizability is\",alpha_ratio" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of electronic polarizability to ionic polarizability is 1.534\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter14_1.ipynb b/Engineering_Physics/Chapter14_1.ipynb deleted file mode 100755 index 1191c56f..00000000 --- a/Engineering_Physics/Chapter14_1.ipynb +++ /dev/null @@ -1,359 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:03a15735237144f42a49956ccb15694e3ce619fee35260180caccfe8f848e036" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "14: Magnetic Properties of Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.1, Page number 306" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 6.02*10**23; #Avogadro's number(per mole)\n", - "A = 56; #Atomic weight of the substance(g/mole)\n", - "d = 7.9; #Density of the substance(g/cm**3)\n", - "m_B = 9.27*10**-24; #Bohr's Magneton(J/T)\n", - "\n", - "#Calculation\n", - "m = 2.2*m_B; #Magnetic moment of substance(J/T)\n", - "n = d*N/A ; #Number of atoms per unit volume of the substance(per cm**3)\n", - "n = n*10**6; #Number of atoms per unit volume of the substance(per m**3)\n", - "M = n*m; #Spontaneous magnetisation of the substance(A/m)\n", - "M = M/10**6;\n", - "M = math.ceil(M*10**3)/10**3; #rounding off the value of M to 3 decimals\n", - "\n", - "#Result\n", - "print \"The spontaneous magnetisation of the substance is\",M,\"*10**6 A/m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The spontaneous magnetisation of the substance is 1.732 *10**6 A/m\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.2, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "H = 200; #Field strength to which the ferromagnetic material is subjected(A/m)\n", - "M = 3100; #Magnetisation of the ferromagnetic material(A/m)\n", - "\n", - "#Calculation\n", - "chi = M/H; #Magnetic susceptibility\n", - "mew_r = 1 + chi; #Relative permeability of ferromagnetic material\n", - "\n", - "#Result\n", - "print \"The relative permeability of ferromagnetic material is\",mew_r" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The relative permeability of ferromagnetic material is 16.5\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.3, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "H = 300; #Field strength to which the ferromagnetic material is subjected(A/m)\n", - "M = 4400; #Magnetisation of the ferromagnetic material(A/m)\n", - "\n", - "#Calculation\n", - "chi = M/H; #Magnetic susceptibility\n", - "mew_r = 1 + chi; #Relative permeability of ferromagnetic material\n", - "mew_r = math.ceil(mew_r*100)/100; #rounding off the value of mew_r to 2 decimals\n", - "\n", - "#Result\n", - "print \"The relative permeability of ferromagnetic material is\",mew_r\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The relative permeability of ferromagnetic material is 15.67\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.4, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "H = 10000; #Field strength to which the diamagnetic material is subjected(A/m)\n", - "chi = -0.4*10**-5; #Magnetic susceptibility\n", - "\n", - "#Calculation\n", - "M = chi*H; #Magnetisation of the diamagnetic material(A/m)\n", - "B = mew_0*(H + M); #Magnetic flux density of diamagnetic material(T)\n", - "B = math.ceil(B*10**4)/10**4; #rounding off the value of B to 4 decimals\n", - "\n", - "#Result\n", - "print \"The magnetisation of diamagnetic material is\",M, \"A/m\"\n", - "print \"The magnetic flux density of diamagnetic material is\",B, \"T\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetisation of diamagnetic material is -0.04 A/m\n", - "The magnetic flux density of diamagnetic material is 0.0126 T\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.5, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "H = 1.2*10**5; #Field strength to which the diamagnetic material is subjected(A/m)\n", - "chi = -4.2*10**-6; #Magnetic susceptibility\n", - "\n", - "#Calculation\n", - "M = chi*H; #Magnetisation of the diamagnetic material(A/m)\n", - "B = mew_0*(H + M); #Magnetic flux density of diamagnetic material(T)\n", - "B = math.ceil(B*10**3)/10**3; #rounding off the value of B to 3 decimals\n", - "mew_r = M/H + 1; #The relative permeability of diamagnetic material\n", - "mew_r = math.ceil(mew_r*10**6)/10**6; #rounding off the value of mew_r to 6 decimals\n", - "\n", - "#Result\n", - "print \"The magnetisation of diamagnetic material is\",M, \"A/m\"\n", - "print \"The magnetic flux density of diamagnetic material is\",B, \"T\"\n", - "print \"The relative permeability of diamagnetic material is\",mew_r\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetisation of diamagnetic material is -0.504 A/m\n", - "The magnetic flux density of diamagnetic material is 0.151 T\n", - "The relative permeability of diamagnetic material is 0.999996\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.6, Page number 308" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "chi = 5.6*10**-6; #Magnetic susceptibility of diamagnetic material\n", - "m = 9.1*10**-31; #Mass of an electron(kg)\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "Z = 1; #Atomic number\n", - "e = 1.6*10**-19; #Electronic charge(C)\n", - "a = 2.53; #Lattice parameter of bcc structure(A)\n", - "\n", - "#Calculation\n", - "a = a*10**-10; #Lattice parameter of bcc structure(m)\n", - "N = 2/a**3; #The number of electrons per unit volume(per metre cube)\n", - "r = math.sqrt(chi*6*m/(mew_0*Z*e**2*N)); #Mean radius of body centered cubic structure(m)\n", - "r = r*10**10; #Mean radius of body centered cubic structure(A)\n", - "r = math.ceil(r*100)/100; #rounding off the value of r to 2 decimals\n", - "\n", - "#Result\n", - "print \"The mean radius of body centered cubic structure is\",r, \"A\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mean radius of body centered cubic structure is 0.88 A\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.7, Page number 308" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "N_A = 6.02*10**26; #Avogadro's number(per kmol)\n", - "rho = 4370; #Density of paramegnetic salt(kg/metre cube)\n", - "M = 168.5; #Molecular weight of paramagnetic salt(g/mol)\n", - "T = 27; #Temperature of paramagnetic salt(C)\n", - "H = 2*10**5; #Field strength to which the paramagnetic salt is subjected(A/m)\n", - "mew_B = 9.27*10**-24; #Bohr's magneton(Am**2)\n", - "p = 2; #Number of Bohr magnetons per molecule\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "\n", - "#Calculation\n", - "T = T+273; #Temperature of paramagnetic salt(K)\n", - "N = rho*N_A/M; #Total density of atoms in the paramagnetic salt(per meter cube)\n", - "chi_para = mew_0*N*p**2*mew_B**2/(3*k*T); #Magnetic susceptibility of paramagnetic salt\n", - "chi_para = chi_para*10**4;\n", - "chi_para = math.ceil(chi_para*10**2)/10**2; #rounding off the value of chi_para to 2 decimals\n", - "M = chi*H; #Magnetisation of paramagnetic salt(A/m)\n", - "M = math.ceil(M*10)/10; #rounding off the value of M to 1 decimal\n", - "\n", - "#Result\n", - "print \"The magnetic susceptibility of paramagnetic salt is\",chi_para,\"*10**-4\"\n", - "print \"The magnetisation of paramagnetic salt is\",M, \"A/m\"\n", - "\n", - "#answer for magnetisation is not given in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetic susceptibility of paramagnetic salt is 5.43 *10**-4\n", - "The magnetisation of paramagnetic salt is 1.2 A/m\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter15_1.ipynb b/Engineering_Physics/Chapter15_1.ipynb deleted file mode 100755 index feff19f4..00000000 --- a/Engineering_Physics/Chapter15_1.ipynb +++ /dev/null @@ -1,303 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:16c7c597c3247782caaceb2ade68420e223aff8e960ccd80320d3e5521140cc3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "15: Thermal Properties " - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.1, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "f_D = 64*10**11; #Debye frequency for Al(Hz)\n", - "\n", - "#Calculation\n", - "theta_D = h*f_D/k; #Debye temperature(K)\n", - "theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n", - "\n", - "#Result\n", - "print \"The Debye temperature of aluminium is\",theta_D, \"K\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Debye temperature of aluminium is 307.3 K\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.2, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 6.02*10**26; #Avogadro's number(per kmol)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "f_D = 40.5*10**12; #Debye frequency for Al(Hz)\n", - "T = 30; #Temperature of carbon(Ks)\n", - "\n", - "#Calculation\n", - "theta_D = h*f_D/k; #Debye temperature(K)\n", - "C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\n", - "C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n", - "\n", - "#Result\n", - "print \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n", - "\n", - "#answer given in the book is wrong in the 2nd decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The lattice specific heat of carbon is 7.132 J/k-mol/K\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.3, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "theta_E = 1990; #Einstein temperature of Cu(K)\n", - "\n", - "#Calculation\n", - "f_E = k*theta_E/h; #Einstein frequency for Cu(K)\n", - "\n", - "#Result\n", - "print \"The Einstein frequency for Cu is\",f_E, \"Hz\"\n", - "print \"The frequency falls in the near infrared region\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Einstein frequency for Cu is 4.14458194989e+13 Hz\n", - "The frequency falls in the near infrared region\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.4, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "N = 6.02*10**23; #Avogadro's number(per mol)\n", - "T = 0.05; #Temperature of Cu(K)\n", - "E_F = 7; #Fermi energy of Cu(eV)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "theta_D = 348; #Debye temperature of Cu(K)\n", - "\n", - "#Calculation\n", - "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\n", - "C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n", - "\n", - "#Result\n", - "print \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\n", - "print \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n", - "\n", - "#answer for lattice heat capacity given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\n", - "The lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.5, Page number 324" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "T = 1; #For simplicity assume temperature to be unity(K)\n", - "R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\n", - "theta_E = T; #Einstein temperature(K)\n", - "\n", - "#Calculation\n", - "C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\n", - "C_V = C_V/3;\n", - "C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n", - "\n", - "#Result\n", - "print \"The Einstein lattice specific heat is\",C_V, \"X 3R\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Einstein lattice specific heat is 0.921 X 3R\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.6, Page number 324" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "v = 2; #Valency of Zn atom\n", - "N = v*6.02*10**23; #Avogadro's number(per mol)\n", - "T = 300; #Temperature of Zn(K)\n", - "E_F = 9.38; #Fermi energy of Zn(eV)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "\n", - "#Calculation\n", - "N = v*6.02*10**23; #Avogadro's number(per mol)\n", - "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\n", - "C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n", - "\n", - "#Result\n", - "print \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter17_1.ipynb b/Engineering_Physics/Chapter17_1.ipynb deleted file mode 100755 index 38e069ca..00000000 --- a/Engineering_Physics/Chapter17_1.ipynb +++ /dev/null @@ -1,75 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:8879a312d81dca096153a38216868ea90a0e18845d7af1e07069b08fc5353d2b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "17: Ultrasonics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 17.1, Page number 352" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "f = 3; #Fundamental vibrational frequency of quartz crystal(MHz)\n", - "Y = 7.9*10**10; #Young's modulus of quartz(N/m**2)\n", - "rho = 2650; #Density of quartz(kg/m**3)\n", - "\n", - "#Calculation\n", - "f = f*10**6; #Fundamental vibrational frequency of quartz crystal(Hz)\n", - "l = 1/(2*f)*math.sqrt(Y/rho); #Thickness of vibrating quartz at resonance(m)\n", - "l = l*10**3; #Thickness of vibrating quartz at resonance(mm)\n", - "l = math.ceil(l*100)/100; #rounding off the value of l to 2 decimals\n", - "\n", - "#Result\n", - "print \"The thickness of vibrating quartz at resonance is\",l, \"mm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The thickness of vibrating quartz at resonance is 0.91 mm\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter18_1.ipynb b/Engineering_Physics/Chapter18_1.ipynb deleted file mode 100755 index 0a7b2021..00000000 --- a/Engineering_Physics/Chapter18_1.ipynb +++ /dev/null @@ -1,294 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3bec68600cdf231538bf44a09963d76f89f72c71634091075e5c4136c75bb4a6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "18: Acoustics of Buildings" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.1, Page number 361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "r = 200; #Distance of the point of reduction from the source(m)\n", - "I_0 = 10**-12; #Final intensity of sound(W/m**2)\n", - "I_f = 60; #Intensity gain of sound at the point of reduction(dB)\n", - "\n", - "#Calculation\n", - "#As A_I = 10*log10(I/I_0), solving for I\n", - "I = I_0*10**(I_f/10); #Initial Intensity of sound(W/m**2)\n", - "P = 4*math.pi*r**2*I; #Output power of the sound source(W)\n", - "P = math.ceil(P*100)/100; #rounding off the value of P to 2 decimals\n", - "\n", - "#Result\n", - "print \"The output power of the sound source is\",P, \"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The output power of the sound source is 0.51 W\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.2, Page number 361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "I1 = 1; #For simplicity assume first intensity level to be unity(W/m**2)\n", - "\n", - "#Calculation\n", - "I2 = 2*I1; #Intensity level after doubling(W/m**2)\n", - "dA_I = 10*np.log10(I2/I1); #Difference in gain level(dB)\n", - "\n", - "#Result\n", - "print \"The sound intensity level is increased by\",int(dA_I), \"dB\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The sound intensity level is increased by 3 dB\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.3, Page number 361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V = 8000; #Volume of the hall(m**3)\n", - "T = 1.5; #Reverbration time of the hall(s)\n", - "\n", - "#Calculation\n", - "alpha_s = 0.167*V/T; #Sabine Formula giving total absorption of sound in the hall(OWU)\n", - "alpha_s = math.ceil(alpha_s*10)/10; #rounding off the value of alpha_s to 1 decimal\n", - "\n", - "#Result\n", - "print \"The total absorption of sound in the hall is\",alpha_s, \"OWU\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The total absorption of sound in the hall is 890.7 OWU\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.4, Page number 362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V = 25*20*8; #Volume of the hall(m**3)\n", - "T = 4; #Reverbration time of the hall(s)\n", - "\n", - "#Calculation\n", - "S = 2*(25*20+25*8+20*8); #Total surface area of the hall(m**2)\n", - "alpha = 0.167*V/(T*S); #Sabine Formule giving total absorption in the hall(OWU)\n", - "alpha = math.ceil(alpha*10**4)/10**4; #rounding off the value of alpha to 4 decimals\n", - "\n", - "#Result\n", - "print \"The average absorption coefficient of the surfaces is\",alpha, \"OWU/m**2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The average absorption coefficient of the surfaces is 0.0971 OWU/m**2\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.5, Page number 362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V = 475; #Volume of the hall(m**3)\n", - "A_f = 100; #Area of the floor(m**2)\n", - "A_c = 100; #Area of the ceiling(m**2)\n", - "A_w = 200; #Area of the wall(m**2)\n", - "alpha_w = 0.025; #Absorption coefficients of the wall(OWU/m**2)\n", - "alpha_c = 0.02; #Absorption coefficients of the ceiling(OWU/m**2)\n", - "alpha_f = 0.55; #Absorption coefficients of the floor(OWU/m**2)\n", - "\n", - "#Calculation\n", - "alpha_s = (A_w*alpha_w)+(A_c*alpha_c)+(A_f*alpha_f); \n", - "T = 0.167*V/alpha_s; #Sabine Formula for reverbration time(s)\n", - "T = math.ceil(T*100)/100; #rounding off the value of T to 2 decimals\n", - "\n", - "#Result\n", - "print \"The reverbration time for the hall is\",T, \"s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The reverbration time for the hall is 1.28 s\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.6, Page number 362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "I0 = 1; #For simplicity assume initial sound intensity to be unity(W/m**2)\n", - "A_I1 = 80; #First intensity gain of sound(dB)\n", - "A_I2 = 70; #Second intensity gain of sound(dB)\n", - "\n", - "#Calculation\n", - "#As A_I = 10*log10(I/I_0), solving for I1 and I2\n", - "I1 = 10**(A_I1/10)*I0; #First intensity of sound(W/m**2)\n", - "I2 = 10**(A_I2/10)*I0; #Second intensity of sound(W/m**2)\n", - "I = I1 + I2; #Resultant intensity level of sound(W/m**2)\n", - "A_I = 10*np.log10(I/I0); #Intensity gain of resultant sound(dB)\n", - "A_I = math.ceil(A_I*10**3)/10**3; #rounding off the value of A_I to 3 decimals\n", - "\n", - "#Result\n", - "print \"The intensity gain of resultant sound is\",A_I, \"dB\"\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The intensity gain of resultant sound is 80.414 dB\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter1_1.ipynb b/Engineering_Physics/Chapter1_1.ipynb deleted file mode 100755 index a3614569..00000000 --- a/Engineering_Physics/Chapter1_1.ipynb +++ /dev/null @@ -1,357 +0,0 @@ -{ - "metadata": { - "name": "Chapter1", - "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "1: Ultrasonics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.1, Page number 20" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.33; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 237.6 m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.2, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 115*10**9; #Young's modulus(N/m**2)\nrho = 7.25*10**3; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.3, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1; #length of quartz crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"fundamental frequency of crystal is\",new, \"*10**6 Hz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "fundamental frequency of crystal is 2.73 *10**6 Hz\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.4, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.55; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1650 m/s\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.5, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 50; #length of rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"natural frequency of rod is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "natural frequency of rod is 39.83 kHz\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.6, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 2; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.365 MHz\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.7, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 3; #length of crystal(mm)\nE = 8*10**10; #Young's modulus(N/m**2)\nrho = 2500; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 942.81 kHz\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.8, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1.5; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.82 MHz\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.9, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.95; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of sea(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 684 m\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.10, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.83; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 597.6 m\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.11, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\naS = 1050; #total absorption inside hall(Sabine)\nV = 9000; #volume of cinema hall(m**3)\n\n#Calculation\nT = 0.165*V/aS; #reverberation time of hall(s)\nT = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall is\",T, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall is 1.4143 s\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.12, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 0.65; #average absorption coefficient(Sabine/m**2)\nV = 13500; #volume of auditorium(m**3)\nT = 1.2; #reverberation time of hall(s)\n\n#Calculation\nS = 0.165*V/(a*T); #reverberation time of hall(s)\nS = math.ceil(S*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"total area of interior surface is\",S, \"m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "total area of interior surface is 2855.8 m**2\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.13, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nV = 15000; #volume of cinema hall(m**3)\nT1 = 1.3; #initial reverberation time of hall(s)\na1S1 = 300; #number of chairs placed\n\n#Calculation\naS = 0.165*V/T1; #total absorption of hall\nT2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\nT2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall after adding chairs is\",T2, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall after adding chairs is 1.1231 s\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.14, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.5; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 360 m\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.15, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.4; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1200 m/s\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.16, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 18 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter2.ipynb b/Engineering_Physics/Chapter2.ipynb deleted file mode 100755 index fff10b22..00000000 --- a/Engineering_Physics/Chapter2.ipynb +++ /dev/null @@ -1,84 +0,0 @@ -{ - "metadata": { - "name": "Chapter2", - "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "2: Lasers" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.1, Page number 52" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n1byn2 = math.exp(-(E2-E1)/(k*T))\n#but E2-E1 = h*new and new = c/lamda\n#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\nn1byn2 = math.exp(-h*c/(lamda*k*T));\n\n#Result\nprint \"relative population of Na atoms is\",n1byn2", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relative population of Na atoms is 5.36748316686e-21\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.2, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n#but new = c/lamda\n#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\nA = math.exp(h*c/(lamda*k*T))-1;\nn21dashbyn21 = 1/A; \n\n#Result\nprint \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "ratio of stimulated to spontaneous emission is 5.36748316686e-21\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.3, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 632.8; #wavelength of laser(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\np = 3.147; #output power(mW)\n\n#Calculation\np = p*10**-3; #output power(W)\nlamda = lamda*10**-9; #wavelength(m) \nnew = c/lamda; #frequency(Hz)\nE = h*new; #energy of each photon(J)\nEm = p*60; #energy emitted per minute(J/min)\nN = Em/E; #number of photons emitted per second\n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 6.01183879245e+17\n" - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter2_1.ipynb b/Engineering_Physics/Chapter2_1.ipynb deleted file mode 100755 index fff10b22..00000000 --- a/Engineering_Physics/Chapter2_1.ipynb +++ /dev/null @@ -1,84 +0,0 @@ -{ - "metadata": { - "name": "Chapter2", - "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "2: Lasers" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.1, Page number 52" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n1byn2 = math.exp(-(E2-E1)/(k*T))\n#but E2-E1 = h*new and new = c/lamda\n#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\nn1byn2 = math.exp(-h*c/(lamda*k*T));\n\n#Result\nprint \"relative population of Na atoms is\",n1byn2", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relative population of Na atoms is 5.36748316686e-21\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.2, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n#but new = c/lamda\n#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\nA = math.exp(h*c/(lamda*k*T))-1;\nn21dashbyn21 = 1/A; \n\n#Result\nprint \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "ratio of stimulated to spontaneous emission is 5.36748316686e-21\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.3, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 632.8; #wavelength of laser(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\np = 3.147; #output power(mW)\n\n#Calculation\np = p*10**-3; #output power(W)\nlamda = lamda*10**-9; #wavelength(m) \nnew = c/lamda; #frequency(Hz)\nE = h*new; #energy of each photon(J)\nEm = p*60; #energy emitted per minute(J/min)\nN = Em/E; #number of photons emitted per second\n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 6.01183879245e+17\n" - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter3.ipynb b/Engineering_Physics/Chapter3.ipynb deleted file mode 100755 index 9e2d3109..00000000 --- a/Engineering_Physics/Chapter3.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "metadata": { - "name": "Chapter3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "3: Fibre Optics and Applications" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.1, Page number 84" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.2, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.3, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\"\nprint \"alpha = alpha_m rays have\",int(n),\"m-1 internal reflections\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\nalpha = alpha_m rays have 2041 m-1 internal reflections\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter3_1.ipynb b/Engineering_Physics/Chapter3_1.ipynb deleted file mode 100755 index 9e2d3109..00000000 --- a/Engineering_Physics/Chapter3_1.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "metadata": { - "name": "Chapter3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "3: Fibre Optics and Applications" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.1, Page number 84" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.2, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.3, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\"\nprint \"alpha = alpha_m rays have\",int(n),\"m-1 internal reflections\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\nalpha = alpha_m rays have 2041 m-1 internal reflections\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter4.ipynb b/Engineering_Physics/Chapter4.ipynb deleted file mode 100755 index 5651b165..00000000 --- a/Engineering_Physics/Chapter4.ipynb +++ /dev/null @@ -1,209 +0,0 @@ -{ - "metadata": { - "name": "Chapter4" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "4: Quantum Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.1, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.62*10**-34; #planck's constant\nlamda = 1.2; #wavelength of photon(Angstrom)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = (h*c)/(lamda*e); #energy of photon(eV)\nE=math.ceil(E*10)/10; #rounding off to 1 decimal\np = h/lamda; #momentum of photon(kg m/s)\n\n#Result\nprint \"energy of the photon is\",E,\"eV\"\nprint \"momentum of the photon is\",p,\"kg m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of the photon is 10343.8 eV\nmomentum of the photon is 5.51666666667e-24 kg m/s\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.2, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nnew = 900; #frequency(kHz)\nE1 = 10; #power radiated(kW)\n\n#Calculation\nE1 = E1*10**3; #power radiated(W)\nnew = new*10**3; #frequency(Hz)\nE = h*new; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 1.67714884696e+31\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.3, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.63*10**-34; #planck's constant\nlamda = 5893; #wavelength of photon(Angstrom)\nE1 = 100; #power of lamp(W) \n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = h*c/lamda; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 2.96279537456e+20\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.4, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.6*10**-34; #planck's constant\nm0 = 9.1*10**-31; #mass of photon(kg)\ntheta = 30; #viewing angle(degrees)\nlamda = 2.8*10**-10; #wavelength of photon(m)\n\n#Calculation\nx = math.pi/180; #conversion factor from degrees to radians\ntheta = theta*x; #viewing angle(radian) \nlamda_dash = (2*h*(math.sin(theta/2))**2/(m0*c))+lamda; #wavelength of scattered radiation(m)\nlamda_dash = lamda_dash*10**10; #wavelength of scattered radiation(Angstrom)\nlamda_dash=math.ceil(lamda_dash*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"wavelength of scattered radiation is\",lamda_dash,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "wavelength of scattered radiation is 2.80324 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.5, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.6*10**-34; #planck's constant\nm = 0.040; #mass of bullet(kg)\nv = 1; #speed of bullet(km/s)\n\n#Calculation\nv = v*10**3; #speed of bullet(m/s)\np = m*v; #momemtun of bullet(kg m/s)\nlamda = h/p; #deBroglie wavelength(m)\nlamda = lamda*10**10; #deBroglie wavelength(Angstrom)\n\n#Result\nprint \"deBroglie wavelength is\",lamda,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "deBroglie wavelength is 1.65e-25 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.6, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of particle(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy of particle is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of particle is 6.02231407794e-18 J or 37.6 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.7, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 4; #width of well(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.6025*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"minimum energy of electron is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "minimum energy of electron is 3.76394629871e-21 J or 0.0235 eV\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.8, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1; #lowest energy state\nn2 = 6; #for 6th excited state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE1 = (n1**2)*(h**2)/(8*m*(a**2)); #energy of electron in ground state(J)\nE6 = (n2**2)*(h**2)/(8*m*(a**2)); #energy of electron in excited state(J)\nE = E6-E1; #energy required to excite the electron(J)\nE_eV = E/e; #energy required to excite the electron(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy required to excite the electron is\",E,\"J or\",E_eV,\"eV\" \nprint \"answer for energy in eV given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy required to excite the electron is 2.10780992728e-16 J or 1315.8 eV\nanswer for energy in eV given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.9, Page number 121" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/sec)\nm0 = 9.11*10**-31; #rest mass of electron(kg)\nphi = 90; #angle of scattering(degrees)\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi = phi*x; ##angle of scattering(radian)\ndelta_lamda = h*(1-math.cos(phi))/(m0*c); #change in wavelength(m)\n\n#Result\nprint \"change in wavelength of X-ray photon is\",delta_lamda,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "change in wavelength of X-ray photon is 2.42407610684e-12 m\n" - } - ], - "prompt_number": 9 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter4_1.ipynb b/Engineering_Physics/Chapter4_1.ipynb deleted file mode 100755 index 5651b165..00000000 --- a/Engineering_Physics/Chapter4_1.ipynb +++ /dev/null @@ -1,209 +0,0 @@ -{ - "metadata": { - "name": "Chapter4" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "4: Quantum Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.1, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.62*10**-34; #planck's constant\nlamda = 1.2; #wavelength of photon(Angstrom)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = (h*c)/(lamda*e); #energy of photon(eV)\nE=math.ceil(E*10)/10; #rounding off to 1 decimal\np = h/lamda; #momentum of photon(kg m/s)\n\n#Result\nprint \"energy of the photon is\",E,\"eV\"\nprint \"momentum of the photon is\",p,\"kg m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of the photon is 10343.8 eV\nmomentum of the photon is 5.51666666667e-24 kg m/s\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.2, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nnew = 900; #frequency(kHz)\nE1 = 10; #power radiated(kW)\n\n#Calculation\nE1 = E1*10**3; #power radiated(W)\nnew = new*10**3; #frequency(Hz)\nE = h*new; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 1.67714884696e+31\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.3, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.63*10**-34; #planck's constant\nlamda = 5893; #wavelength of photon(Angstrom)\nE1 = 100; #power of lamp(W) \n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = h*c/lamda; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 2.96279537456e+20\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.4, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.6*10**-34; #planck's constant\nm0 = 9.1*10**-31; #mass of photon(kg)\ntheta = 30; #viewing angle(degrees)\nlamda = 2.8*10**-10; #wavelength of photon(m)\n\n#Calculation\nx = math.pi/180; #conversion factor from degrees to radians\ntheta = theta*x; #viewing angle(radian) \nlamda_dash = (2*h*(math.sin(theta/2))**2/(m0*c))+lamda; #wavelength of scattered radiation(m)\nlamda_dash = lamda_dash*10**10; #wavelength of scattered radiation(Angstrom)\nlamda_dash=math.ceil(lamda_dash*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"wavelength of scattered radiation is\",lamda_dash,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "wavelength of scattered radiation is 2.80324 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.5, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.6*10**-34; #planck's constant\nm = 0.040; #mass of bullet(kg)\nv = 1; #speed of bullet(km/s)\n\n#Calculation\nv = v*10**3; #speed of bullet(m/s)\np = m*v; #momemtun of bullet(kg m/s)\nlamda = h/p; #deBroglie wavelength(m)\nlamda = lamda*10**10; #deBroglie wavelength(Angstrom)\n\n#Result\nprint \"deBroglie wavelength is\",lamda,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "deBroglie wavelength is 1.65e-25 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.6, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of particle(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy of particle is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of particle is 6.02231407794e-18 J or 37.6 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.7, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 4; #width of well(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.6025*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"minimum energy of electron is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "minimum energy of electron is 3.76394629871e-21 J or 0.0235 eV\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.8, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1; #lowest energy state\nn2 = 6; #for 6th excited state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE1 = (n1**2)*(h**2)/(8*m*(a**2)); #energy of electron in ground state(J)\nE6 = (n2**2)*(h**2)/(8*m*(a**2)); #energy of electron in excited state(J)\nE = E6-E1; #energy required to excite the electron(J)\nE_eV = E/e; #energy required to excite the electron(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy required to excite the electron is\",E,\"J or\",E_eV,\"eV\" \nprint \"answer for energy in eV given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy required to excite the electron is 2.10780992728e-16 J or 1315.8 eV\nanswer for energy in eV given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.9, Page number 121" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/sec)\nm0 = 9.11*10**-31; #rest mass of electron(kg)\nphi = 90; #angle of scattering(degrees)\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi = phi*x; ##angle of scattering(radian)\ndelta_lamda = h*(1-math.cos(phi))/(m0*c); #change in wavelength(m)\n\n#Result\nprint \"change in wavelength of X-ray photon is\",delta_lamda,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "change in wavelength of X-ray photon is 2.42407610684e-12 m\n" - } - ], - "prompt_number": 9 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter5.ipynb b/Engineering_Physics/Chapter5.ipynb deleted file mode 100755 index ba6e0e69..00000000 --- a/Engineering_Physics/Chapter5.ipynb +++ /dev/null @@ -1,152 +0,0 @@ -{ - "metadata": { - "name": "Chapter5" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "5: Crystal Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.1, Page number 149, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.2, Page number 150" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 8; #number of atoms per cell\na = 5.43*10**-8; #lattice constant(cm)\nw = 28.1; #atomic weight(gm)\nN = 6.02*10**23; #avagadro number\n\n#Calculation\nac = n/(a**3); #atomic concentration(atoms/cm**3)\nd = ac*w/N; #density of Si(g/cm**3)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"density of Si is\",d,\"g/cm**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "density of Si is 2.333 g/cm**3\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.3, Page number 151" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\na = 5; #lattice constant(Angstrom)\n\n#Calculation\na = a*10**-10; #lattice constant(m)\n#to calculate the planar concentration, only equilateral triangular region is considered of length a*math.sqrt(2) and height a*math.sqrt(3/2)\nl = a*math.sqrt(2); #length of face diagonal(m)\nh = a*math.sqrt(3/2); #height of triangle(m)\nA = l*h/2; #area of shaded portion(m**2)\n#every atom at the corner contributes 1/6 to this area.\nn111 = (3/6)*(1/A); #planar concentration(atoms/m**2)\n\n#Result\nprint \"surface density of atoms is\",n111,\"atoms/m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "surface density of atoms is 2.30940107676e+18 atoms/m**2\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.4, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 4.049; #lattice constant(Angstrom)\nh = 2;\nk = 2;\nl = 0; #miller indices of(2 2 0)\n\n#Calculation\nd = a/math.sqrt(h**2+k**2+l**2); #spacing of planes(Angstrom)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"spacing of planes is\",d,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of planes is 1.432 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.5, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd110 = 2.03; #distance between planes(Angstrom)\nh = 1;\nk = 1;\nl = 0; #miller indices of(1 1 0)\n\n#Calculation\na = d110*math.sqrt(h**2+k**2+l**2); #size of unit cell(Angstrom)\na=math.ceil(a*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"size of unit cell is\",a,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "size of unit cell is 2.871 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.6, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 5.64; #lattice constant(Angstrom)\nh1 = 1;\nk1 = 0;\nl1 = 0; #miller indices of(1 0 0)\nh2 = 1;\nk2 = 1;\nl2 = 0; #miller indices of(1 1 0)\nh3 = 1;\nk3 = 1;\nl3 = 1; #miller indices of(1 1 1)\n\n#Calculation\nd100 = a/math.sqrt(h1**2+k1**2+l1**2); #spacing of planes[100](Angstrom)\nd110 = a/math.sqrt(h2**2+k2**2+l2**2); #spacing of planes[110](Angstrom)\nd111 = a/math.sqrt(h3**2+k3**2+l3**2); #spacing of planes[111](Angstrom)\nd111=math.ceil(d111*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"spacing of plane [100] is\",d100,\"Angstrom\"\nprint \"spacing of plane [110] is\",round(d110),\"Angstrom\"\nprint \"spacing of plane [111] is\",d111,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of plane [100] is 5.64 Angstrom\nspacing of plane [110] is 4.0 Angstrom\nspacing of plane [111] is 3.26 Angstrom\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.7, Page number 153" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 1.605; #radius of atom(Angstrom)\n\n\n#Calculation\nr = r*10**-10; #radius of atom(m)\na = 2*r; #size of unit cell(m)\nc = a*math.sqrt(8/3);\nV = 3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n\n#Result\nprint \"volume of unit cell is\",V,\"m**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "volume of unit cell is 1.40330266432e-28 m**3\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter5_1.ipynb b/Engineering_Physics/Chapter5_1.ipynb deleted file mode 100755 index ba6e0e69..00000000 --- a/Engineering_Physics/Chapter5_1.ipynb +++ /dev/null @@ -1,152 +0,0 @@ -{ - "metadata": { - "name": "Chapter5" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "5: Crystal Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.1, Page number 149, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.2, Page number 150" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 8; #number of atoms per cell\na = 5.43*10**-8; #lattice constant(cm)\nw = 28.1; #atomic weight(gm)\nN = 6.02*10**23; #avagadro number\n\n#Calculation\nac = n/(a**3); #atomic concentration(atoms/cm**3)\nd = ac*w/N; #density of Si(g/cm**3)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"density of Si is\",d,\"g/cm**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "density of Si is 2.333 g/cm**3\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.3, Page number 151" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\na = 5; #lattice constant(Angstrom)\n\n#Calculation\na = a*10**-10; #lattice constant(m)\n#to calculate the planar concentration, only equilateral triangular region is considered of length a*math.sqrt(2) and height a*math.sqrt(3/2)\nl = a*math.sqrt(2); #length of face diagonal(m)\nh = a*math.sqrt(3/2); #height of triangle(m)\nA = l*h/2; #area of shaded portion(m**2)\n#every atom at the corner contributes 1/6 to this area.\nn111 = (3/6)*(1/A); #planar concentration(atoms/m**2)\n\n#Result\nprint \"surface density of atoms is\",n111,\"atoms/m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "surface density of atoms is 2.30940107676e+18 atoms/m**2\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.4, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 4.049; #lattice constant(Angstrom)\nh = 2;\nk = 2;\nl = 0; #miller indices of(2 2 0)\n\n#Calculation\nd = a/math.sqrt(h**2+k**2+l**2); #spacing of planes(Angstrom)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"spacing of planes is\",d,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of planes is 1.432 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.5, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd110 = 2.03; #distance between planes(Angstrom)\nh = 1;\nk = 1;\nl = 0; #miller indices of(1 1 0)\n\n#Calculation\na = d110*math.sqrt(h**2+k**2+l**2); #size of unit cell(Angstrom)\na=math.ceil(a*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"size of unit cell is\",a,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "size of unit cell is 2.871 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.6, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 5.64; #lattice constant(Angstrom)\nh1 = 1;\nk1 = 0;\nl1 = 0; #miller indices of(1 0 0)\nh2 = 1;\nk2 = 1;\nl2 = 0; #miller indices of(1 1 0)\nh3 = 1;\nk3 = 1;\nl3 = 1; #miller indices of(1 1 1)\n\n#Calculation\nd100 = a/math.sqrt(h1**2+k1**2+l1**2); #spacing of planes[100](Angstrom)\nd110 = a/math.sqrt(h2**2+k2**2+l2**2); #spacing of planes[110](Angstrom)\nd111 = a/math.sqrt(h3**2+k3**2+l3**2); #spacing of planes[111](Angstrom)\nd111=math.ceil(d111*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"spacing of plane [100] is\",d100,\"Angstrom\"\nprint \"spacing of plane [110] is\",round(d110),\"Angstrom\"\nprint \"spacing of plane [111] is\",d111,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of plane [100] is 5.64 Angstrom\nspacing of plane [110] is 4.0 Angstrom\nspacing of plane [111] is 3.26 Angstrom\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.7, Page number 153" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 1.605; #radius of atom(Angstrom)\n\n\n#Calculation\nr = r*10**-10; #radius of atom(m)\na = 2*r; #size of unit cell(m)\nc = a*math.sqrt(8/3);\nV = 3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n\n#Result\nprint \"volume of unit cell is\",V,\"m**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "volume of unit cell is 1.40330266432e-28 m**3\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter6.ipynb b/Engineering_Physics/Chapter6.ipynb deleted file mode 100755 index 768ed817..00000000 --- a/Engineering_Physics/Chapter6.ipynb +++ /dev/null @@ -1,356 +0,0 @@ -{ - "metadata": { - "name": "Chapter6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "6: Conducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.1, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nm = 9.1*10**-31; #mass of electron\nvf = 1*10**6; #Fermi velocity(m/s)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = m*(vf**2)/(2*e); #Fermi energy(eV)\nEF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.85 eV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.2, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nEF0 = 7.04; #Fermi energy at 0K(eV)\nT = 300; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)\nEF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 7.03993 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.3, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 2.7*10**3; #density of Al(kg/m**3)\nMat = 27; #atomic weight of Al\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 3*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"conductivity of Al is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of Al is 5.0824 *10**7 ohm m\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.4, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.5, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 8900; #density of Cu(kg/m**3)\nMat = 63.5; #atomic weight of Cu\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 1*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #electrical conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 2.3745 *10**7 ohm m\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.6, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nEF = 5.5; #fermi energy(eV)\nme = 9.1*10**-31; #mass of electron\nepsilon = 100;\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\ntow = me/(rho*n*e**2); #relaxation time(sec)\nmew = e*tow/me; #mobility of electrons(m**2/Vs)\nmew = mew*10**3;\nvd = e*tow*epsilon/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nEF = EF*e; #fermi energy((J)\nvF = math.sqrt(2*EF/me); #fermi velocity(m/s)\nvf = vF*10**-6;\nvf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals\nlamda_m = vF*tow; #mean free path(m)\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"drift velocity given in the book is wrong\"\nprint \"fermi velocity of electrons is\",vf,\"*10**6 m/s\"\nprint \"mean free path is\",lamda_m,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\nmobility of electrons is 6.9973130318 *10**-3 m**2/Vs\ndrift velocity of electrons is 0.7 m/s\ndrift velocity given in the book is wrong\nfermi velocity of electrons is 1.391 *10**6 m/s\nmean free path is 5.53462691011e-08 m\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.7, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.72*10**-8; #electrical resistivity(ohm m)\nL = 2.26*10**-8; #Lorentz number(ohm W/K**2)\nT = 27; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nK = L*T/rho; #thermal conductivity(W/mK)\n\n#Result\nprint \"thermal conductivity is\",int(K),\"W/mK\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "thermal conductivity is 394 W/mK\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.8, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.9, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nE_EF = 0.01; #energy(eV)\ne = 1.6*10**-19; #conversion factor from eV to J\nT = 200; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nE_EF = E_EF*e; #energy(J)\nA = E_EF/(k*T);\nFofE = 1/(1+(math.exp(A))); #value of F(E)\nFofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"value of F(E) is\",FofE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "value of F(E) is 0.36\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.10, Page number 175" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 4*10**-8; #mean free path(m)\nn = 8.4*10**28; #density(per m**3)\nvthbar = 1.6*10**6; #average thermal velocity(m/s)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.11*10**-31; #mass of electron\n\n#Calculation\nsigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 5.91 *10**7 ohm-1 m-1\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.11, Page number 176" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ntow = 10**-14; #relaxation time(sec)\nT = 300; #temperature(K)\nn = 6*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nme = 9.1*10**-31; #mass of electron\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nsigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)\nsigmaa = sigma*10**-7;\nsigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals\nK = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)\nK=math.ceil(K*10)/10; #rounding off to 1 decimal\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"electrical conductivity is\",sigmaa,\"*10**7 ohm-1 m-1\"\nprint \"thermal conductivity is\",K,\"W/mK\"\nprint \"Lorentz number is\",L,\"W ohm/K**2\"\nprint \"answer for thermal conductivity and Lorentz number given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 1.69 *10**7 ohm-1 m-1\nthermal conductivity is 56.6 W/mK\nLorentz number is 1.11775173611e-08 W ohm/K**2\nanswer for thermal conductivity and Lorentz number given in the book are wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.12, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 5.8*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.1*10**-31; #mass of electron\nrho = 1.54*10**-8; #resistivity of metal(ohm m)\n\n#Calculation\ntow = m/(n*rho*e**2); #relaxation time(sec)\n\n#Result\nprint \"relaxation time is\",tow,\"sec\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time is 3.97972178683e-14 sec\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.13, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nE = 1; #electric field(V/cm)\nme = 9.1*10**-31; #mass of electron\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\nE = E*10**2; #electric field(V/m)\ntow = me/(rho*n*e**2); #relaxation time(sec)\nvd = e*E*tow/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nmew = vd/E; #mobility of electrons(m**2/Vs)\nmew = mew*10**2;\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\ndrift velocity of electrons is 0.7 m/s\nmobility of electrons is 0.7 *10**-2 m**2/Vs\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.14, Page number 178" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nT = 300; #temperature(K)\nl = 2; #length of wire(m)\nR = 0.02; #resistance(ohm)\nI = 15; #current(amp)\nmew = 4.3*10**-3; #mobility(m**2/Vs)\n\n#Calculation\nV = I*R; #voltage drop(V)\nE = V/l; #electric field(V/m)\nvd = mew*E; #drift velocity(m/s)\nvd = vd*10**3;\nvd=math.ceil(vd*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"drift velocity of electrons is\",vd,\"*10**-3 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift velocity of electrons is 0.65 *10**-3 m/s\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.15, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nvf = 0.86*10**6; #fermi velocity(m/s)\nm = 9.1*10**-31; #mass of electron(kg)\ne = 1.6*10**-19; #charge of electron(C)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nEF = m*vf**2/(2*e); #fermi energy(eV)\nEF=math.ceil(EF*100)/100; #rounding off to 2 decimals\nTF = EF*e/k; #fermi temperature(K)\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"\nprint \"Fermi temperature is\",int(TF),\"K\"\nprint \"answer for fermi temperature given in the book is wrong due to rounding off the value of EF\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.11 eV\nFermi temperature is 24463 K\nanswer for fermi temperature given in the book is wrong due to rounding off the value of EF\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.16, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTF = 2460; #fermi temperature(K)\nm = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nvF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)\nvF = vF*10**-5;\nvF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"Fermi velocity is\",vF,\"*10**5 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi velocity is 2.731 *10**5 m/s\n" - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter6_1.ipynb b/Engineering_Physics/Chapter6_1.ipynb deleted file mode 100755 index 768ed817..00000000 --- a/Engineering_Physics/Chapter6_1.ipynb +++ /dev/null @@ -1,356 +0,0 @@ -{ - "metadata": { - "name": "Chapter6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "6: Conducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.1, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nm = 9.1*10**-31; #mass of electron\nvf = 1*10**6; #Fermi velocity(m/s)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = m*(vf**2)/(2*e); #Fermi energy(eV)\nEF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.85 eV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.2, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nEF0 = 7.04; #Fermi energy at 0K(eV)\nT = 300; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)\nEF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 7.03993 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.3, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 2.7*10**3; #density of Al(kg/m**3)\nMat = 27; #atomic weight of Al\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 3*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"conductivity of Al is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of Al is 5.0824 *10**7 ohm m\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.4, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.5, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 8900; #density of Cu(kg/m**3)\nMat = 63.5; #atomic weight of Cu\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 1*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #electrical conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 2.3745 *10**7 ohm m\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.6, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nEF = 5.5; #fermi energy(eV)\nme = 9.1*10**-31; #mass of electron\nepsilon = 100;\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\ntow = me/(rho*n*e**2); #relaxation time(sec)\nmew = e*tow/me; #mobility of electrons(m**2/Vs)\nmew = mew*10**3;\nvd = e*tow*epsilon/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nEF = EF*e; #fermi energy((J)\nvF = math.sqrt(2*EF/me); #fermi velocity(m/s)\nvf = vF*10**-6;\nvf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals\nlamda_m = vF*tow; #mean free path(m)\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"drift velocity given in the book is wrong\"\nprint \"fermi velocity of electrons is\",vf,\"*10**6 m/s\"\nprint \"mean free path is\",lamda_m,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\nmobility of electrons is 6.9973130318 *10**-3 m**2/Vs\ndrift velocity of electrons is 0.7 m/s\ndrift velocity given in the book is wrong\nfermi velocity of electrons is 1.391 *10**6 m/s\nmean free path is 5.53462691011e-08 m\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.7, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.72*10**-8; #electrical resistivity(ohm m)\nL = 2.26*10**-8; #Lorentz number(ohm W/K**2)\nT = 27; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nK = L*T/rho; #thermal conductivity(W/mK)\n\n#Result\nprint \"thermal conductivity is\",int(K),\"W/mK\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "thermal conductivity is 394 W/mK\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.8, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.9, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nE_EF = 0.01; #energy(eV)\ne = 1.6*10**-19; #conversion factor from eV to J\nT = 200; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nE_EF = E_EF*e; #energy(J)\nA = E_EF/(k*T);\nFofE = 1/(1+(math.exp(A))); #value of F(E)\nFofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"value of F(E) is\",FofE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "value of F(E) is 0.36\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.10, Page number 175" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 4*10**-8; #mean free path(m)\nn = 8.4*10**28; #density(per m**3)\nvthbar = 1.6*10**6; #average thermal velocity(m/s)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.11*10**-31; #mass of electron\n\n#Calculation\nsigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 5.91 *10**7 ohm-1 m-1\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.11, Page number 176" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ntow = 10**-14; #relaxation time(sec)\nT = 300; #temperature(K)\nn = 6*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nme = 9.1*10**-31; #mass of electron\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nsigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)\nsigmaa = sigma*10**-7;\nsigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals\nK = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)\nK=math.ceil(K*10)/10; #rounding off to 1 decimal\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"electrical conductivity is\",sigmaa,\"*10**7 ohm-1 m-1\"\nprint \"thermal conductivity is\",K,\"W/mK\"\nprint \"Lorentz number is\",L,\"W ohm/K**2\"\nprint \"answer for thermal conductivity and Lorentz number given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 1.69 *10**7 ohm-1 m-1\nthermal conductivity is 56.6 W/mK\nLorentz number is 1.11775173611e-08 W ohm/K**2\nanswer for thermal conductivity and Lorentz number given in the book are wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.12, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 5.8*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.1*10**-31; #mass of electron\nrho = 1.54*10**-8; #resistivity of metal(ohm m)\n\n#Calculation\ntow = m/(n*rho*e**2); #relaxation time(sec)\n\n#Result\nprint \"relaxation time is\",tow,\"sec\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time is 3.97972178683e-14 sec\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.13, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nE = 1; #electric field(V/cm)\nme = 9.1*10**-31; #mass of electron\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\nE = E*10**2; #electric field(V/m)\ntow = me/(rho*n*e**2); #relaxation time(sec)\nvd = e*E*tow/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nmew = vd/E; #mobility of electrons(m**2/Vs)\nmew = mew*10**2;\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\ndrift velocity of electrons is 0.7 m/s\nmobility of electrons is 0.7 *10**-2 m**2/Vs\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.14, Page number 178" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nT = 300; #temperature(K)\nl = 2; #length of wire(m)\nR = 0.02; #resistance(ohm)\nI = 15; #current(amp)\nmew = 4.3*10**-3; #mobility(m**2/Vs)\n\n#Calculation\nV = I*R; #voltage drop(V)\nE = V/l; #electric field(V/m)\nvd = mew*E; #drift velocity(m/s)\nvd = vd*10**3;\nvd=math.ceil(vd*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"drift velocity of electrons is\",vd,\"*10**-3 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift velocity of electrons is 0.65 *10**-3 m/s\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.15, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nvf = 0.86*10**6; #fermi velocity(m/s)\nm = 9.1*10**-31; #mass of electron(kg)\ne = 1.6*10**-19; #charge of electron(C)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nEF = m*vf**2/(2*e); #fermi energy(eV)\nEF=math.ceil(EF*100)/100; #rounding off to 2 decimals\nTF = EF*e/k; #fermi temperature(K)\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"\nprint \"Fermi temperature is\",int(TF),\"K\"\nprint \"answer for fermi temperature given in the book is wrong due to rounding off the value of EF\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.11 eV\nFermi temperature is 24463 K\nanswer for fermi temperature given in the book is wrong due to rounding off the value of EF\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.16, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTF = 2460; #fermi temperature(K)\nm = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nvF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)\nvF = vF*10**-5;\nvF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"Fermi velocity is\",vF,\"*10**5 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi velocity is 2.731 *10**5 m/s\n" - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter7.ipynb b/Engineering_Physics/Chapter7.ipynb deleted file mode 100755 index d6a7ab3d..00000000 --- a/Engineering_Physics/Chapter7.ipynb +++ /dev/null @@ -1,468 +0,0 @@ -{ - "metadata": { - "name": "Chapter7", - "signature": "sha256:043709ddd748250fcd3232cc251c6d71d665f281189e172a4c8d9b59233bdcee" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "7: Semiconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.1, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nme = 9.11*10**-31; #mass of electron(kg)\nepsilon_r = 13.2; \nepsilon0 = 8.85*10**-12;\nh = 6.63*10**-34;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nm_nc = 0.067*me;\nE = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)\nE = E/e; #energy(eV)\nE = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals\nE_meV = E*10**3; #energy(meV)\n\n#Result\nprint \"donor binding energy is\",E,\"eV or\",E_meV,\"meV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "donor binding energy is 0.00521 eV or 5.21 meV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.2, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nNd = 10**16; #donor concentration(atoms/cm**3)\nni = 1.5*10**10; #concentration(per cm**3)\nT = 300; #temperature(K)\nkT = 0.0259;\n\n#Calculation\nn0 = Nd; #for Nd>>ni, assume n0=Nd\np0 = ni**2/n0; #equilibrium hole concentration(per cm**3)\np0 = p0*10**-4;\nEF_Ei = kT*np.log(n0/ni);\nEF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n\n#Result\nprint \"equilibrium hole concentration is\",p0,\"*10**4 per cm**3\"\nprint \"value of EF-Ei is\",EF_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "equilibrium hole concentration is 2.25 *10**4 per cm**3\nvalue of EF-Ei is 0.3474 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.3, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nNd = 10**14; #donor density(atoms/cm**3)\nmew_n = 3900;\n\n#Calculation\nn = Nd;\nsigma = n*e*mew_n; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 16.03 ohm cm\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.4, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nn0 = 5*10**16; #donor density(atoms/cm**3)\nmew_0 = 800;\nIx = 2; #current(mA)\nBz = 5*10**-5;\nd = 200; #thickness(micrometre)\n\n#Calculation\nIx = Ix*10**-3; #current(A)\nd = d*10**-4; #thickness(m)\nsigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\nRH = -1/(e*n0); #Hall coefficient(cm**3/C)\nVH = Ix*Bz*RH/d; #Hall voltage(V)\nVH = VH*10**5;\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"\nprint \"Hall coefficient is\",RH,\"cm**3/C\"\nprint \"Hall voltage is\",VH,\"*10**-5 V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 0.1563 ohm cm\nHall coefficient is -125.0 cm**3/C\nHall voltage is -62.5 *10**-5 V\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.5, Page number 210" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\nEg = 0.7; #band gap(eV)\nme = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nh = 6.625*10**-34;\nkT = 0.0259;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\na = (2*math.pi*k*T/(h**2))**(3/2);\nb = (mn_star*mp_star)**(3/4);\nc = math.exp(-Eg/(2*kT));\nni = 2*a*b*c; #intrinsic concentration(per m**3)\nsigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)\nsigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\nrho = 1/sigma; #intrinsic resistivity(ohm m)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"intrinsic concentration is\",ni,\"per m**3\"\nprint \"intrinsic conductivity is\",sigma,\"per ohm m\"\nprint \"intrinsic resistivity is\",rho,\"ohm m\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic concentration is 1.02825111151e+19 per m**3\nintrinsic conductivity is 0.9872 per ohm m\nintrinsic resistivity is 1.013 ohm m\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.6, Page number 211" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nNd = 10**16; #donor concentration(per cm**3)\nni = 1.45*10**10; #concentration(per cm**3)\nkT = 0.0259;\n\n#Calculation\n#ni = Nc*math.exp(-(Ec-Ei)/kT)\n#Nd = Nc*(math.exp(-(Ec-Efd)/kT)\n#dividing Nd/ni we get \nEFd_Ei = kT*np.log(Nd/ni);\nEFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"Fermi energy is\",EFd_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 0.3482 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.7, Page number 211, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.8, Page number 212" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.36; #electron mobility(m**2/Vs)\nmew_p = 0.17; #hole mobility(m**2/Vs)\nrho = 2.12; #resistivity(ohm m)\nme = 9.11*10**-31; #mass of electron(kg)\nkT = 0.0259;\nh = 6.625*10**-34;\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\nsigma = 1/rho; #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\nni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)\na = (2*math.pi*kT/(h**2))**(3/2);\nNc = 2*a*(mn_star**(3/2)); \nNv = 2*a*(mp_star**(3/2)); \nb = (Nc*Nv)**(1/2);\nEg = 2*kT*np.log(b/ni);\n\n#Result\nprint \"forbidden energy gap is\",Eg,\"eV\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "forbidden energy gap is 4.09465494989 eV\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.9, Page number 213" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nni = 2.4*10**19; #concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"conductivity of sample is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of sample is 2.228 ohm-1 m-1\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.10, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nEc = 0.3; #initial position(eV)\nT1 = 300; #initial temperature(K)\nT2 = 330; #increased temperature\n\n#Calculation\n#Ec/T1 = Ec_EF330/T2\nEc_EF330 = Ec*T2/T1; #new position of Fermi level(eV)\n\n#Result\nprint \"new position of Fermi level is\",Ec_EF330,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "new position of Fermi level is 0.33 eV\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.11, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nme = 9.1*10**-31; #mass of electron(kg)\nh = 6.63*10**-34; #planck's constant\nEc_Ev = 1.1; #energy gap(eV)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nme_star = 0.31*me;\nA = (2*math.pi*k*T*me_star/(h**2))**(3/2);\nB = math.exp(-(Ec_Ev*e)/(2*k*T));\nni = A*B; #concentration in conduction band(per m**3)\n\n#Result\nprint \"intrinsic electron concentration is\",ni,\"per m**3\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic electron concentration is 1.26605935487e+15 per m**3\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.12, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nRH = 0.55*10**-10; #Hall coefficient(m**3/As)\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nmew = RH*sigma; #drift mobility(m**2/Vs)\nmew = mew*10**3;\nmew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"drift mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift mobility of electrons is 3.25 *10**-3 m**2/Vs\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.13, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nA = 6.022*10**23; #avagadro constant\nd = 8.96*10**-9; #density(kg/m**3)\nn = 9.932*10**14; #no. of free electrons per atom\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\ne = 1.6*10**-19; #electron charge(C)\nmew = 3.2*10**-3; #drift mobility(m**2/Vs)\nw = 63.5; #atomic weight of Cu(kg)\n\n#Calculation\nni = sigma/(mew*e); #conductivity(per m**3)\nN = A*d*n/w; #concentration of free electrons in pure Cu\nAN = ni/N; #average number of electrons contributed per Cu atom\n\n#Result\nprint \"concentration of free electrons in pure Cu is\",N,\"per m**3\"\nprint \"average number of electrons contributed per Cu atom is\",int(AN)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "concentration of free electrons in pure Cu is 8.43940339906e+28 per m**3\naverage number of electrons contributed per Cu atom is 1\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.14, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nRH = 3.66*10**-11; #hall coefficient(m**3/As)\ne = 1.6*10**-19; #electron charge(C)\nsigma = 112*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nn = 1/(e*RH); #charge carrier density(per m**3)\nmew_n = sigma/(n*e); #electron mobility(m**2/As)\nmew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"charge carrier density is\",n,\"per m**3\"\nprint \"electron mobility is\",mew_n,\"m**2/As\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "charge carrier density is 1.70765027322e+29 per m**3\nelectron mobility is 0.041 m**2/As\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.15, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nB = 1.5; #magnetic field(T)\nI = 50; #current(Amp)\nn = 8.4*10**28; #free electron concentration(per m**3)\nd = 0.2; #thickness of slab(cm)\n\n#Calculation\nd = d*10**-2; #thickness of slab(m)\nVH = B*I/(n*e*d); #hall voltage(V)\n\n#Result\nprint \"magnitude of Hall voltage is\",VH,\"V\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnitude of Hall voltage is 2.79017857143e-06 V\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.16, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nn = 2.5*10**19; #free electron concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\nL = 1; #length(cm)\nw = 1; #width(mm)\nt = 1; #thickness(mm)\n\n#Calculation\nL = L*10**-2; #length(m)\nw = w*10**-3; #width(m)\nt = t*10**-3; #thickness(m)\nA = w*t; #area(m**2)\nsigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)\nR = L/(sigma*A); #resistance(ohm)\n\n#Result\nprint \"resistance of intrinsic Ge rod is\",int(R),\"ohm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistance of intrinsic Ge rod is 4310 ohm\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.17, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nEg = 1.12; #band gap(eV)\nme = 1;\nmn_star = 0.12*me; #electron mobility(m**2/Vs)\nmp_star = 0.28*me; #hole mobility(m**2/Vs)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature\n\n#Calculation\na = mp_star/mn_star;\nEF = (Eg/2)+((3*k*T/(4*e))*np.log(a));\nEF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"position of Fermi level is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "position of Fermi level is 0.577 eV\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.18, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 1.5*10**16; #intrinsic carrier density(per m**3)\nmew_n = 0.13; #electron mobility(m**2/Vs)\nmew_p = 0.05; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\nsigma = sigma*10**4;\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**-4 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 4.32 *10**-4 ohm-1 m-1\n" - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.19, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.15*10**-13; #intrinsic carrier density(per cm**3)\nmew_n = 3900; #electron mobility(cm**2/Vs)\nmew_p = 1900; #hole mobility(cm**2/Vs)\n\n#Calculation\nsigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)\nrhoi = 1/sigmai; #intrinsic resistivity(ohm cm)\n\n#Result\nprint \"intrinsic resistivity is\",rhoi,\"ohm cm\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 5.01202886929e+27 ohm cm\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.20, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.1*10**19; #intrinsic carrier density(per m**3)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\n\n#Result\nprint \"intrinsic resistivity is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 2.016 ohm-1 m-1\n" - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.21, Page number 218" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nV = 1.35; #voltage supply(V)\nI = 5; #current(mA)\nb = 5; #breadth(mm)\nd = 1; #thickness(mm)\nL = 1; #length(cm)\nH = 0.45; #magnetic field(Wb/m**2)\nVy =20; #Hall voltage(mV)\n\n#Calculation\nVy = Vy*10**-3; #Hall voltage(V)\nL = L*10**-2; #length(m)\nd = d*10**-3; #thickness(m)\nb = b*10**-3; #breadth(m)\nI = I*10**-3; #current(A)\nR = V/I; #resistance(ohm)\nA = b*d; #area(m**2)\nrho = R*A/L; #resistivity(ohm m)\nEy = Vy/d; #Hall field(V/m)\nJx = I/A; \na = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne \nRH = a; #Hall coefficient(m**3/C)\nRH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals\nmew_n = RH/rho; #electron mobility(m**2/Vs)\nmew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Hall coefficient is\",RH,\"m**3/C\"\nprint \"electron mobility is\",mew_n,\"m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall coefficient is 0.0445 m**3/C\nelectron mobility is 0.33 m**2/Vs\n" - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.22, Page number 219" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nIx = 200; #current(A)\nBz = 1.5; #magnetic field(Wb/m**2)\np = 8.4*10**28; #electron concentration(per m**3)\nd = 1; #thickness(mm)\n\n#Calculation\nd = d*10**-3; #thickness(m)\nVH = Ix*Bz/(e*p*d); #Hall potential(V)\nVH = VH*10**6; #Hall potential(micro V)\n\n#Result\nprint \"Hall potential is\",int(VH),\"micro V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall potential is 22 micro V\n" - } - ], - "prompt_number": 22 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter7_1.ipynb b/Engineering_Physics/Chapter7_1.ipynb deleted file mode 100755 index d6a7ab3d..00000000 --- a/Engineering_Physics/Chapter7_1.ipynb +++ /dev/null @@ -1,468 +0,0 @@ -{ - "metadata": { - "name": "Chapter7", - "signature": "sha256:043709ddd748250fcd3232cc251c6d71d665f281189e172a4c8d9b59233bdcee" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "7: Semiconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.1, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nme = 9.11*10**-31; #mass of electron(kg)\nepsilon_r = 13.2; \nepsilon0 = 8.85*10**-12;\nh = 6.63*10**-34;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nm_nc = 0.067*me;\nE = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)\nE = E/e; #energy(eV)\nE = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals\nE_meV = E*10**3; #energy(meV)\n\n#Result\nprint \"donor binding energy is\",E,\"eV or\",E_meV,\"meV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "donor binding energy is 0.00521 eV or 5.21 meV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.2, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nNd = 10**16; #donor concentration(atoms/cm**3)\nni = 1.5*10**10; #concentration(per cm**3)\nT = 300; #temperature(K)\nkT = 0.0259;\n\n#Calculation\nn0 = Nd; #for Nd>>ni, assume n0=Nd\np0 = ni**2/n0; #equilibrium hole concentration(per cm**3)\np0 = p0*10**-4;\nEF_Ei = kT*np.log(n0/ni);\nEF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n\n#Result\nprint \"equilibrium hole concentration is\",p0,\"*10**4 per cm**3\"\nprint \"value of EF-Ei is\",EF_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "equilibrium hole concentration is 2.25 *10**4 per cm**3\nvalue of EF-Ei is 0.3474 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.3, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nNd = 10**14; #donor density(atoms/cm**3)\nmew_n = 3900;\n\n#Calculation\nn = Nd;\nsigma = n*e*mew_n; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 16.03 ohm cm\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.4, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nn0 = 5*10**16; #donor density(atoms/cm**3)\nmew_0 = 800;\nIx = 2; #current(mA)\nBz = 5*10**-5;\nd = 200; #thickness(micrometre)\n\n#Calculation\nIx = Ix*10**-3; #current(A)\nd = d*10**-4; #thickness(m)\nsigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\nRH = -1/(e*n0); #Hall coefficient(cm**3/C)\nVH = Ix*Bz*RH/d; #Hall voltage(V)\nVH = VH*10**5;\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"\nprint \"Hall coefficient is\",RH,\"cm**3/C\"\nprint \"Hall voltage is\",VH,\"*10**-5 V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 0.1563 ohm cm\nHall coefficient is -125.0 cm**3/C\nHall voltage is -62.5 *10**-5 V\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.5, Page number 210" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\nEg = 0.7; #band gap(eV)\nme = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nh = 6.625*10**-34;\nkT = 0.0259;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\na = (2*math.pi*k*T/(h**2))**(3/2);\nb = (mn_star*mp_star)**(3/4);\nc = math.exp(-Eg/(2*kT));\nni = 2*a*b*c; #intrinsic concentration(per m**3)\nsigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)\nsigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\nrho = 1/sigma; #intrinsic resistivity(ohm m)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"intrinsic concentration is\",ni,\"per m**3\"\nprint \"intrinsic conductivity is\",sigma,\"per ohm m\"\nprint \"intrinsic resistivity is\",rho,\"ohm m\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic concentration is 1.02825111151e+19 per m**3\nintrinsic conductivity is 0.9872 per ohm m\nintrinsic resistivity is 1.013 ohm m\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.6, Page number 211" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nNd = 10**16; #donor concentration(per cm**3)\nni = 1.45*10**10; #concentration(per cm**3)\nkT = 0.0259;\n\n#Calculation\n#ni = Nc*math.exp(-(Ec-Ei)/kT)\n#Nd = Nc*(math.exp(-(Ec-Efd)/kT)\n#dividing Nd/ni we get \nEFd_Ei = kT*np.log(Nd/ni);\nEFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"Fermi energy is\",EFd_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 0.3482 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.7, Page number 211, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.8, Page number 212" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.36; #electron mobility(m**2/Vs)\nmew_p = 0.17; #hole mobility(m**2/Vs)\nrho = 2.12; #resistivity(ohm m)\nme = 9.11*10**-31; #mass of electron(kg)\nkT = 0.0259;\nh = 6.625*10**-34;\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\nsigma = 1/rho; #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\nni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)\na = (2*math.pi*kT/(h**2))**(3/2);\nNc = 2*a*(mn_star**(3/2)); \nNv = 2*a*(mp_star**(3/2)); \nb = (Nc*Nv)**(1/2);\nEg = 2*kT*np.log(b/ni);\n\n#Result\nprint \"forbidden energy gap is\",Eg,\"eV\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "forbidden energy gap is 4.09465494989 eV\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.9, Page number 213" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nni = 2.4*10**19; #concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"conductivity of sample is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of sample is 2.228 ohm-1 m-1\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.10, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nEc = 0.3; #initial position(eV)\nT1 = 300; #initial temperature(K)\nT2 = 330; #increased temperature\n\n#Calculation\n#Ec/T1 = Ec_EF330/T2\nEc_EF330 = Ec*T2/T1; #new position of Fermi level(eV)\n\n#Result\nprint \"new position of Fermi level is\",Ec_EF330,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "new position of Fermi level is 0.33 eV\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.11, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nme = 9.1*10**-31; #mass of electron(kg)\nh = 6.63*10**-34; #planck's constant\nEc_Ev = 1.1; #energy gap(eV)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nme_star = 0.31*me;\nA = (2*math.pi*k*T*me_star/(h**2))**(3/2);\nB = math.exp(-(Ec_Ev*e)/(2*k*T));\nni = A*B; #concentration in conduction band(per m**3)\n\n#Result\nprint \"intrinsic electron concentration is\",ni,\"per m**3\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic electron concentration is 1.26605935487e+15 per m**3\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.12, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nRH = 0.55*10**-10; #Hall coefficient(m**3/As)\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nmew = RH*sigma; #drift mobility(m**2/Vs)\nmew = mew*10**3;\nmew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"drift mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift mobility of electrons is 3.25 *10**-3 m**2/Vs\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.13, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nA = 6.022*10**23; #avagadro constant\nd = 8.96*10**-9; #density(kg/m**3)\nn = 9.932*10**14; #no. of free electrons per atom\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\ne = 1.6*10**-19; #electron charge(C)\nmew = 3.2*10**-3; #drift mobility(m**2/Vs)\nw = 63.5; #atomic weight of Cu(kg)\n\n#Calculation\nni = sigma/(mew*e); #conductivity(per m**3)\nN = A*d*n/w; #concentration of free electrons in pure Cu\nAN = ni/N; #average number of electrons contributed per Cu atom\n\n#Result\nprint \"concentration of free electrons in pure Cu is\",N,\"per m**3\"\nprint \"average number of electrons contributed per Cu atom is\",int(AN)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "concentration of free electrons in pure Cu is 8.43940339906e+28 per m**3\naverage number of electrons contributed per Cu atom is 1\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.14, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nRH = 3.66*10**-11; #hall coefficient(m**3/As)\ne = 1.6*10**-19; #electron charge(C)\nsigma = 112*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nn = 1/(e*RH); #charge carrier density(per m**3)\nmew_n = sigma/(n*e); #electron mobility(m**2/As)\nmew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"charge carrier density is\",n,\"per m**3\"\nprint \"electron mobility is\",mew_n,\"m**2/As\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "charge carrier density is 1.70765027322e+29 per m**3\nelectron mobility is 0.041 m**2/As\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.15, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nB = 1.5; #magnetic field(T)\nI = 50; #current(Amp)\nn = 8.4*10**28; #free electron concentration(per m**3)\nd = 0.2; #thickness of slab(cm)\n\n#Calculation\nd = d*10**-2; #thickness of slab(m)\nVH = B*I/(n*e*d); #hall voltage(V)\n\n#Result\nprint \"magnitude of Hall voltage is\",VH,\"V\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnitude of Hall voltage is 2.79017857143e-06 V\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.16, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nn = 2.5*10**19; #free electron concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\nL = 1; #length(cm)\nw = 1; #width(mm)\nt = 1; #thickness(mm)\n\n#Calculation\nL = L*10**-2; #length(m)\nw = w*10**-3; #width(m)\nt = t*10**-3; #thickness(m)\nA = w*t; #area(m**2)\nsigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)\nR = L/(sigma*A); #resistance(ohm)\n\n#Result\nprint \"resistance of intrinsic Ge rod is\",int(R),\"ohm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistance of intrinsic Ge rod is 4310 ohm\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.17, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nEg = 1.12; #band gap(eV)\nme = 1;\nmn_star = 0.12*me; #electron mobility(m**2/Vs)\nmp_star = 0.28*me; #hole mobility(m**2/Vs)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature\n\n#Calculation\na = mp_star/mn_star;\nEF = (Eg/2)+((3*k*T/(4*e))*np.log(a));\nEF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"position of Fermi level is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "position of Fermi level is 0.577 eV\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.18, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 1.5*10**16; #intrinsic carrier density(per m**3)\nmew_n = 0.13; #electron mobility(m**2/Vs)\nmew_p = 0.05; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\nsigma = sigma*10**4;\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**-4 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 4.32 *10**-4 ohm-1 m-1\n" - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.19, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.15*10**-13; #intrinsic carrier density(per cm**3)\nmew_n = 3900; #electron mobility(cm**2/Vs)\nmew_p = 1900; #hole mobility(cm**2/Vs)\n\n#Calculation\nsigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)\nrhoi = 1/sigmai; #intrinsic resistivity(ohm cm)\n\n#Result\nprint \"intrinsic resistivity is\",rhoi,\"ohm cm\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 5.01202886929e+27 ohm cm\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.20, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.1*10**19; #intrinsic carrier density(per m**3)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\n\n#Result\nprint \"intrinsic resistivity is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 2.016 ohm-1 m-1\n" - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.21, Page number 218" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nV = 1.35; #voltage supply(V)\nI = 5; #current(mA)\nb = 5; #breadth(mm)\nd = 1; #thickness(mm)\nL = 1; #length(cm)\nH = 0.45; #magnetic field(Wb/m**2)\nVy =20; #Hall voltage(mV)\n\n#Calculation\nVy = Vy*10**-3; #Hall voltage(V)\nL = L*10**-2; #length(m)\nd = d*10**-3; #thickness(m)\nb = b*10**-3; #breadth(m)\nI = I*10**-3; #current(A)\nR = V/I; #resistance(ohm)\nA = b*d; #area(m**2)\nrho = R*A/L; #resistivity(ohm m)\nEy = Vy/d; #Hall field(V/m)\nJx = I/A; \na = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne \nRH = a; #Hall coefficient(m**3/C)\nRH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals\nmew_n = RH/rho; #electron mobility(m**2/Vs)\nmew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Hall coefficient is\",RH,\"m**3/C\"\nprint \"electron mobility is\",mew_n,\"m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall coefficient is 0.0445 m**3/C\nelectron mobility is 0.33 m**2/Vs\n" - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.22, Page number 219" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nIx = 200; #current(A)\nBz = 1.5; #magnetic field(Wb/m**2)\np = 8.4*10**28; #electron concentration(per m**3)\nd = 1; #thickness(mm)\n\n#Calculation\nd = d*10**-3; #thickness(m)\nVH = Ix*Bz/(e*p*d); #Hall potential(V)\nVH = VH*10**6; #Hall potential(micro V)\n\n#Result\nprint \"Hall potential is\",int(VH),\"micro V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall potential is 22 micro V\n" - } - ], - "prompt_number": 22 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter8.ipynb b/Engineering_Physics/Chapter8.ipynb deleted file mode 100755 index 54d83b1d..00000000 --- a/Engineering_Physics/Chapter8.ipynb +++ /dev/null @@ -1,125 +0,0 @@ -{ - "metadata": { - "name": "Chapter8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "8: Magnetic Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.1, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nI = 12; #current(Ampere)\nA = 7.5*10**-4 #area of loop(m**2)\n\n#Calculation\nM = I*A; #magnetic moment(Am**2)\nM = M*10**3;\n\n#Result\nprint \"magnetic moment is\",M,\"*10**-3 Am**2\"\nprint \"magnetic moment is in opposite direction from the observer\"\nprint \"M is perpendicular to the plane\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 9.0 *10**-3 Am**2\nmagnetic moment is in opposite direction from the observer\nM is perpendicular to the plane\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.2, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 0.5; #radius of orbit(Angstrom)\ne = 1.6*10**-19; #charge of electron(C)\nnew = 10**16; #frequency(rps)\n\n#Calculation\nr = r*10**-10; #radius of orbit(m)\nI = e*new; #current(Ampere)\nA = math.pi*r**2; #area enclosed(m**2)\nM = I*A; #magnetic moment(Am**2)\n\n#Result\nprint \"magnetic moment is\",M,\"Am**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 1.25663706144e-23 Am**2\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.3, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nmew_r = 5000; #relative permeability\n\n#Calculation\nchi_m = mew_r-1; #magnetic susceptibility\n\n#Result\nprint \"magnetic susceptibility is\",chi_m", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic susceptibility is 4999\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.4, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH = 1800; #magnetic field(A/m)\nphi = 3*10**-5; #magnetic flux(Wb)\nA = 0.2; #cross sectional area(cm**2)\n\n#Calculation\nA = A*10**-4; #cross sectional area(m**2)\nB = phi/A; #magnetic flux density(Wb/m**2)\nmew = B/H; #permeability(H/m)\nmew = mew*10**4;\nmew=math.ceil(mew*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"permeability is\",mew,\"*10**-4 H/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "permeability is 8.34 *10**-4 H/m\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.5, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nB = 0.65; #magnetic induction(Wb/m**2)\nrho = 8906; #density(kg/m**3)\nM = 58.7; #atomic weight\nmew0 = 4*math.pi*10**-7;\nmb = 9.27*10**-24;\nNa = 6.023*10**26; #avagadro constant\n\n#Calculation\nN = rho*Na/M; #number of atoms per unit volume(atoms/m**3)\nmew_r = B/(N*mew0); #relative permeability(A/m**2)\nM = mew_r/mb; #magnetic moment in mew_B \nM=math.ceil(M*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"magnetic moment is\",M,\"mew_B\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 0.611 mew_B\n" - } - ], - "prompt_number": 5 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter8_1.ipynb b/Engineering_Physics/Chapter8_1.ipynb deleted file mode 100755 index 54d83b1d..00000000 --- a/Engineering_Physics/Chapter8_1.ipynb +++ /dev/null @@ -1,125 +0,0 @@ -{ - "metadata": { - "name": "Chapter8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "8: Magnetic Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.1, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nI = 12; #current(Ampere)\nA = 7.5*10**-4 #area of loop(m**2)\n\n#Calculation\nM = I*A; #magnetic moment(Am**2)\nM = M*10**3;\n\n#Result\nprint \"magnetic moment is\",M,\"*10**-3 Am**2\"\nprint \"magnetic moment is in opposite direction from the observer\"\nprint \"M is perpendicular to the plane\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 9.0 *10**-3 Am**2\nmagnetic moment is in opposite direction from the observer\nM is perpendicular to the plane\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.2, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 0.5; #radius of orbit(Angstrom)\ne = 1.6*10**-19; #charge of electron(C)\nnew = 10**16; #frequency(rps)\n\n#Calculation\nr = r*10**-10; #radius of orbit(m)\nI = e*new; #current(Ampere)\nA = math.pi*r**2; #area enclosed(m**2)\nM = I*A; #magnetic moment(Am**2)\n\n#Result\nprint \"magnetic moment is\",M,\"Am**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 1.25663706144e-23 Am**2\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.3, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nmew_r = 5000; #relative permeability\n\n#Calculation\nchi_m = mew_r-1; #magnetic susceptibility\n\n#Result\nprint \"magnetic susceptibility is\",chi_m", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic susceptibility is 4999\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.4, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH = 1800; #magnetic field(A/m)\nphi = 3*10**-5; #magnetic flux(Wb)\nA = 0.2; #cross sectional area(cm**2)\n\n#Calculation\nA = A*10**-4; #cross sectional area(m**2)\nB = phi/A; #magnetic flux density(Wb/m**2)\nmew = B/H; #permeability(H/m)\nmew = mew*10**4;\nmew=math.ceil(mew*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"permeability is\",mew,\"*10**-4 H/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "permeability is 8.34 *10**-4 H/m\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.5, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nB = 0.65; #magnetic induction(Wb/m**2)\nrho = 8906; #density(kg/m**3)\nM = 58.7; #atomic weight\nmew0 = 4*math.pi*10**-7;\nmb = 9.27*10**-24;\nNa = 6.023*10**26; #avagadro constant\n\n#Calculation\nN = rho*Na/M; #number of atoms per unit volume(atoms/m**3)\nmew_r = B/(N*mew0); #relative permeability(A/m**2)\nM = mew_r/mb; #magnetic moment in mew_B \nM=math.ceil(M*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"magnetic moment is\",M,\"mew_B\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 0.611 mew_B\n" - } - ], - "prompt_number": 5 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter9.ipynb b/Engineering_Physics/Chapter9.ipynb deleted file mode 100755 index ff53dd34..00000000 --- a/Engineering_Physics/Chapter9.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "9: Superconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.1, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH0 = 6.5*10**4; #magnetic field intensity(A/m)\nT = 4.2; #temperature(K)\nTc = 7.18; #critical temperature(K)\n\n#Calculation\nHc = H0*(1-((T**2)/(Tc**2))); #critical magnetic field intensity(A/m)\nHc = Hc*10**-4;\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"critical magnetic field intensity is\",Hc,\"*10**4 A/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "critical magnetic field intensity is 4.276 *10**4 A/m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.2, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTc1 = 4.185; #critical temperature for M1(K)\nTc2 = 4.133; #critical temperature for M2(K)\nM1 = 199.5; #isotopic mass\nalpha = 0.5;\n\n#Calculation\nA = math.pow(M1,alpha)*Tc1/Tc2;\nM2 = math.pow(A,1/alpha); #isotopic mass\nM2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"isotopic mass is\",M2\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "isotopic mass is 204.552\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter9_1.ipynb b/Engineering_Physics/Chapter9_1.ipynb deleted file mode 100755 index ff53dd34..00000000 --- a/Engineering_Physics/Chapter9_1.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "9: Superconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.1, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH0 = 6.5*10**4; #magnetic field intensity(A/m)\nT = 4.2; #temperature(K)\nTc = 7.18; #critical temperature(K)\n\n#Calculation\nHc = H0*(1-((T**2)/(Tc**2))); #critical magnetic field intensity(A/m)\nHc = Hc*10**-4;\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"critical magnetic field intensity is\",Hc,\"*10**4 A/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "critical magnetic field intensity is 4.276 *10**4 A/m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.2, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTc1 = 4.185; #critical temperature for M1(K)\nTc2 = 4.133; #critical temperature for M2(K)\nM1 = 199.5; #isotopic mass\nalpha = 0.5;\n\n#Calculation\nA = math.pow(M1,alpha)*Tc1/Tc2;\nM2 = math.pow(A,1/alpha); #isotopic mass\nM2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"isotopic mass is\",M2\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "isotopic mass is 204.552\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_1.ipynb b/Engineering_Physics/Chapter_1.ipynb deleted file mode 100755 index 080a49e2..00000000 --- a/Engineering_Physics/Chapter_1.ipynb +++ /dev/null @@ -1,263 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:f155f4255421e223741f26abb6caa1287b63505ee5f432c40968d5b5ff6fb505" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Ultrasonics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.1, Page number 28 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "t=0.15*10**-2; #thickness of the quartz crystal in m\n", - "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", - "rho=2650; #density of quartz in kg/m^3\n", - "\n", - "#Calculation\n", - "x=math.sqrt(Y/rho);\n", - "f=x/(2*t);\n", - "f=f*10**-6; #converting f from Hz to MHz\n", - "f=math.ceil(f*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"fundamental frequency of vibration in MHz is\",f);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fundamental frequency of vibration in MHz is', 1.819992)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.2, Page number 28 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "t=1e-03; #thickness of the quartz crystal in m\n", - "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", - "rho=2650; #density of quartz in kg/m^3\n", - "\n", - "#Calculation\n", - "x=math.sqrt(Y/rho);\n", - "p1=1; #for fundamental frequency p=1\n", - "f1=(p1*x)/(2*t);\n", - "F1=f1/10**6;\n", - "F1=math.ceil(F1*10**5)/10**5; #rounding off to 5 decimals\n", - "f_1=f1*10**-6; #converting f1 from Hz to MHz\n", - "f_1=math.ceil(f_1*10**5)/10**5; #rounding off to 5 decimals\n", - "p2=2; #for first overtone p=2\n", - "f2=(p2*x)/(2*t);\n", - "F2=f2/10**6;\n", - "F2=math.ceil(F2*10**5)/10**5; #rounding off to 5 decimals\n", - "f_2=f2*10**-6; #converting f2 from Hz to MHz\n", - "f_2=math.ceil(f_2*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"fundamental frequency in Hz is\",F1,\"*10**6\");\n", - "print(\"fundamental frequency in MHz is\",f_1);\n", - "print(\"frequency of the first overtone in Hz is\",F2,\"*10**6\");\n", - "print(\"frequency of the first overtone in MHz is\",f_2);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fundamental frequency in Hz is', 2.72999, '*10**6')\n", - "('fundamental frequency in MHz is', 2.72999)\n", - "('frequency of the first overtone in Hz is', 5.45998, '*10**6')\n", - "('frequency of the first overtone in MHz is', 5.45998)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.3, Page number 29 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda=589.3*10**-9; #wavelength of light in m\n", - "f=100*10**6; #frequency of ultrasonic transducer in Hz\n", - "n=1; #order of diffraction\n", - "theta=2.25; #angle of diffraction in degrees\n", - "theta=theta*0.0174532925; #converting degrees to radians\n", - "\n", - "#Calculation\n", - "d=(n*lamda)/(2*math.sin(theta));\n", - "d1=d*10**6; #converting d from m to micro m\n", - "lamda1=2*d;\n", - "v=f*lamda1;\n", - "v=math.ceil(v*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"wavelength of ultrasonic wave in m is\",lamda1);\n", - "print(\"velocity of ultrasonic wave in m/sec\",int(v));" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('wavelength of ultrasonic wave in m is', 1.5010258944908707e-05)\n", - "('velocity of ultrasonic wave in m/sec', 1501)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.4, Page number 29 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "f=2*10**6; #frequency of transducer in MHz\n", - "v=3; #speed of blood in m/s\n", - "c=800; #velocity of ultrasonic wave in m/s\n", - "theta=30; #angle of inclination in degrees\n", - "theta=theta*0.0174532925; #converting degrees to radians\n", - "\n", - "#Calculation\n", - "deltaf=(2*f*v*math.cos(theta))/c;\n", - "deltaf=deltaf*10**-6; #converting deltaf from Hz to MHz\n", - "deltaf=math.ceil(deltaf*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"doppler shifted frequency in MHz is\",deltaf);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('doppler shifted frequency in MHz is', 0.012991)\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.5, Page number 30 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", - "rho=2650; #density of quartz in kg/m^3\n", - "\n", - "#Calculation\n", - "v=math.sqrt(Y/rho);\n", - "v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"velocity of ultrasonic waves in m/s is\",v);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('velocity of ultrasonic waves in m/s is', 5459.975)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_10.ipynb b/Engineering_Physics/Chapter_10.ipynb deleted file mode 100755 index 22ab6eae..00000000 --- a/Engineering_Physics/Chapter_10.ipynb +++ /dev/null @@ -1,301 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:d58d66ad9738120c070e76177ecbb4c809f35b6cd83a911351fcdee8be9798f2" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Magnetic materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.1, Page number 305" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "H=10**6; #magnetic field strength in A/m\n", - "chi=0.5*10**-5; #magnetic susceptibility\n", - "\n", - "#Calculation\n", - "mew0=4*math.pi*10**-7;\n", - "M=chi*H;\n", - "B=mew0*(M+H);\n", - "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of magnetisation in A/m is\",M);\n", - "print(\"flux density in Wb/m^2 is\",B);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of magnetisation in A/m is', 5.0)\n", - "('flux density in Wb/m^2 is', 1.257)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.2, Page number 306" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**23; #avagadro number\n", - "mew0=4*math.pi*10**-7;\n", - "w=58.7; #atomic weight of Ni\n", - "B=0.65; #saturation magnetic induction in Wb/m^2\n", - "rho=8906; #density in kg/m^3\n", - "\n", - "#Calculation\n", - "rho=rho*10**3; #converting into gm/m^3\n", - "N=(rho*A)/w;\n", - "mew_m=B/(N*mew0);\n", - "#mew_m/(9.27*10^-24) gives mew_m in mewB\n", - "mew_m=mew_m/(9.27*10**-24);\n", - "mew_m=math.ceil(mew_m*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic moment of Ni is\",mew_m,\"mew_b\");\n", - "#that is mew_m=0.61 mew_b" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic moment of Ni is', 0.611, 'mew_b')\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.3, Page number 306" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0=4*math.pi*10**-7;\n", - "H=1800; #magnetic field in A/m\n", - "phi=3*10**-5; #magnetic flux in Wb\n", - "A=0.2; #area of cross section in cm^2\n", - "\n", - "#Calculation\n", - "A=A*10**-4; #area in m^2\n", - "B=phi/A;\n", - "mew_r=B/(mew_0*H);\n", - "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"permeability of material is\",mew_r);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('permeability of material is', 663.146)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.4, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew=18.4; #magnetic moment in mew_b\n", - "a=0.835; #lattice parameter in nm\n", - "\n", - "#Calculation\n", - "mew=mew*9.27*10**-24;\n", - "a=a*10**-9; #converting nm to m\n", - "V=a**3;\n", - "M=mew/V;\n", - "M=M/10**5;\n", - "M=math.ceil(M*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"saturation magnetisation in A/m is\",M,\"*10**5\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('saturation magnetisation in A/m is', 2.9299, '*10**5')\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.5, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0=4*math.pi*10**-7;\n", - "H=2*10**5; #magnetic field strength in A/m\n", - "mew_r=1.01; #relative permeability\n", - "\n", - "#Calculation\n", - "B=mew_0*mew_r*H;\n", - "B=math.ceil(B*10**5)/10**5; #rounding off to 3 decimals\n", - "M=(B/mew_0)-H;\n", - "M=math.ceil(M*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic flux density in Wb/m^2 is\",B);\n", - "print(\"magnetisation in A/m is\",M);\n", - "\n", - "#answer for magnetisation given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic flux density in Wb/m^2 is', 0.25385)\n", - "('magnetisation in A/m is', 2007.42)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.6, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0=4*math.pi*10**-7;\n", - "H=500; #magnetic field strength in A/m\n", - "chi=1.2; #susceptibility\n", - "\n", - "#Calculation\n", - "M=chi*H;\n", - "B=mew_0*(M+H);\n", - "B=B*10**3;\n", - "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic flux density in Wb/m^2 is\",B,\"*10**-3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic flux density in Wb/m^2 is', 1.3824, '*10**-3')\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_11.ipynb b/Engineering_Physics/Chapter_11.ipynb deleted file mode 100755 index d8455a9b..00000000 --- a/Engineering_Physics/Chapter_11.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3ff449f1ffe03bd2c9931a55b263d24ea75427a65a897e285709531b99dfed25" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Dielectric materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.1, Page number 335" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "A=10*10*10**-6; #area of capacitor in m^2\n", - "d=2*10**-3; #distance of seperation in m\n", - "C=10**-9; #capacitance in F\n", - "\n", - "#Calculation\n", - "epsilon_r=(C*d)/(epsilon_0*A);\n", - "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"dielectric constant of material is\",epsilon_r);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('dielectric constant of material is', 2258.87)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.2, Page number 335" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "epsilon_r=1.0000684; #dielectric constant of He gas\n", - "N=2.7*10**25; #concentration of dipoles per m^3\n", - "\n", - "#Calculation\n", - "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n", - "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n", - "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n", - "\n", - "#Result\n", - "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.3, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "epsilon_r=6; #dielectric constant\n", - "E=100; #electric field intensity in V/m\n", - "\n", - "#Calculation\n", - "P=epsilon_0*(epsilon_r-1)*E;\n", - "\n", - "#Result\n", - "print(\"polarization in C/m^2 is\",P);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('polarization in C/m^2 is', 4.426999999999999e-09)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.4, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "R=0.158; #radius of Ne in nm\n", - "\n", - "#Calculation\n", - "R=R*10**-9; #converting nm to m\n", - "alpha_e=4*math.pi*epsilon_0*R**3;\n", - "\n", - "#Result\n", - "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.5, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "C=0.02; #capacitance in micro farad\n", - "epsilon_r=6; #dielectric constant\n", - "t=0.002; #thickness of mica in cm\n", - "d=0.002; #thickness of metal sheet in cm\n", - "\n", - "#Calculation\n", - "C=C*10**-6; #converting micro farad to farad\n", - "d=d*10**-2; #converting cm to m\n", - "A=(C*d)/(epsilon_0*epsilon_r);\n", - "A=A*10**3;\n", - "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n", - "A1=A*10; #converting m**2 to cm**2\n", - "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n", - "print(\"area of metal sheet in cm^2 is\",A1);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n", - "('area of metal sheet in cm^2 is', 75.296)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.6, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "E=1000; #electric field in V/m\n", - "P=4.3*10**-8; #polarization in C/m^2\n", - "\n", - "#Calculation\n", - "epsilon_r=(P/(E*epsilon_0)+1);\n", - "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"dielectric constant is\",epsilon_r);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('dielectric constant is', 5.8566)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.7, Page number 337" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "chi=4.94; #relative susceptibility\n", - "N=10**28; #number of dipoles per m^3\n", - "\n", - "#Calculation\n", - "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n", - "#epsilon_0*chi*E=N*alpha*E\n", - "alpha=(epsilon_0*chi)/N;\n", - "\n", - "#Result\n", - "print(\"polarisability of material in F/m^2 is\",alpha);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('polarisability of material in F/m^2 is', 4.373876e-39)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_12.ipynb b/Engineering_Physics/Chapter_12.ipynb deleted file mode 100755 index 4fdbd6c5..00000000 --- a/Engineering_Physics/Chapter_12.ipynb +++ /dev/null @@ -1,294 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:50b83ee4e84906dcabb2d002b372255d1153b0b8a78afbf0a4be018e0c342780" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Superconducting Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.1, Page number 356" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=3.7; #critical temperature in K\n", - "H0=0.0306; #magnetic field in T\n", - "T=2; #temperature in K\n", - "\n", - "#Calculation\n", - "Hc=H0*(1-(T**2/Tc**2));\n", - "Hc=math.ceil(Hc*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"critical field in T is\",Hc);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical field in T is', 0.02166)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.2, Page number 356" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=7.26; #critical temperature in K\n", - "H0=6.4*10**3; #magnetic field in T\n", - "T=5; #temperature in K\n", - "\n", - "#Calculation\n", - "Hc=H0*(1-(T**2/Tc**2));\n", - "Hc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"critical field in T is\",Hc);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical field in T is', 3364.385)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.3, Page number 357" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc1=4.185; #critical temperature in K\n", - "M1=199.5; #atomic mass\n", - "M2=203.4; #atomic mass after changing\n", - "\n", - "#Calculation\n", - "#according to maxwell equation Tc*M^0.5=constant\n", - "#Tc1*M1^0.5=Tc2*M2^0.5\n", - "Tc2=(Tc1*M1**0.5)/M2**0.5;\n", - "Tc2=math.ceil(Tc2*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"critical temperature of Hg in K is\",Tc2);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical temperature of Hg in K is', 4.144685)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.4, Page number 357" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "d=1; #diameter of wire in mm\n", - "T=4.2; #temperature in K\n", - "Tc=7.18; #critical temperature in K\n", - "H0=6.5*10**4; #magnetic field\n", - "\n", - "#Calculation\n", - "d=d*10**-3; #diameter in m\n", - "R=d/2;\n", - "Hc=H0*(1-(T**2/Tc**2));\n", - "HC=Hc/10**4;\n", - "HC=math.ceil(HC*10**3)/10**3; #rounding off to 2 decimals\n", - "Ic=2*math.pi*R*Hc;\n", - "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n", - "A=math.pi*R**2;\n", - "J=Ic/A;\n", - "J=J/10**8;\n", - "J=math.ceil(J*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"critical magnetic field at 4.2K in A/m is\",HC,\"*10**4\");\n", - "print(\"critical current in A is\",Ic);\n", - "print(\"critical current density in A/m^2 is\",J,\"*10**8\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical magnetic field at 4.2K in A/m is', 4.276, '*10**4')\n", - "('critical current in A is', 134.33)\n", - "('critical current density in A/m^2 is', 1.71035, '*10**8')\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.5, Page number 358" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19;\n", - "h=6.626*10**-34;\n", - "V=6; #voltage applied in micro volts\n", - "\n", - "#Calculation\n", - "V=V*10**-6; #converting micro volts to volts\n", - "new=(2*e*V)/h;\n", - "new=new/10**9;\n", - "new=math.ceil(new*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"frequency of ac signal in Hz is\",new,\"*10**9\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('frequency of ac signal in Hz is', 2.8977, '*10**9')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.6, Page number 358" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "Kb=1.38*10**-23;\n", - "Tc=7.19; #critical temperature in K\n", - "\n", - "#Calculation\n", - "Eg=3.5*Kb*Tc;\n", - "Eg=Eg/(1.6*10**-19); #converting J to eV\n", - "Eg=Eg*10**3; #converting eV into milli eV\n", - "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of superconducting lead in meV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of superconducting lead in meV is', 2.171)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_2.ipynb b/Engineering_Physics/Chapter_2.ipynb deleted file mode 100755 index 82d0d7af..00000000 --- a/Engineering_Physics/Chapter_2.ipynb +++ /dev/null @@ -1,467 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3d73f6bba1b33a0bbd48c706ad53709f1f38f4b901966e1c9494931ace163899" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Laser" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.1, Page number 59 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "P=5*10**-3; #output power in W\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", - "N=P/E; #number of photons emitted\n", - "\n", - "\n", - "#Result\n", - "print(\"energy of one photon in eV is\",E_eV);\n", - "print(\"number of photons emitted per second is\",N);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of one photon in eV is', 1.964)\n", - "('number of photons emitted per second is', 1.5917094275077976e+16)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.2, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy of one photon in eV is\",E_eV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of one photon in eV is', 1.964)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.3, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "E1=0; #value of 1st energy level in eV\n", - "E2=1.4; #value of 2nd energy level in eV\n", - "lamda=1.15*10**-6;\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E3=E2+E_eV;\n", - "E3=math.ceil(E3*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"value of E3 in eV is\",E3);\n", - "\n", - "#answer given in the book for E3 is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of E3 in eV is', 2.49)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.4, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "E2=3.2; #value of higher energy level in eV\n", - "E1=1.6; #value of lower energy level in eV\n", - "\n", - "#Calculation\n", - "E=E2-E1; #energy difference in eV\n", - "E_J=E*1.6*10**-19; #converting E from eV to J\n", - "lamda=(h*c)/E_J; #wavelength of photon\n", - "\n", - "#Result\n", - "print(\"energy difference in eV\",E);\n", - "print(\"wavelength of photon in m\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy difference in eV', 1.6)\n", - "('wavelength of photon in m', 7.76484375e-07)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.5, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "E=1.42*1.6*10**-19; #band gap of GaAs in J\n", - "\n", - "#Calculation\n", - "lamda=(h*c)/E; #wavelength of laser\n", - "\n", - "#Result\n", - "print(\"wavelength of laser emitted by GaAs in m\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('wavelength of laser emitted by GaAs in m', 8.74911971830986e-07)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.6, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=300; #temperature in K\n", - "lamda=500*10**-9; #wavelength in m\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "#from maxwell and boltzmann law, relative population is given by\n", - "#N1/N2=exp(-E1/kT)/exp(-E2/kT)\n", - "#hence N1/N2=exp(-(E1-E2)/kT)=exp((h*new)/(k*T));\n", - "#new=c/lambda\n", - "R=(h*c)/(lamda*k*T);\n", - "RP=math.exp(R);\n", - "\n", - "#Result\n", - "print(\"relative population between N1 and N2 is\",RP);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative population between N1 and N2 is', 5.068255595981255e+41)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.7, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=300; #temperature in K\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "k=1.38*10**-23;\n", - "lamda=600*10**-9; #wavelength in m\n", - "\n", - "#Calculation\n", - "R=(h*c)/(lamda*k*T);\n", - "Rs=1/(math.exp(R)-1);\n", - "\n", - "#Result\n", - "print(\"the ratio between stimulated emission to spontaneous emission is\",Rs);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the ratio between stimulated emission to spontaneous emission is', 1.7617782449453023e-35)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.8, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "P=5*10**-3; #output power in W\n", - "I=10*10**-3; #current in A\n", - "V=3*10**3; #voltage in V\n", - "\n", - "#Calculation\n", - "e=(P*100)/(I*V);\n", - "e=math.ceil(e*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"efficiency of laser in % is\",e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('efficiency of laser in % is', 0.016667)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.9, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "P=1e-03; #output power in W\n", - "d=1e-06; #diameter in m\n", - "\n", - "#Calculation\n", - "r=d/2; #radius in m\n", - "I=P/(math.pi*r**2); #intensity\n", - "I=I/10**9;\n", - "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of laser in W/m^2 is\",I,\"*10**9\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of laser in W/m^2 is', 1.2733, '*10**9')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.10, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "D=5; #distance in m\n", - "d=1*10**-3; #diameter in m\n", - "\n", - "#Calculation\n", - "deltatheta=lamda/d; #angular speed\n", - "delta_theta=deltatheta*10**4;\n", - "r=D*deltatheta;\n", - "r1=r*10**3; #converting r from m to mm\n", - "A=math.pi*r**2; #area of the spread\n", - "\n", - "#Result \n", - "print(\"angular speed in radian is\",delta_theta,\"*10**-4\");\n", - "print(\"radius of the spread in mm is\",r1);\n", - "print(\"area of the spread in m^2 is\",A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('angular speed in radian is', 6.328, '*10**-4')\n", - "('radius of the spread in mm is', 3.164)\n", - "('area of the spread in m^2 is', 3.1450157329451454e-05)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_3.ipynb b/Engineering_Physics/Chapter_3.ipynb deleted file mode 100755 index eaf6dcb1..00000000 --- a/Engineering_Physics/Chapter_3.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:638145e2db582b1570b31e3d891635b15bb11943d1ff2ba0aa0dc17ebaf02200" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Fibre Optics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.1, Page number 98 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1.6; #refractive index of core\n", - "n2=1.5; #refractive index of cladding\n", - "\n", - "#Calculation\n", - "NA=math.sqrt((n1**2)-(n2**2));\n", - "NA=math.ceil(NA*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"the numerical aperture of the fibre is\",NA);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the numerical aperture of the fibre is', 0.5568)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.2, Page number 98 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1.54; #refractive index of core\n", - "n2=1.5; #refractive index of cladding\n", - "n0=1;\n", - "\n", - "#Calculation\n", - "NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture of fibre\n", - "NA=math.ceil(NA*10**5)/10**5; #rounding off to 5 decimals\n", - "alpha=math.asin(NA/n0); #acceptance angle in radians\n", - "alpha=alpha*57.2957795; #converting radians to degrees\n", - "alpha=math.ceil(alpha*10**5)/10**5; #rounding off to 5 decimals\n", - "deg=int(alpha); #converting to degrees\n", - "t=60*(alpha-deg); \n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"the numerical aperture of the fibre is\",NA);\n", - "print(\"the acceptance angle of the fibre in degrees is\",alpha);\n", - "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", - "\n", - "#answer for the angle given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the numerical aperture of the fibre is', 0.34872)\n", - "('the acceptance angle of the fibre in degrees is', 20.40905)\n", - "('acceptance angle of the fibre is', 20, 'degrees', 24, 'minutes', 32.581, 'seconds')\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.3, Page number 99" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1.6; #refractive index of core\n", - "n2=1.49; #refractive index of cladding\n", - "\n", - "#Calculation\n", - "thetac=math.asin(n2/n1); #critical angle in radians\n", - "thetac=thetac*57.2957795; #converting radians to degrees\n", - "theta_c=math.ceil(thetac*10**3)/10**3; #rounding off to 3 decimals\n", - "deg=int(thetac); #converting to degrees\n", - "t=60*(thetac-deg); \n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical angle of the fibre in degrees is\",theta_c);\n", - "print(\"critical angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical angle of the fibre in degrees is', 68.631)\n", - "('critical angle of the fibre is', 68, 'degrees', 37, 'minutes', 49.85, 'seconds')\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.4, Page number 99" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "NA=0.15; #numerical aperture\n", - "n2=1.55; #refractive index of cladding\n", - "n0=1.33; #refractive index of water\n", - "\n", - "#Calculation\n", - "n1=math.sqrt((NA**2)+(n2**2)); #refractive index\n", - "n_1=math.ceil(n1*10**5)/10**5; #rounding off to 5 decimals\n", - "alpha=math.asin(math.sqrt(n1**2-n2**2)/n0); #acceptance angle in radians\n", - "alpha=alpha*57.2957795; #converting radians to degrees\n", - "alphaa=math.ceil(alpha*10**3)/10**3; #rounding off to 3 decimals\n", - "deg=int(alpha); #converting to degrees\n", - "t=60*(alpha-deg); \n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"refractive index of the core is\",n_1);\n", - "print(\"the acceptance angle of the fibre in degrees is\",alphaa);\n", - "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", - "\n", - "#answer for acceptance angle given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('refractive index of the core is', 1.55725)\n", - "('the acceptance angle of the fibre in degrees is', 6.476)\n", - "('acceptance angle of the fibre is', 6, 'degrees', 28, 'minutes', 32.55, 'seconds')\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.5, Page number 100" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "NA=0.26; #numerical aperture\n", - "n1=1.5; #refractive index of core\n", - "d=100; #core diameter in micro meter\n", - "\n", - "#Calculation\n", - "d=100*(10**-6); #core diameter in metre\n", - "n2=math.sqrt((n1**2)-(NA**2));\n", - "n2=math.ceil(n2*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"refractive index of the cladding is\",n2);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('refractive index of the cladding is', 1.4773)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.6, Page number 100" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "NA=0.26; #numerical aperture\n", - "delta=0.015; #refractive index difference\n", - "\n", - "#Calculation\n", - "#NA=math.sqrt(n1**2-n2**2)\n", - "#let A=n1**2-n2**2\n", - "#therefore A=NA**2\n", - "A=NA**2;\n", - "#delta=(n1**2-n2**2)/2*(n1**2)\n", - "#let 2*(n1**2) be B\n", - "#therefore B=A/delta\n", - "B=A/delta;\n", - "n1=math.sqrt(B/2);\n", - "n1=math.ceil(n1*100)/100; #rounding off to 2 decimals\n", - "n2=math.sqrt(n1**2-NA**2);\n", - "n2=math.ceil(n2*10**3)/10**3; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"refractive index of the core is\",n1);\n", - "print(\"refractive index of the cladding is\",n2);\n", - "\n", - "#answer for refractive index of cladding given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('refractive index of the core is', 1.51)\n", - "('refractive index of the cladding is', 1.488)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_4.ipynb b/Engineering_Physics/Chapter_4.ipynb deleted file mode 100755 index d93ccbff..00000000 --- a/Engineering_Physics/Chapter_4.ipynb +++ /dev/null @@ -1,743 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:2a55c0c681215b0dc959ddeda0187458e8ed07320f22e00a7385acd5044d2ee9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Quantum Physics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.1, Page number 133 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.63*10**-34; #plancks constant in Js\n", - "m0=9.1*10**-31; #mass of the electron in kg\n", - "c=3*10**8; #velocity of light in m/s\n", - "phi=135; #angle of scattering in degrees\n", - "phi=phi*0.0174532925 #converting degrees to radians \n", - "\n", - "#Calculation\n", - "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n", - "\n", - "#Result\n", - "print(\"change in wavelength in metres is\",delta_lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('change in wavelength in metres is', 4.1458307496867315e-12)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.2, Page number 134 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.63*10**-34; #plancks constant in Js\n", - "m0=9.1*10**-31; #mass of the electron in kg\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda=2; #wavelength in angstrom\n", - "lamdaA=lamda*10**-10; #converting lamda from Angstrom to m\n", - "phi=90; #angle of scattering in degrees\n", - "phi=phi*0.0174532925 #converting degrees to radians \n", - "\n", - "#Calculation\n", - "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n", - "delta_lamda=delta_lamda*10**10; #converting delta_lamda from m to Angstrom\n", - "delta_lamda=math.ceil(delta_lamda*10**5)/10**5; #rounding off to 5 decimals\n", - "lamda_dash=delta_lamda+lamda;\n", - "lamdaA_dash=lamda_dash*10**-10; #converting lamda_dash from Angstrom to m\n", - "#energy E=h*new-h*new_dash\n", - "E=h*c*((1/lamdaA)-(1/lamdaA_dash));\n", - "EeV=E/(1.602176565*10**-19); #converting J to eV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "new=c/lamda;\n", - "new_dash=c/lamda_dash;\n", - "theta=math.atan((h*new*math.sin(phi))/((h*new)-(h*new_dash*math.cos(phi))));\n", - "theta=theta*57.2957795; #converting radians to degrees\n", - "\n", - "#Result\n", - "print(\"change in compton shift in Angstrom is\",delta_lamda);\n", - "print(\"wavelength of scattered photons in Angstrom is\",lamda_dash);\n", - "print(\"energy of recoiling electron in J is\",E);\n", - "print(\"energy of recoiling electron in eV is\",EeV);\n", - "print(\"angle at which recoiling electron appears in degrees is\",int(theta));\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('change in compton shift in Angstrom is', 0.02429)\n", - "('wavelength of scattered photons in Angstrom is', 2.02429)\n", - "('energy of recoiling electron in J is', 1.1933272900621974e-17)\n", - "('energy of recoiling electron in eV is', 74.482)\n", - "('angle at which recoiling electron appears in degrees is', 45)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.3, Page number 135" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m0=9.1*10**-31; #mass of the electron in kg\n", - "c=3*10**8; #velocity of light in m/s\n", - "phi=60; #angle of scattering in degrees\n", - "phi=phi*0.0174532925; #converting degrees to radians\n", - "E=10**6; #energy of photon in eV\n", - "E=E*1.6*10**-19; #converting eV into J\n", - "\n", - "#Calculation\n", - "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n", - "delta_lamda=delta_lamda*10**10; #converting metre to angstrom\n", - "delta_lamda=math.ceil(delta_lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "lamda=(h*c)/E;\n", - "lamdaA=lamda*10**10; #converting metre to angstrom\n", - "lamda_dash=delta_lamda+lamdaA;\n", - "lamda_dash=math.ceil(lamda_dash*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"compton shift in angstrom is\",delta_lamda);\n", - "print(\"energy of incident photon in m\",lamda);\n", - "print(\"wavelength of scattered photons in angstrom is\",lamda_dash);\n", - "\n", - "#answer for wavelength of scattered photon given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('compton shift in angstrom is', 0.0122)\n", - "('energy of incident photon in m', 1.242375e-12)\n", - "('wavelength of scattered photons in angstrom is', 0.025)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.4, Page number 135" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda=5893; #wavelength in angstrom\n", - "P=60; #output power in Watt\n", - "\n", - "#Calculation\n", - "lamda=lamda*10**-10; #wavelength in metre\n", - "E=(h*c)/lamda;\n", - "EeV=E/(1.602176565*10**-19); #converting J to eV\n", - "EeV=math.ceil(EeV*10**4)/10**4; #rounding off to 4 decimals\n", - "N=P/E;\n", - "\n", - "#Result\n", - "print(\"energy of photon in J is\",E);\n", - "print(\"energy of photon in eV is\",EeV);\n", - "print(\"number of photons emitted per se cond is\",N);\n", - "\n", - "#answer for energy in eV given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of photon in J is', 3.373154590191753e-19)\n", - "('energy of photon in eV is', 2.1054)\n", - "('number of photons emitted per se cond is', 1.7787503773015396e+20)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.5, Page number 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda=10; #wavelength in angstrom\n", - "\n", - "#Calculation\n", - "lamda=lamda*10**-10; #wavelength in metre\n", - "E=(h*c)/lamda;\n", - "EeV=E/(1.602176565*10**-19); #converting J to eV\n", - "EeV=EeV*10**-3; #converting eV to keV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "P=h/lamda;\n", - "M=h/(lamda*c);\n", - "\n", - "#Result\n", - "print(\"energy of photon in J is\",E);\n", - "print(\"energy of photon in keV is\",EeV);\n", - "print(\"momentum in kg m/sec is\",P);\n", - "print(\"mass of photon in kg is\",M);\n", - "\n", - "#answer for energy of photon in keV given in the book is wrong by 1 decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of photon in J is', 1.9878e-16)\n", - "('energy of photon in keV is', 1.241)\n", - "('momentum in kg m/sec is', 6.626e-25)\n", - "('mass of photon in kg is', 2.2086666666666664e-33)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.6, Page number 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "e=1.602*10**-19;\n", - "V=1.25; #potential difference in kV\n", - "\n", - "#Calculation\n", - "V=V*10**3; #converting kV to V\n", - "lamda=h/math.sqrt(2*m*e*V);\n", - "lamda=lamda*10**10; #converting metre to angstrom\n", - "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength in angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength in angstrom is', 0.3471)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.7, Page number 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "E=45; #energy of electron in eV\n", - "E=E*1.6*10**-19; #energy in J\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "\n", - "#Calculation\n", - "lamda=h/math.sqrt(2*m*E);\n", - "lamda=lamda*10**10; #converting metres to angstrom\n", - "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength in angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength in angstrom is', 1.8305)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.8, Page number 137" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "v=10**7; #velocity of electron in m/sec\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "\n", - "#Calculation\n", - "lamda=h/(m*v);\n", - "lamda=lamda*10**10; #converting metres to angstrom\n", - "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength in angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength in angstrom is', 0.7282)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.9, Page number 137" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "V=1000; #potential difference in V\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=1.67*10**-27; #mass of proton in kg\n", - "e=1.6*10**-19; #charge of electron in J\n", - "\n", - "#Calculation\n", - "lamda=h/math.sqrt(2*m*e*V);\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength of alpha particle in metre is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength of alpha particle in metre is', 9.063964727801313e-13)\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.10, Page number 138" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "L=25; #width of potential in armstrong\n", - "delta_x=0.05; #interval in armstrong\n", - "n=1; #particle is in its least energy\n", - "x=L/2; #particle is at the centre\n", - "pi=180; #angle in degrees\n", - "\n", - "#Calculation\n", - "pi=pi*0.0174532925; #angle in radians\n", - "L=L*10**-10; #width in m\n", - "delta_x=delta_x*10**-10; #interval in m\n", - "#probability P = integration of (A**2)*(math.sin(n*pi*x/L))**2*delta_x\n", - "#but A=math.sqrt(2/L)\n", - "#since the particle is in a small interval integration need not be applied\n", - "#therefore P=2*(L**(-1))*(math.sin(n*pi*x/L))**2*delta_x\n", - "P=2*(L**(-1))*((math.sin(n*pi*x/L))**2)*delta_x;\n", - "P=math.ceil(P*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"probability of finding the particle is\",P);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of finding the particle is', 0.004)\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.11, Page number 138" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "L=1; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "E=((n**2)*h**2)/(8*m*L**2);\n", - "EeV=E/(1.6*10**-19); #converting J to eV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in J is\",E);\n", - "print(\"lowest energy of electron in eV is\",EeV);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in J is', 6.030752197802197e-18)\n", - "('lowest energy of electron in eV is', 37.693)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.12, Page number 139" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "L=1; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "E=(2*(n**2)*h**2)/(8*m*L**2);\n", - "E=E/(1.6*10**-19); #converting J to eV\n", - "E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of system in eV is\",E);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of system in eV is', 75.385)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.13, Page number 139" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "L=1; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "#according to pauli's exclusion principle, 1st electron occupies n1=1 and second electron occupies n2=2\n", - "n1=1;\n", - "n2=2;\n", - "E=((2*(n1**2)*h**2)/(8*m*L**2))+(((n2**2)*h**2)/(8*m*L**2));\n", - "E=E/(1.6*10**-19); #converting J to eV\n", - "E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of system in eV is\",E);\n", - "print(\"quantum numbers are\");\n", - "print(\"n=1,l=0,mL=0,mS=+1/2\");\n", - "print(\"n=1,l=0,mL=0,mS=-1/2\");\n", - "print(\"n=2,l=0,mL=0,mS=+1/2\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of system in eV is', 226.154)\n", - "quantum numbers are\n", - "n=1,l=0,mL=0,mS=+1/2\n", - "n=1,l=0,mL=0,mS=-1/2\n", - "n=2,l=0,mL=0,mS=+1/2\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.14, Page number 140" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "n=1;\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "L=100; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "E=0.025; #lowest energy in eV\n", - "E=E*(1.6*10**-19); #converting eV to J\n", - "m=((n**2)*h**2)/(8*E*L**2);\n", - "\n", - "#Result\n", - "print(\"mass of the particle in kg is\",m);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mass of the particle in kg is', 1.3719961249999998e-31)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.15, Page number 141" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "T=6000; #temperature in K\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda1=450; #wavelength in nm\n", - "lamda2=460; #wavelength in nm\n", - "\n", - "#Calculation\n", - "lamda1=lamda1*10**-9; #converting nm to metre\n", - "lamda2=lamda2*10**-9; #converting nm to metre\n", - "new1=c/lamda1;\n", - "new2=c/lamda2;\n", - "new=(new1+new2)/2;\n", - "A=math.exp((h*new)/(k*T));\n", - "rho_v=(8*math.pi*h*new**3)/(A*c**3);\n", - "\n", - "#Result\n", - "print(\"energy density of the black body in J/m^3 is\",rho_v);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy density of the black body in J/m^3 is', 9.033622836188887e-16)\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_6.ipynb b/Engineering_Physics/Chapter_6.ipynb deleted file mode 100755 index df63cdce..00000000 --- a/Engineering_Physics/Chapter_6.ipynb +++ /dev/null @@ -1,899 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:95589aa74fb7b8b919d364696d403ce9619ba363e3435f491e57c82d78d5e42c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Crystallography" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.1, Page number 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "r=0.071; #radius in nm\n", - "N=6.022*10**26; \n", - "\n", - "#Calculation\n", - "r=r*10**-9; #converting r from nm to m\n", - "#mass of carbon atom m = 12/N\n", - "m=12/N;\n", - "#mass of diamond M = 8*mass of one carbon atom\n", - "M=8*m;\n", - "#volume of diamond V = (8*r/sqrt(3))^3\n", - "V=(8*r/math.sqrt(3))**3;\n", - "d=M/V; #density in kg/m^3\n", - "d=math.ceil(d*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"density of diamond in kg/m^3 is\",d);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of diamond in kg/m^3 is', 4520.31)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.2, Page number 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "aBCC=0.332; #lattice constant in nm\n", - "aHCP=0.296; #lattice constant in nm\n", - "c=0.468; #c in nm\n", - "\n", - "#Calculation\n", - "aBCC=aBCC*10**-9; #converting nm to m\n", - "Vbcc=aBCC**3;\n", - "aHCP=aHCP*10**-9; #converting nm to m\n", - "c=c*10**-9; #converting nm to m\n", - "Vhcp=6*(math.sqrt(3)/4)*aHCP**2*c;\n", - "V=Vhcp-Vbcc;\n", - "Vch=(V*100)/Vbcc;\n", - "Vch=math.ceil(Vch*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"percentage change in volume is\",Vch);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('percentage change in volume is', 191.12)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.3, Page number 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "r=1.278; #atomic radius of Cu in Angstrom\n", - "A=63.54; #atomic weight of Cu\n", - "n=4; #for FCC n=4\n", - "Na=6.022*10**26;\n", - "\n", - "#Calculation\n", - "r=r*10**-10; #converting atomic radius from Angstrom to m\n", - "a=2*math.sqrt(2)*r; \n", - "rho=(n*A)/(Na*a**3);\n", - "rho=math.ceil(rho*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"density of Cu in kg/m^3 is\",rho);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of Cu in kg/m^3 is', 8935.92)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.4, Page number 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "rho=2180; #density of NaCl in kg/m^3\n", - "wNa=23; #atomic weight of Na\n", - "wCl=35.5; #atomic weight of Cl\n", - "n=4; #for FCC n=4\n", - "Na=6.022*10**26;\n", - "\n", - "#Calculation\n", - "A=wNa+wCl; #molecular weight of NaCl\n", - "x=np.reciprocal(3.);\n", - "a=((n*A)/(Na*rho))**x;\n", - "\n", - "#Result\n", - "print(\"interatomic distance in NaCl in m is\",a); \n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interatomic distance in NaCl in m is', 5.6278114346454509e-10)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.5, Page number 187" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable declaration\n", - "a=0.42; #lattice constant in nm\n", - "h1=1;\n", - "k1=0;\n", - "l1=1; #indices of the plane (101)\n", - "h2=2;\n", - "k2=2;\n", - "l2=1; #indices of the plane (221)\n", - "\n", - "#Calculation\n", - "a=a*10**-9; #converting from nm to m\n", - "d1=a/math.sqrt((h1**2)+(k1**2)+(l1**2)); #interplanar spacing for plane (101)\n", - "d1=d1*10**9; #converting from m to nm\n", - "d1=math.ceil(d1*10**5)/10**5; #rounding off to 5 decimals\n", - "d2=a/math.sqrt((h2**2)+(k2**2)+(l2**2)); #interplanar spacing for plane (221)\n", - "d2=d2*10**9; #converting from m to nm\n", - "\n", - "#Result\n", - "print(\"interplanar spacing for (101) in nm is\",d1);\n", - "print(\"interplanar spacing for (221) in nm is\",d2);\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interplanar spacing for (101) in nm is', 0.29699)\n", - "('interplanar spacing for (221) in nm is', 0.14)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.6, Page number 187" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h1=1;\n", - "k1=0;\n", - "l1=2; #indices for plane (102)\n", - "h2=2;\n", - "k2=3;\n", - "l2=1; #indices for plane (231)\n", - "h3=3;\n", - "k3=-1;\n", - "l3=2; #indices for plane (31'2)\n", - "\n", - "#Calculation\n", - "#intercepts made by the plane is a/h, b/k, c/l\n", - "#for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n", - "#for plane (231) intercepts are a/2, b/3, c/1=c\n", - "#for plane (31'2) intercepts are a/3=a, b/-1=-b, c/2\n", - "\n", - "#Result\n", - "print(\"for plane (102) intercepts are a/1=a, b/0=infinite, c/2\");\n", - "print(\"for plane (231) intercepts are a/2, b/3, c/1=c\");\n", - "print(\"for plane (312) intercepts are a/3=a, b/-1=-b, c/2\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n", - "for plane (231) intercepts are a/2, b/3, c/1=c\n", - "for plane (312) intercepts are a/3=a, b/-1=-b, c/2\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.7, Page number 188" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "u1=1;\n", - "v1=1;\n", - "w1=1; #indices for plane (111)\n", - "u2=2;\n", - "v2=1;\n", - "w2=2; #indices for plane (212)\n", - "\n", - "#Calculation\n", - "A=u1*u2+v1*v2+w1*w2; \n", - "B1=math.sqrt((u1**2)+(v1**2)+(w1**2));\n", - "B2=math.sqrt((u2**2)+(v2**2)+(w2**2));\n", - "B=A/(B1*B2);\n", - "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", - "theta=math.acos(B); #angle in radian\n", - "theta=theta*57.2957795; #converting radian to degrees\n", - "theeta=math.ceil(theta*10**3)/10**3; #rounding off to 3 decimals\n", - "deg=int(theta); #converting to degrees\n", - "t=60*(theta-deg);\n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"angle between the planes in degrees is\",theeta);\n", - "print(\"angle between the planes is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('angle between the planes in degrees is', 15.783)\n", - "('angle between the planes is', 15, 'degrees', 46, 'minutes', 57.85, 'seconds')\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.8, Page number 188" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#sketching the crystallographic planes" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.9, Page number 189" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "d=0.2338; #interplanar distance in nm\n", - "h=-1;\n", - "k=1;\n", - "l=1; #indices of the plane (1'11)\n", - "\n", - "#Calculation\n", - "d=d*10**-9; #converting from nm to m\n", - "a=d*math.sqrt((h**2)+(k**2)+(l**2));\n", - "a=a*10**9; #converting lattice constant from m to nm\n", - "a=math.ceil(a*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"lattice constant in nm is\",a);\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lattice constant in nm is', 0.40496)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.10, Page number 189" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "h1=1;\n", - "k1=0;\n", - "l1=0; #indices for plane (100)\n", - "h2=1;\n", - "k2=1;\n", - "l2=0; #indices for plane (110)\n", - "h3=1;\n", - "k3=1;\n", - "l3=1; #indices for plane (111)\n", - "\n", - "#Calculation\n", - "#d=a/math.sqrt((h**2)+(k**2)+(l**2))\n", - "#d100=a/math.sqrt((h1**2)+(k1**2)+(l1**2))\n", - "x1=math.sqrt((h1**2)+(k1**2)+(l1**2));\n", - "#d100=a/x1 = a/1 = a\n", - "#d110=a/math.sqrt((h2**2)+(k2**2)+(l2**2))\n", - "x2=math.sqrt((h2**2)+(k2**2)+(l2**2));\n", - "x2=math.ceil(x2*10**4)/10**4; #rounding off to 4 decimals\n", - "#d110=a/x2 = a/sqrt(2)\n", - "#d111=a/math.sqrt((h3**2)+(k3**2)+(l3**2))\n", - "x3=math.sqrt((h3**2)+(k3**2)+(l3**2));\n", - "x3=math.ceil(x3*10**4)/10**4; #rounding off to 4 decimals\n", - "#d111=a/x3 = a/sqrt(3)\n", - "#hence d100:d110:d111=a:a/sqrt(2):a/sqrt(3)\n", - "#multiplying RHS by sqrt(6) we get d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n", - "\n", - "#Result\n", - "print(\"value of x1 is\",x1);\n", - "print(\"value of x2 is\",x2);\n", - "print(\"value of x3 is\",x3);\n", - "print(\"d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of x1 is', 1.0)\n", - "('value of x2 is', 1.4143)\n", - "('value of x3 is', 1.7321)\n", - "d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.11, Page number 190" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#variable declaration\n", - "h=2;\n", - "k=3;\n", - "l=1; #indices for plane (231)\n", - "\n", - "#Calculation\n", - "#intercepts made by the plane is a/h, b/k, c/l\n", - "#for a cubic unit cell, a=b=c\n", - "#for plane (231) intercepts are a/2, a/3, a/1 = a\n", - "#ratio of the intercepts is 1/2:1/3:1\n", - "#LCM is 6. multiplying by LCM, we get ratio l1:l2:l3 = 3:2:6\n", - "\n", - "#Result\n", - "print(\"l1:l2:l3 = 3:2:6\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "l1:l2:l3 = 3:2:6\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.12, Page number 190" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#variable declaration\n", - "h=1;\n", - "k=2;\n", - "l=3; #indices for plane (123)\n", - "l1=0.8; #l1 in armstrong\n", - "a=0.8; #a in armstrong\n", - "b=1.2; #b in armstrong\n", - "c=1.5; #c in armstrong\n", - "\n", - "#Calculation\n", - "#intercepts made by the plane is a/h, b/k, c/l\n", - "#for plane (123) intercepts are a/1 = a, b/2, c/3\n", - "#ratio of the intercepts l1:l2:l3 = a:b/2:c/3\n", - "#thus 0.8:l2:l3 = 0.8:1.2/2:1.5/3\n", - "l2=1.2/2; #l2 in armstrong\n", - "l3=1.5/3; #l3 in armstrong\n", - "\n", - "#Result\n", - "print(\"value of l2 in armstrong is\",l2);\n", - "print(\"value of l3 in armstrong is\",l3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of l2 in armstrong is', 0.6)\n", - "('value of l3 in armstrong is', 0.5)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.13, Page number 191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Calculation\n", - "#in simple cubic unit cell, corner atom is the nearest neighbour to another corner atom. \n", - "#Hence nearest neighbour distance is a.\n", - "#in BCC the body centered atom is the nearest neighbour to a corner atom.\n", - "#the distance between body centered atom and corner atom is 2r\n", - "#but r=sqrt(3)*a/4\n", - "#distance = 2*sqrt(3)*a/4 = sqrt(3)*a/2\n", - "#in FCC the face centered atom is the nearest neighbour to a corner atom.\n", - "#the distance between face centered atom and corner atom is 2r\n", - "#but r = a/sqrt(8)\n", - "#distance = 2*a/sqrt(8) = a/sqrt(2)\n", - "\n", - "#Result\n", - "print(\"in simple cubic unit cell nearest neighbour distance is a\");\n", - "print(\"in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\");\n", - "print(\"in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "in simple cubic unit cell nearest neighbour distance is a\n", - "in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\n", - "in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.14, Page number 191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "a=2.04; #lattice parameter in armstrong\n", - "h=2;\n", - "k=1;\n", - "l=2; #indices for plane (212)\n", - "\n", - "#Calculation\n", - "a=a*10**-10; #converting from armstrong to m\n", - "d=a/math.sqrt((h**2)+(k**2)+(l**2));\n", - "d=d*10**10; #converting from m to armstrong\n", - "d=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"interplanar distance in armstrong is\",d);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interplanar distance in armstrong is', 0.681)\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.15, Page number 191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "r=1.278; #radius of Cu in armstrong\n", - "M=63.54; #atomic weight of Cu\n", - "rho=8980; #density in kg/m^3\n", - "Na=6.022*10**26;\n", - "\n", - "#Calculation\n", - "r=r*10**-10; #radius in m\n", - "a=math.sqrt(8)*r;\n", - "n=(rho*Na*a**3)/M;\n", - "\n", - "#Result\n", - "print(\"interatomic distance in m is\",a);\n", - "print(\"number of atoms per Cu unit cell is\",int(n));" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interatomic distance in m is', 3.6147298654256317e-10)\n", - "('number of atoms per Cu unit cell is', 4)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.16, Page number 192" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#variable declaration\n", - "a=0.429;\n", - "b=1;\n", - "c=0.379; #intercepts of an orthorhombic crystal\n", - "\n", - "#Calculation\n", - "#ratio of intercepts are 0.214:1:0.188 = (a/0.429)*0.214:1:(c/0.379)*0.188 = a/2:b:c/2\n", - "#thus the coefficients are 1/2:1:1/2. inverses are 2,1,2.\n", - "#thus miller indices for the first plane are (212)\n", - "#ratio of intercepts are 0.858:1:0.754 = (a/0.429)*0.0.858:1:(c/0.379)*0.754 = 2a:b:2c\n", - "#thus the coefficients are 2:1:2. inverses are 1/2,1,1/2. LCM is 2. multiplying with LCM we get 1,2,1\n", - "#thus miller indices for the second plane are (121)\n", - "#ratio of intercepts are 0.429:infinite:0.126 = (a/0.429)*0.429:infinite:(c/0.379)*0.126 = a:infiniteb:c/3\n", - "#thus the coefficients are 1:infinte:1/3. inverses are 1,0,3.\n", - "#thus miller indices for the third plane are (103)\n", - "\n", - "#Result\n", - "print(\"miller indices for the first plane are (212)\");\n", - "print(\"miller indices for the second plane are (121)\");\n", - "print(\"miller indices for the third plane are (103)\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "miller indices for the first plane are (212)\n", - "miller indices for the second plane are (121)\n", - "miller indices for the third plane are (103)\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.17, Page number 193" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "import numpy as np\n", - "\n", - "#variable declaration\n", - "h1=1;\n", - "k1=0;\n", - "l1=0; #indices of the first plane (100)\n", - "h2=1;\n", - "k2=1;\n", - "l2=0; #indices of the second plane (110)\n", - "h3=1;\n", - "k3=1;\n", - "l3=1; #indices of the third plane (111)\n", - "\n", - "#Calculation\n", - "n_1=np.reciprocal(4.);\n", - "n_2=np.reciprocal(2.);\n", - "n_3=np.reciprocal(6.);\n", - "n1=(n_1*4)+1; #number of atoms per unit cell in (100)\n", - "#number of atoms per m^2 is 2/a**2. but a=sqrt(8)*r.\n", - "#hence number of atoms per m^2 is 1/(4*r**2)\n", - "n2=(n_1*4)+(2*n_2); #number of atoms per unit cell in (110)\n", - "#number of atoms per m^2 is 1/a*sqrt(2)*a. but a=sqrt(8)*r.\n", - "#hence number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n", - "n3=(n_3*3)+(3*n_2); #number of atoms per unit cell in (111)\n", - "#number of atoms per m^2 is 2/(sqrt(3)/4)*a**2. but a=4*r.\n", - "#hence number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n", - "\n", - "#Result\n", - "print(\"number of atoms per unit cell in (100)\",n1);\n", - "print(\"number of atoms per m^2 is 1/(4*r**2)\");\n", - "print(\"number of atoms per unit cell in (110)\",n2);\n", - "print(\"number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\");\n", - "print(\"number of atoms per unit cell in (111)\",n3);\n", - "print(\"number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('number of atoms per unit cell in (100)', 2.0)\n", - "number of atoms per m^2 is 1/(4*r**2)\n", - "('number of atoms per unit cell in (110)', 2.0)\n", - "number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n", - "('number of atoms per unit cell in (111)', 2.0)\n", - "number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.18, Page number 194" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "r=0.97; #radius of Na+ ion in armstrong\n", - "R=1.81; #radius of Cl- ion in armstrong\n", - "\n", - "#Calculation\n", - "#atomic packing factor=packing density PD\n", - "#PD=Volume of atoms/Volume of unit cell\n", - "#volume of unit cell=a**3\n", - "#volume of atoms=number of atoms*volume of 1 atom = 4*(4/3)*math.pi*r**3\n", - "#but r=a/sqrt(8). hence PD = 4*(4/3)*math.pi*(a/(2*sqrt(2)))**3*(1/a**3) = 0.74\n", - "#atomic packing factor = 0.74\n", - "r=r*10**-10; #radius of Na+ ion in m\n", - "R=R*10**-10; #radius of Cl- ion in m\n", - "Vna = (4*4*math.pi*r**3)/3; #volume of Na atoms\n", - "Vcl = (4*4*math.pi*R**3)/3; #volume of Cl atoms \n", - "V=(2*(r+R))**3; #volume of unit cell\n", - "IPF=(Vna+Vcl)/V; #ionic packing factor\n", - "IPF=math.ceil(IPF*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"atomic packing factor = 0.74\");\n", - "print(\"ionic packing factor of NaCl crystal is\",IPF);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "atomic packing factor = 0.74\n", - "('ionic packing factor of NaCl crystal is', 0.6671)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_7.ipynb b/Engineering_Physics/Chapter_7.ipynb deleted file mode 100755 index acb1144d..00000000 --- a/Engineering_Physics/Chapter_7.ipynb +++ /dev/null @@ -1,185 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:0a8ebb52dee60395969030b1d2962543e204a93314e21a66724d3bafb10b7ddf" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Crystal Imperfections" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.1, Page number 207 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "Ev=0.98; #energy in eV/atom\n", - "T1=900; #temperature in C\n", - "T2=1000;\n", - "A=6.022*10**26; #avagadro's constant\n", - "w=196.9; #atomic weight in g/mol\n", - "d=18.63; #density in g/cm^3\n", - "\n", - "#Calculation\n", - "Ev=Ev*1.6*10**-19; #converting eV to J\n", - "d=d*10**3; #converting g/cm^3 into kg/m^3\n", - "N=(A*d)/w;\n", - "n=N*math.exp(-Ev/(k*T1));\n", - "#let valency fraction n/N be V\n", - "V=math.exp(-Ev/(k*T2));\n", - "\n", - "#Result\n", - "print(\"concentration of atoms per m^3 is\",N);\n", - "print(\"number of vacancies per m^3 is\",n);\n", - "print(\"valency fraction is\",V);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of atoms per m^3 is', 5.69780904012189e+28)\n", - "('number of vacancies per m^3 is', 1.8742498047705634e+23)\n", - "('valency fraction is', 1.1625392535344139e-05)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.2, Page number 208 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "A=6.022*10**26; #avagadro's constant\n", - "T=1073; #temperature in K\n", - "n=3.6*10**23; #number of vacancies\n", - "d=9.5; #density in g/cm^3\n", - "w=107.9; #atomic weight in g/mol\n", - "\n", - "#Calculation\n", - "d=d*10**3; #converting g/cm^3 into kg/m^3\n", - "N=(A*d)/w; #concentration of atoms\n", - "E=k*T*math.log((N/n), ); #energy in J\n", - "EeV=E/(1.602176565*10**-19); #energy in eV\n", - "EeV=math.ceil(EeV*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"concentration of atoms per m^3 is\",N);\n", - "print(\"energy for vacancy formation in J\",E);\n", - "print(\"energy for vacancy formation in eV\",EeV);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of atoms per m^3 is', 5.3020389249304915e+28)\n", - "('energy for vacancy formation in J', 1.762092900344914e-19)\n", - "('energy for vacancy formation in eV', 1.1)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.3, Page number 209 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**26; #avagadro's constant\n", - "k=1.38*10**-23;\n", - "w1=39.1; #atomic weight of K\n", - "w2=35.45; #atomic weight of Cl\n", - "Es=2.6; #energy formation in eV\n", - "T=500; #temperature in C\n", - "d=1.955; #density in g/cm^3\n", - "\n", - "#Calculation\n", - "Es=Es*1.6*10**-19; #converting eV to J\n", - "T=T+273; #temperature in K\n", - "d=d*10**3; #converting g/cm^3 into kg/m^3\n", - "N=(A*d)/(w1+w2);\n", - "n=N*math.exp(-Es/(2*k*T));\n", - "\n", - "#Result\n", - "print(\"number of Schotky defect per m^3 is\",n);\n", - "\n", - "#answer given in the book is wrong by 3rd decimal point" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('number of Schotky defect per m^3 is', 5.373777171020081e+19)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_8.ipynb b/Engineering_Physics/Chapter_8.ipynb deleted file mode 100755 index be4820c5..00000000 --- a/Engineering_Physics/Chapter_8.ipynb +++ /dev/null @@ -1,519 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a97623c1294ef4fbd99f1423addadcfc2341e13ca402c26d0b2a69dd71e1782a" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Conducting materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.1, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "n=2.533*10**28; #concentration of electrons per m^3\n", - "e=1.6*10**-19;\n", - "tow_r=3.1*10**-14; #relaxation time in sec\n", - "\n", - "#Calculation\n", - "rho=m/(n*(e**2*tow_r));\n", - "\n", - "#Result\n", - "print(\"electrical resistivity in ohm metre is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.2, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "s=3.75*10**3; #slope\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "Eg=2*k*s;\n", - "Eg=Eg/(1.6*10**-19); #converting J to eV\n", - "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of semiconductor in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of semiconductor in eV is', 0.647)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.3, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=989; #temperature in C\n", - "k=1.38*10**-23;\n", - "#let E-EF be E\n", - "E=0.5; #occupied level of electron in eV\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "E=E*1.6*10**-19; #converting eV to J\n", - "#let fermi=dirac distribution function f(E) be f\n", - "f=1/(1+math.exp(E/(k*T)));\n", - "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"probability of occupation of electrons is\",f);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of occupation of electrons is', 0.011)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.4, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "mew_e=0.0035; #mobility of electrons in m^2/Vs\n", - "E=0.5; #electric field strength in V/m\n", - "\n", - "#Calculation\n", - "vd=mew_e*E;\n", - "vd=vd*10**3;\n", - "\n", - "#Result\n", - "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.5, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**23; #avagadro number\n", - "e=1.6*10**-19;\n", - "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n", - "w=63.5; #atomic weight \n", - "d=8.92*10**3; #density in kg/m^3\n", - "\n", - "#Calculation\n", - "d=d*10**3;\n", - "sigma=1/rho;\n", - "sigmaa=sigma/10**7;\n", - "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n", - "n=(d*A)/w;\n", - "mew=sigma/(n*e); #mobility of electrons\n", - "mew=mew*10**3;\n", - "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n", - "print(\"concentration of carriers per m^3\",n);\n", - "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n", - "('concentration of carriers per m^3', 8.459250393700786e+28)\n", - "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.6, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=18.1*10**28; #concentration of electrons per m^3\n", - "h=6.62*10**-34; #planck constant in Js\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "X=h**2/(8*me);\n", - "E_F0=X*(((3*n)/math.pi)**(2/3));\n", - "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n", - "\n", - "#Result\n", - "print(\"Fermi energy in eV is\",E_F0);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Fermi energy in eV is', 3.762396978021977e-19)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.7, Page number 233" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "E_F0=5.5; #fermi energy in eV\n", - "h=6.63*10**-34; #planck constant in Js\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "E_F0=E_F0*1.6*10**-19; #converting eV to J\n", - "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n", - "\n", - "#Result\n", - "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n", - "\n", - "#answer given in the book is wrong\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.8, Page number 233" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Eg=1.07; #energy gap of silicon in eV\n", - "k=1.38*10**-23;\n", - "T=298; #temperature in K\n", - "\n", - "#Calculation\n", - "Eg=Eg*1.6*10**-19; #converting eV to J\n", - "#let the probability of electron f(E) be X\n", - "#X=1/(1+exp((E-Ef)/(k*T)))\n", - "#but E=Ec and Ec-Ef=Eg/2\n", - "X=1/(1+math.exp(Eg/(2*k*T)))\n", - "\n", - "#Result\n", - "print(\"probability of an electron thermally excited is\",X);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of an electron thermally excited is', 9.122602463573379e-10)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.9, Page number 234" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "vf=0.86*10**6; #fermi velocity in m/sec\n", - "\n", - "#Calculation\n", - "Efj=(m*vf**2)/2;\n", - "Ef=Efj/(1.6*10**-19); #converting J to eV\n", - "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n", - "Tf=Efj/k;\n", - "Tf=Tf/10**4;\n", - "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"fermi energy of metal in J is\",Efj);\n", - "print(\"fermi energy of metal in eV is\",Ef);\n", - "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi energy of metal in J is', 3.3651800000000002e-19)\n", - "('fermi energy of metal in eV is', 2.104)\n", - "('fermi temperature in K is', 2.4386, '*10**4')\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.10, Page number 234" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n", - "K=387; #thermal conductivity of Cu in W/mK\n", - "T=27; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "L=K/(sigma*T);\n", - "\n", - "#Result\n", - "print(\"lorentz number in W ohm/K^2 is\",L);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.11, Page number 235" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "e=1.6*10**-19;\n", - "k=1.38*10**-23;\n", - "n=8.49*10**28; #concentration of electrons in Cu per m^3\n", - "tow_r=2.44*10**-14; #relaxation time in sec\n", - "T=20; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "sigma=(n*(e**2)*tow_r)/m;\n", - "sigmaa=sigma/10**7;\n", - "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n", - "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n", - "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n", - "L=K/(sigma*T);\n", - "\n", - "#Result\n", - "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n", - "print(\"thermal conductivity in W/mK is\",K);\n", - "print(\"Lorentz number in W ohm/K^2 is\",L);\n", - "\n", - "#answer for lorentz number given in the book is wrong\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n", - "('thermal conductivity in W/mK is', 417.89)\n", - "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_9.ipynb b/Engineering_Physics/Chapter_9.ipynb deleted file mode 100755 index f85c8366..00000000 --- a/Engineering_Physics/Chapter_9.ipynb +++ /dev/null @@ -1,582 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:5fb520695164101d75312a7c320e0464f4d51d8732e4ed917802ba694545ac3e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Semiconducting materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.1, Page number 266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "mew_e=0.36; #mobility of electrons in m^2/Vs\n", - "mew_h=0.14; #mobility of holes in m^2/Vs\n", - "sigma=2.2; #conductivity in ohm-1 m-1\n", - "T=300; #temperature in K\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "ni=sigma/(e*(mew_e+mew_h)); #carrier concentration per m^3\n", - "\n", - "#Result\n", - "print(\"carrier concentration of an intrinsic semiconductor per m^3 is\",ni);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('carrier concentration of an intrinsic semiconductor per m^3 is', 2.75e+19)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.2, Page number 266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "import numpy as np\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "T1=20; #temperature in C\n", - "T2=100; #temperature in C\n", - "sigma_i20=250; #conductivity in ohm-1 m-1\n", - "sigma_i100=1100; #conductivity in ohm-1 m-1\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "T1K=T1+273; #temperature in K\n", - "T2K=T2+273; #temperature in K\n", - "T_1K=T1K**(-1);\n", - "T_2K=T2K**(-1);\n", - "T_1=T_2K-T_1K;\n", - "T_2=T2K/T1K;\n", - "Tk=T_1**(-1);\n", - "T_k=(T_2)**(3/2);\n", - "#intrinsic carrier concentration at T1K is ni20 = 2*((2*math.pi*k*m*293)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*293))\n", - "#intrinsic carrier concentration at T2K is ni100 = 2*((2*math.pi*k*m*373)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*373))\n", - "#dividing ni20/ni100 = (293/373)**(3/2)*(math.exp(-Eg/(2*k*293))/math.exp(-Eg/(2*k*373)))\n", - "#ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))\n", - "#sigma_i20/sigma_i100 = (ni20*e*(mew_e+mew_h))/(ni100*e*(mew_e+mew_h)) = ni20/ni100\n", - "#therefore sigma_i20/sigma_i100 = ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))\n", - "#math.exp((-Eg/(2*k))*((1/293)-(1/373))) = (sigma_i20/sigma_i100)*(373/293)**(3/2)\n", - "#by taking log on both sides we get (-Eg/(2*k))*((1/293)-(1/373)) = np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))\n", - "#Eg=2*k*(((1/373)-(1/293))**(-1))*np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))\n", - "Eg=2*k*Tk*np.log((sigma_i20/sigma_i100)*T_k); #band gap in J\n", - "EgeV=Eg*6.241*10**18; #converting J to eV\n", - "EgeV=math.ceil(EgeV*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of the semiconductor in J is\",Eg);\n", - "print(\"band gap of the semiconductor in eV is\",EgeV);\n", - "\n", - "#answer for band gap in eV given in the book is wrong in the 4th decimal point" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of the semiconductor in J is', 4.2210259829756855e-20)\n", - "('band gap of the semiconductor in eV is', 0.2635)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.3, Page number 267" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "I=10**-2; #current in Ampere\n", - "l=100; #length in mm\n", - "d=1; #thickness in mm\n", - "w=10; #breadth in mm\n", - "B=0.5; #magnetic field in Wb/m^2\n", - "RH=3.66*10**-4; #hall coefficient in m^3/C\n", - "\n", - "#Calculation\n", - "w=w*10**-3; #width in m\n", - "VH=(B*I*RH)/w; #hall voltage\n", - "VH=VH*10**4;\n", - "\n", - "#Result\n", - "print(\"Hall voltage in V is\",VH,\"*10**-4\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Hall voltage in V is', 1.83, '*10**-4')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.4, Page number 268" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "sigma=300; #conductivity in S/cm\n", - "T=300; #temperature in K\n", - "ni=1.5*10**10 #carrier concentration per cm^3\n", - "mew_e=1300; #mobility of electrons in cm^2/Vs\n", - "mew_h=500; #mobility of holes in cm^2/Vs\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "sigma=sigma*10**2; #sigma in S/m\n", - "mew_e=mew_e*10**-4; #mobility of electrons in m^2/Vs\n", - "ND=sigma/(e*mew_e); #concentration of electron per m^3\n", - "ni=ni*10**6; #carrier concentration per m^3\n", - "p=ni**2/ND; #hole concentration per m^3\n", - "p=p/10**8;\n", - "p=math.ceil(p*10**3)/10**3; #rounding off to 3 decimals\n", - "mew_h=mew_h*10**-4; #mobility of holes in m^2/Vs\n", - "NA=sigma/(e*mew_h); #concentration of hole per m^3\n", - "n=ni**2/NA; #electron concentration per m^3\n", - "n=n/10**7;\n", - "\n", - "#Result\n", - "print(\"concentration of electron for N-type semiconductor per m^3\",ND);\n", - "print(\"hole concentration per m^3\",p,\"*10**8\");\n", - "print(\"concentration of hole for P-type semiconductor per m^3\",NA);\n", - "print(\"electron concentration per m^3\",int(n),\"*10**7\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of electron for N-type semiconductor per m^3', 1.4423076923076921e+24)\n", - "('hole concentration per m^3', 1.561, '*10**8')\n", - "('concentration of hole for P-type semiconductor per m^3', 3.7499999999999995e+24)\n", - "('electron concentration per m^3', 6, '*10**7')\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.5, Page number 269" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "RH=-3.68*10**-5; #hall coefficient in m^3/C\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "#hall coefficient is negative implies charge carriers are electrons\n", - "n=(3*math.pi)/(8*(-RH)*e); #carrier concentration\n", - "\n", - "#Result\n", - "print(\"charge carriers are electrons\");\n", - "print(\"carrier concentration per m^3 is\",n);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "charge carriers are electrons\n", - "('carrier concentration per m^3 is', 2.000844505937792e+23)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.6, Page number 269" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "Eg1=0.36; #energy gap of 1st material in eV\n", - "Eg2=0.72; #energy gap of 2nd material in eV\n", - "T=300; #temperature in K\n", - "mh=9*10**-31;\n", - "me=9*10**-31; \n", - "#given that 2*k*T=0.052; \n", - "#consider X=2*k*T\n", - "X=0.052;\n", - "\n", - "#Calculation\n", - "#intrinsic carrier concentration for A niA = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.36/(2*k*T))\n", - "#intrinsic carrier concentration for B niB = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.72/(2*k*T))\n", - "#dividing niA/niB = math.exp(-0.36/(2*k*T))*math.exp(0.72/(2*k*T))\n", - "#let niA/niB be A\n", - "A = math.exp(-0.36/X)*math.exp(0.72/X);\n", - "A=A/10**3;\n", - "A=math.ceil(A*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"ratio of intrinsic carrier densities of A and B is\",A,\"*10**3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('ratio of intrinsic carrier densities of A and B is', 1.01544, '*10**3')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.7, Page number 270" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "ND=2*10**22; #concentration of electron per m^3\n", - "sigma=112; #conductivity in ohm-1 m-1\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "mew=sigma/(ND*e); #mobility of electrons \n", - "mew=math.ceil(mew*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"mobility of electrons in m^2/Vs is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mobility of electrons in m^2/Vs is', 0.035)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.8, Page number 270" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "w=500; #thickness in micrometre\n", - "A=2.5*10**-3; #area of cross section in cm^-2\n", - "Ix=1; #current in ampere\n", - "Bz=10; #magnetic field in Wb/cm^2\n", - "n=10**16; #donor concentration in m^-3\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "Bz=Bz*10**-4; #magnetic field in Wb/m^2\n", - "w=w*10**-6; #thickness in m\n", - "RH=(3*math.pi)/(8*n*e); #hall coefficient\n", - "VH=(Bz*Ix*RH)/w; #hall voltage\n", - "VH=VH/10**3;\n", - "VH=math.ceil(VH*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"hall voltage in V is\",VH,\"*10**3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('hall voltage in V is', 1.4727, '*10**3')\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.9, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "Eg=1.2; #energy gap in eV\n", - "T1=300; #temperature in K\n", - "T2=600; #temperature in K\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "T_1=T1**(-1);\n", - "T_2=T2**(-1);\n", - "T=T_1-T_2;\n", - "Eg=Eg*1.602*10**-19; #Eg in J\n", - "#sigma_300=ni300*e*(mew_e+mew_h)\n", - "#sigma_600=ni600*e*(mew_e+mew_h)\n", - "#sigma_600/sigma_300 = ni600/ni300\n", - "#ni600/ni300 =((T2/T1)**(3/2))*math.exp(-Eg/(2*k*T2))*math.exp(Eg/(2*k*T1));\n", - "#ni600/ni300 =((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T;\n", - "#let ni600/ni300 be X\n", - "X=((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T);\n", - "\n", - "\n", - "#Result\n", - "print(\"ratio between the conductivity of material is\",int(X));\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('ratio between the conductivity of material is', 311270)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.10, Page number 272" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "sigma=10**-6; #electrical conductivity in ohm-1 m-1\n", - "mew_e=0.85; #electron mobility in m^2/Vs\n", - "mew_h=0.04; #hole mobility in m^2/Vs\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "ni=sigma/(e*(mew_e+mew_h)); #intrinsic carrier concentration\n", - "ni=ni/10**12;\n", - "ni=math.ceil(ni*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intrinsic carrier concentration per m^3 is\",ni,\"*10**12\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intrinsic carrier concentration per m^3 is', 7.0225, '*10**12')\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.11, Page number 272" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "rho_p=10; #resistivity of p-type Si in ohm cm\n", - "rho_n=10; #resistivity of n-type Si in ohm cm\n", - "mew_e=1350; #electron mobility in cm^2/Vs\n", - "mew_h=480; #hole mobility in cm^2/Vs\n", - "ni=1.5*10**10; #carrier concentration in cm^-3\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "rho_p=rho_p*10**-2;#resistivity of p-type Si in ohm m\n", - "sigma_p=1/rho_p; #electrical conductivity\n", - "mew_h=mew_h*10**-3;\n", - "NA=sigma_p/(e*mew_h); #acceptor concentration\n", - "ni=ni*10**6; #carrier concentration in m^-3\n", - "n=ni**2/NA; #concentration of minority carriers in m^-3\n", - "n=n/10**12;\n", - "n=math.ceil(n*10**4)/10**4; #rounding off to 4 decimals\n", - "rho_n=rho_n*10**-2; #resistivity of n-type Si in ohm m\n", - "sigma_n=1/rho_n; #electrical conductivity\n", - "mew_e=mew_e*10**-3;\n", - "ND=sigma_n/(e*mew_e); #donor concentration\n", - "p=(ni**2)/ND; #concentration of minority carriers in m^-3\n", - "p=p/10**12;\n", - "p=math.ceil(p*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"donor concentration per m^3 is\",ND);\n", - "print(\"concentration of minority carriers per m^3\",p,\"*10**12\");\n", - "print(\"acceptor concentration per m^3 is\",NA);\n", - "print(\"concentration of minority carriers per m^3 is\",n,\"*10**12\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('donor concentration per m^3 is', 4.6296296296296284e+19)\n", - "('concentration of minority carriers per m^3', 4.861, '*10**12')\n", - "('acceptor concentration per m^3 is', 1.3020833333333331e+20)\n", - "('concentration of minority carriers per m^3 is', 1.7281, '*10**12')\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/README.txt b/Engineering_Physics/README.txt deleted file mode 100755 index bd7c4bfa..00000000 --- a/Engineering_Physics/README.txt +++ /dev/null @@ -1,10 +0,0 @@ -Contributed By: KRISHNA CHAITANYA -Course: btech -College/Institute/Organization: JNTUH -Department/Designation: Computer Science -Book Title: Engineering Physics -Author: D. K. Bhattacharya & A. Bhaskaran -Publisher: Oxford University Press, New Delhi -Year of publication: 2013 -Isbn: 9780198065425 -Edition: 1
\ No newline at end of file diff --git a/Engineering_Physics/chapter1_2.ipynb b/Engineering_Physics/chapter1_2.ipynb deleted file mode 100755 index bd2e1aac..00000000 --- a/Engineering_Physics/chapter1_2.ipynb +++ /dev/null @@ -1,1232 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:18ac31f959977ef2080ed3a1b1a6990ce93e604dcfb0f72ab45c0c28a2428e0e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Quantum Mechanics and Quantum Computing" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.1, Page number 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#Variable declaration\n", - "c=3*10**8 #velocity of light in m/s\n", - "h=6.626*10**-34 #planks constant \n", - "m=1.67*10**-27 #mass of proton\n", - "\n", - "#Calculation\n", - "v=c/10 #velocity of proton\n", - "lamda=h/(m*v) #de Broglie wave length\n", - "\n", - "#Result\n", - "print(\"the de Broglie wavelength in m is \",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the de Broglie wavelength in m is ', 1.3225548902195607e-14)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.2, Page number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "V=400; #potential in Volts\n", - "\n", - "#Calculation\n", - "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in Armstrong is', 0.628)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.3, Page number 42\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "m=1.674*10**(-27); #mass of neutron in kg\n", - "h=6.626*10**(-34);\n", - "E=0.025; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n", - "lamdaA=lamda*10**10; #converting wavelength from m to Armstrong\n", - "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamdaA);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in metres is', 1.81062582829353e-10)\n", - "('The de Broglie wavelength in Armstrong is', 1.811)\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.4, Page number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "V=1600; #potential in Volts\n", - "\n", - "#Calculation\n", - "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n", - "lamda=math.ceil(lamda*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in Armstrong is', 0.32)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.5, Page number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "deltax=0.2; #distance in armstrong\n", - "h=6.626*10**(-34);\n", - "\n", - "#Calculation\n", - "delta_xm=deltax*10**-10; #distance in m\n", - "delta_p=h/(2*math.pi*delta_xm);\n", - "\n", - "#Result\n", - "print(\"The uncertainity in momentum of electron in kg m/sec is\",delta_p);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The uncertainity in momentum of electron in kg m/sec is', 5.2728032646344916e-24)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.6, Page number 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1;\n", - "n2=1;\n", - "n3=1; #values in lowest energy\n", - "h=6.62*10**(-34);\n", - "M=9.1*10**-31; #mass in kg\n", - "L=0.1; #side in nm\n", - "\n", - "#Calculation\n", - "L=L*10**-9; #side in m\n", - "n=(n1**2)+(n2**2)+(n3**2);\n", - "E1=(n*h**2)/(8*M*L**2); #energy in j\n", - "E1eV=E1/(1.6*10**-19); #energy in eV\n", - "E1eV=math.ceil(E1eV*10)/10; #rounding off to 1 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in Joule is\",E1);\n", - "print(\"lowest energy of electron is eV\",E1eV);\n", - "\n", - "#answer for lowest energy in eV given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n", - "('lowest energy of electron is eV', 112.9)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.7, Page number 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "M=9.1*10**(-31); #mass of electron in kg\n", - "h=6.66*10**(-34);\n", - "E=2000; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "lamda=h/math.sqrt(2*M*Ej); #de Broglie wavelength\n", - "lamdaA=lamda*10**9; #converting wavelength from m to nm\n", - "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in nm is\",lamdaA);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in nm is', 0.028)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.8, Page number 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=1; #for minimum energy\n", - "h=6.626*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "L=4*10**-10; #size in m\n", - "\n", - "#Calculation\n", - "E1=(n*h**2)/(8*m*L**2); #energy in j\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in Joule is\",E1);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in Joule is', 3.7692201236263733e-19)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.9, Page number 44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "lamda=1.66*10**-10; #wavelength in m\n", - "\n", - "#Calculation\n", - "v=h/(m*lamda); #velocity in m/sec\n", - "v_km=v*10**-3; #velocity in km/sec\n", - "E=(1/2)*m*v**2; #kinetic energy in joule\n", - "EeV=E/(1.6*10**-19); #energy in eV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"velocity of electron in m/sec is\",round(v));\n", - "print(\"velocity of electron in km/sec is\",round(v_km));\n", - "print(\"kinetic energy of electron in Joule is\",E);\n", - "print(\"kinetic energy of electron in eV is\",EeV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('velocity of electron in m/sec is', 4386337.0)\n", - "('velocity of electron in km/sec is', 4386.0)\n", - "('kinetic energy of electron in Joule is', 8.754176510091736e-18)\n", - "('kinetic energy of electron in eV is', 54.714)\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.10, Page number 44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable decleration\n", - "V=15; #potential in kV\n", - "\n", - "#Calculation\n", - "v=V*10**3; #potential in V\n", - "lamda=12.26/math.sqrt(v); #de Broglie wavelength\n", - "lamda=math.ceil(lamda*10**2)/10**2 #rounding off to 2 decimals\n", - "\n", - "#result\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in Armstrong is', 0.11)\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.11, Page number 44\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Calculation\n", - "m=1.675*10**-27; #mass of neutron in kg\n", - "h=6.626*10**-34;\n", - "E=10; #kinetic energy in keV\n", - "\n", - "#Calculation\n", - "EeV=E*10**3; #Energy in eV\n", - "Ej=EeV*1.6*10**-19; #kinetic energy in J\n", - "v=math.sqrt(2*Ej/m); #velocity in m/s\n", - "lamda=h/(m*v); #de broglie wavelength in m\n", - "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", - "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"The velocity in m/sec is\",round(v));\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The velocity in m/sec is', 1382189.0)\n", - "('The de Broglie wavelength in metres is', 2.861996093951046e-13)\n", - "('The de Broglie wavelength in Armstrong is', 0.0029)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.12, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable decleration\n", - "m=9.1*10**-31; #mass of electron in kg\n", - "h=6.6*10**-34;\n", - "E=2; #kinetic energy in keV\n", - "\n", - "#Calculation\n", - "EeV=E*10**3; #Energy in eV\n", - "Ej=EeV*1.6*10**-19; #kinetic energy in J\n", - "p=math.sqrt(2*m*Ej); #momentum\n", - "lamda=h/p; #de broglie wavelength in m\n", - "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", - "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in metres is', 2.7348483695436575e-11)\n", - "('The de Broglie wavelength in Armstrong is', 0.2735)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.13, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "m=1.676*10**-27; #mass of neutron in kg\n", - "h=6.62*10**-34;\n", - "E=0.025; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "v=math.sqrt(2*Ej/m); #velocity in m/s\n", - "lamda=h/(m*v); #wavelength in m\n", - "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", - "lamda_A=math.ceil(lamda_A*10**5)/10**5 #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"The neutrons wavelength in metres is\",lamda);\n", - "print(\"The wavelength in Armstrong is\",lamda_A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The neutrons wavelength in metres is', 1.8079065940980725e-10)\n", - "('The wavelength in Armstrong is', 1.80791)\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.14, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "V=10; #potential in kV\n", - "\n", - "#Calculation\n", - "V=V*10**3; #potential in V\n", - "lamda=12.26/math.sqrt(V); #wavelength\n", - "\n", - "#Result\n", - "print(\"The wavelength in Armstrong is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The wavelength in Armstrong is', 0.1226)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.15, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Varialble decleration\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "l=1; #width in armstrong\n", - "\n", - "#Calculation\n", - "L=l*10**-10; #width in m\n", - "#permitted electron energies En=(n**2*h**2)/(8*m*L**2)\n", - "#let X = h**2/(8*m*L**2)\n", - "X = h**2/(8*m*L**2); #energy in J\n", - "XeV=X/(1.6*10**-19); #energy in eV\n", - "#in the 1st level n1=1\n", - "n1=1;\n", - "E1=(n1**2)*XeV; #energy in eV\n", - "\n", - "#in second level n2=2\n", - "n2=2;\n", - "E2=(n2**2)*XeV; #energy in eV\n", - "#in third level n3=\n", - "n3=3;\n", - "E3=(n3**2)*XeV; #energy in eV\n", - "\n", - "#Result\n", - "print(\"minimum energy the electron can have in eV is\",round(E1));\n", - "print(\"other values of energy are in eV and in eV\",round(E2),round(E3));\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('minimum energy the electron can have in eV is', 38.0)\n", - "('other values of energy are in eV and in eV', 151.0, 339.0)\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.16, Page number 46\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "n=1; #lowest state\n", - "L=10; #width in armstrong\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #width in m\n", - "x=L/2;\n", - "delta_x=1; #interval in armstrong\n", - "delta_x=delta_x*10**-10; #interval in m\n", - "psi1=(math.sqrt(2/L))*math.sin(math.pi*x/L);\n", - "A=psi1**2;\n", - "p=A*delta_x;\n", - "p=math.ceil(p*10)/10; #de broglie wavelength in armstrong\n", - "\n", - "#Result\n", - "print(\"probability of finding the particle is \",p);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of finding the particle is ', 0.2)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.17, Page number 46" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=970; #density of Na in kg/m^3\n", - "n=6.02*10**26;\n", - "h=6.62*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "w=23; #atomic weight\n", - "\n", - "#Calculation\n", - "N=(d*n)/w; #number of atoms per m^3\n", - "A=(h**2)/(8*m);\n", - "B=(3*N)/math.pi;\n", - "Ef=A*B**(2/3);\n", - "EfeV=Ef/(1.6*10**-19);\n", - "EfeV=math.ceil(EfeV*10**2)/10**2 #rounding of to 2 decimals\n", - "\n", - "#Result\n", - "print(\"fermi energy of Na in eV is\",EfeV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi energy of Na in eV is', 3.16)\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.18, Page number 46" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n1=1;\n", - "n2=1;\n", - "n3=1; #values in lowest energy\n", - "h=6.62*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "L=0.1; #side in nm\n", - "\n", - "#Calculation\n", - "L=L*10**-9; #side in m\n", - "n=(n1**2)+(n2**2)+(n3**2);\n", - "E1=(n*h**2)/(8*m*L**2); #energy in j\n", - "E1eV=E1/(1.6*10**-19); #energy in eV\n", - "E1eV=math.ceil(E1eV*10**1)/10**1 #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in Joule is\",E1);\n", - "print(\"lowest energy of electron in eV is\",E1eV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n", - "('lowest energy of electron in eV is', 112.9)\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.19, Page number 47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mn=1.676*10**-27; #mass of neutron in kg\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "h=6.62*10**-34;\n", - "c=3*10**8; #velocity of light in m/sec\n", - "\n", - "#Calculation\n", - "En=2*me*c**2;\n", - "lamda=h/math.sqrt(2*mn*En); #wavelength in m\n", - "lamda_A=lamda*10**10; #converting lamda from m to A\n", - "lamda_A=math.ceil(lamda_A*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"The de broglie wavelength in Angstrom is\",lamda_A);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de broglie wavelength in Angstrom is', 0.000283)\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.20, Page number 47 ***************************************************************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n2=2; #second quantum state\n", - "n4=4; #fourth quantum state\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "a=2; #potential box length in armstrong\n", - "\n", - "#Calculation\n", - "a=a*10**-10; #length in m\n", - "A=n2**2*h**2;\n", - "B=8*m*a**2;\n", - "E2=A/B; #energy in j\n", - "E2eV=E2/(1.6*10**-19); #energy in eV\n", - "C=n4**2*h**2;\n", - "E4=C/B; #energy in j\n", - "E4eV=E4/(1.6*10**-19); #energy in eV\n", - "\n", - "#Result\n", - "print(\"energy corresponding to second quantum state in Joule is\",E2);\n", - "print(\"energy corresponding to second quantum state in eV is\",E2eV);\n", - "print(\"energy corresponding to fourth quantum state in Joule is\",E4);\n", - "print(\"energy corresponding to fourth quantum state in eV is\",E4eV);\n", - "\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy corresponding to second quantum state in Joule is', 6.030752197802197e-18)\n", - "('energy corresponding to second quantum state in eV is', 37.69220123626373)\n", - "('energy corresponding to fourth quantum state in Joule is', 2.412300879120879e-17)\n", - "('energy corresponding to fourth quantum state in eV is', 150.7688049450549)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.21, Page number 48 ***********" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "V=344; #accelerated voltage in V\n", - "n=1; #first reflection\n", - "theta=60; #glancing angle in degrees\n", - "\n", - "#Calculation\n", - "lamda=12.27/math.sqrt(V);\n", - "d=(n*lamda)/(2*math.sin(theta));\n", - "\n", - "#Result\n", - "print(\"The spacing of the crystal in Angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The spacing of the crystal in Angstrom is', 0.6615540636030947)\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.22, Page number 49 *************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n2=2; #second quantum state\n", - "n3=3; #fourth quantum state\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "a=1*10**-10; #width of potential well in m\n", - "\n", - "#Calculation\n", - "B=8*m*a**2;\n", - "E1=h**2/B; #ground state energy\n", - "E1eV=E1/(1.6*10**-19); #energy in eV\n", - "A=n2**2*h**2;\n", - "E2=A/B; #energy in j\n", - "E2eV=E2/(1.6*10**-19); #energy in eV\n", - "C=n3**2*h**2;\n", - "E3=C/B; #energy in j\n", - "E3eV=E3/(1.6*10**-19); #energy in eV\n", - "E1=math.ceil(E1*10**3)/10**3 #rounding off to 3 decimals\n", - "E1eV=math.ceil(E1eV*10**3)/10**3 #rounding off to 3 decimals\n", - "E2eV=math.ceil(E2eV*10**3)/10**3 #rounding off to 3 decimals\n", - "E3eV=math.ceil(E3eV*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"ground state energy in Joule is\",E1);\n", - "print(\"ground state energy in eV is\",E1eV);\n", - "print(\"first energy state in eV is\",E2eV);\n", - "print(\"second energy state in eV is\",E3eV);\n", - "\n", - "#answers given in the book are wrong by one decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('ground state energy in Joule is', 0.001)\n", - "('ground state energy in eV is', 37.693)\n", - "('first energy state in eV is', 150.769)\n", - "('second energy state in eV is', 339.23)\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.23, Page number 49" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "n3=3; #fourth quantum state\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "\n", - "\n", - "#ground state energy E1 = h**2/(8*m*a**2)\n", - "#second excited state E3 = (9*h**2)/(8*m*a**2)\n", - "#required energy E = E3-E1\n", - "#E = (9*h**2)/(8*m*a**2) - h**2/(8*m*a**2)\n", - "#E = (h**2/(8*m*a**2))*(9-1)\n", - "#therefore E = (8*h**2)/(8*m*a**2)\n", - "#hence E = (h**2)/(m*a**2)\n", - "\n", - "#Result \n", - "# the required energy is E = (h**2)/(m*a**2)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.24, Page number 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "delta_x=10**-8; #length of box in m\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "\n", - "#Calculation\n", - "delta_v=h/(m*delta_x); #uncertainity in m/sec\n", - "delta_vk=delta_v*10**-3; #uncertainity in km/sec\n", - "delta_vk=math.ceil(delta_vk*10**2)/10**2 #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"minimum uncertainity in velocity in m/sec is\",round(delta_v));\n", - "print(\"minimum uncertainity in velocity in km/sec is\",delta_vk);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('minimum uncertainity in velocity in m/sec is', 72813.0)\n", - "('minimum uncertainity in velocity in km/sec is', 72.82)\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.25, Page number 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mp=1.6*10**-27; #mass of proton in kg\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "h=6.626*10**(-34);\n", - "c=3*10**10; #velocity of light in m/sec\n", - "\n", - "#Calculation\n", - "Ep=me*c**2;\n", - "lamda=h/math.sqrt(2*mp*Ep); #wavelength in m\n", - "lamda_A=lamda*10**10; #converting lamda from m to A\n", - "\n", - "#Result\n", - "print(\"The de broglie wavelength in Angstrom is\",lamda_A);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de broglie wavelength in Angstrom is', 4.092931643497047e-06)\n" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.26, Page number 51 *************************************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "m=1.675*10**(-27); #mass of neutron in kg\n", - "h=6.626*10**(-34);\n", - "n=1; #diffractive order\n", - "d=0.314; #spacing in nm\n", - "E=0.04; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "d=d*10**-9; #spacing in m\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n", - "lamdaA=lamda*10**9; #converting wavelength from m to nm\n", - "theta=math.asin((n*lamda)/(2*d));\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in nm is\",lamdaA);\n", - "print(\"glancing angle in degrees is\",theta);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in metres is', 1.4309980469755228e-10)\n", - "('The de Broglie wavelength in nm is', 0.1430998046975523)\n", - "('glancing angle in degrees is', 0.2298853909391574)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter2_2.ipynb b/Engineering_Physics/chapter2_2.ipynb deleted file mode 100755 index a118db3c..00000000 --- a/Engineering_Physics/chapter2_2.ipynb +++ /dev/null @@ -1,813 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:04561aafd347865fa8c83acfb9b60eb84db275f85862655b442f546023cadd1e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Electron Theory of Metals" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.1, Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#import module\n", - "import math\n", - "\n", - "#Calculation\n", - "# given that E-Ef = kT\n", - "# fermi function FE = 1/(1+exp((E-Ef)/kT)\n", - "# therefore FE = 1/(1+exp(kT/kT));\n", - "# FE = 1/(1+exp(1))\n", - "FE=1/(1+math.exp(1));\n", - "FE=math.ceil(FE*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"fermi function is\",FE);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi function is', 0.27)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.2, Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Calculation\n", - "# given that E-Ef = kT\n", - "# fermi function FE = 1/(1+exp((E-Ef)/kT)\n", - "# therefore FE = 1/(1+exp(kT/kT));\n", - "# FE = 1/(1+exp(1))\n", - "FE=1/(1+math.exp(1));\n", - "FE=math.ceil(FE*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"fermi function is\",FE);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi function is', 0.269)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.3, Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "FE=10/100; #fermi function is 10%\n", - "Ef=5.5; #fermi energy of silver in eV\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "E=Ef+(Ef/100);\n", - "#FE=1/(1+math.exp((E-Ef)/(k*T)))\n", - "#therefore 1/FE = 1+math.exp((E-Ef)/(k*T))\n", - "#therefore (1/FE)-1 = math.exp((E-Ef)/(k*T))\n", - "#therefore log((1/FE)-1) = (E-Ef)/(k*T)\n", - "#therefore T = (E-Ef)/(k*math.log((1/FE)-1))\n", - "#let X=E-Ef; \n", - "X=E-Ef; #energy in eV\n", - "X=X*1.6*10**-19; #energy in J\n", - "T = (X/(k*math.log((1/FE)-1)));\n", - "T=math.ceil(T*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 290.23)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.4, Page number 70 **************************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "#let X=E-Ef\n", - "X=0.5; #E-Ef=0.5 in eV\n", - "\n", - "#Calculation\n", - "X=X*1.6*10**-19; #X in J\n", - "FE=1/100; #fermi function is 1% \n", - "k=1.38*10**-23;\n", - "#FE=1/(1+exp(X/(k*T)))\n", - "#therefore 1/FE = 1+math.exp(X/(k*T))\n", - "#therefore (1/FE)-1 = math.exp(X/(k*T))\n", - "#therefore log((1/FE)-1) = X/(k*T)\n", - "#but log(x) = 2.303*math.log10(x)\n", - "#therefore T = X/(k*math.log((1/FE)-1))\n", - "#but log(x)=2.303*math.log10(x)\n", - "#therefore T = X/(k*2.303*math.log10((1/FE)-1))\n", - "T = X/(k*2.303*math.log10((1/FE)-1));\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 1261.3505710887953)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.5, Page number 71 *******" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "rho_s=10.5*10**3; #density in kg/m^3\n", - "NA=6.02*10**26; #avagadro number per kmol\n", - "MA=107.9; \n", - "\n", - "#Calculation\n", - "n=(rho_s*NA)/MA;\n", - "sigma=6.8*10**7;\n", - "e=1.6*10**-19; #charge in coulomb\n", - "mew=sigma/(n*e);\n", - "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"density of electrons is\",n);\n", - "print(\"mobility of electrons in silver in m^2/Vs is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of electrons is', 5.85820203892493e+28)\n", - "('mobility of electrons in silver in m^2/Vs is', 0.007255)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.6, Page number 71 ***" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=8.92*10**3; #density in kg/m^3\n", - "rho=1.73*10**-8; #resistivity in ohm-m\n", - "m=9.1*10**-31; #mass in kg\n", - "w=63.5; #atomic weight\n", - "e=1.6*10**-19; #charge in coulomb\n", - "A=6.02*10**26; #avagadro number\n", - "\n", - "#Calculation\n", - "n=(d*A)/w;\n", - "mew=1/(rho*n*e);\n", - "tow=m/(n*(e**2)*rho);\n", - "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"mobility of electrons in Copper in m/Vs is\",mew);\n", - "print(\"average time of collision of electrons in copper in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mobility of electrons in Copper in m/Vs is', 0.004273)\n", - "('average time of collision of electrons in copper in sec is', 2.4297841992299697e-14)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.7, Page number 72" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "rho=1.54*10**-8; #resistivity in ohm-m\n", - "n=5.8*10**28; #electron/m^3\n", - "m=9.108*10**-31; #mass in kg\n", - "e=1.602*10**-19; #charge in coulomb\n", - "\n", - "#Calculation\n", - "tow=m/(n*(e**2)*rho);\n", - "\n", - "#Result\n", - "print(\"relaxation time of conduction electrons in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relaxation time of conduction electrons in sec is', 3.973281032516849e-14)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.8, Page number 73" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "FE=10/100; #fermi function is 10%\n", - "Ef=5.5; #fermi energy of silver in eV\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "E=Ef+(Ef/100);\n", - "#FE=1/(1+math.exp((E-Ef)/(k*T)))\n", - "#therefore 1/FE = 1+math.exp((E-Ef)/(k*T))\n", - "#therefore (1/FE)-1 = math.exp((E-Ef)/(k*T))\n", - "#therefore log((1/FE)-1) = (E-Ef)/(k*T)\n", - "#therefore T = (E-Ef)/(k*math.log((1/FE)-1))\n", - "#let X=E-Ef; \n", - "X=E-Ef; #energy in eV\n", - "X=X*1.6*10**-19; #energy in J\n", - "T = (X/(k*math.log((1/FE)-1)));\n", - "T=math.ceil(T*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 290.23)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.9, Page number 73" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Calculation\n", - "# given that E-Ef = kT\n", - "# fermi function FpE = 1/(1+exp((E-Ef)/kT)\n", - "# therefore FpE = 1/(1+exp(kT/kT));\n", - "# FpE = 1/(1+exp(1))\n", - "FpE=1/(1+math.exp(1));\n", - "FpE=math.ceil(FpE*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"fermi function is\",FpE);\n", - "#the presence of electron at that energy level is not certain" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi function is', 0.27)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.10, Page number 74 ****************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "m=9.1*10**-31; #mass in kg\n", - "h=6.626*10**-34;\n", - "A=(8*m)**(3/2);\n", - "\n", - "#Calculation\n", - "B=math.pi/(2*h**3);\n", - "EfeV=3.10; #fermi energy in eV\n", - "Ef=EfeV*1.6*10**-19; #fermi energy in J\n", - "EFeV=EfeV+0.02; #energy after interval in eV\n", - "EF=EFeV*1.6*10**-19; #energy after interval in J\n", - "function Q=f(E),Q=A*B*math.sqrt(E),endfunction\n", - "I=intg(Ef,EF,f)\n", - "\n", - "#Result\n", - "print(\"number of energy states per unit volume is\",I);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (<ipython-input-25-15d658985351>, line 18)", - "output_type": "pyerr", - "traceback": [ - "\u001b[1;36m File \u001b[1;32m\"<ipython-input-25-15d658985351>\"\u001b[1;36m, line \u001b[1;32m18\u001b[0m\n\u001b[1;33m function Q=f(E),Q=A*B*math.sqrt(E),endfunction\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.11, Page number 74" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T=300; #temperature in K\n", - "n=8.5*10**28; #density per m^3\n", - "rho=1.69*10**-8; #resistivity in ohm/m^3\n", - "me=9.11*10**-31; #mass of electron in kg\n", - "e=1.6*10**-19; #charge in coulomb\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "\n", - "#Calculation\n", - "lamda=math.sqrt(3*KB*me*T)/(n*(e**2)*rho);\n", - "\n", - "#Result\n", - "print(\"mean free path of electron in m is\",lamda);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mean free path of electron in m is', 2.892506814374228e-09)\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.12, Page number 75" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "rho=1.43*10**-8; #resistivity in ohm-m\n", - "n=6.5*10**28; #electron/m^3\n", - "m=9.11*10**-34; #mass in kg\n", - "e=1.6*10**-19; #charge in coulomb\n", - "\n", - "#Calculation\n", - "tow=m/(n*(e**2)*rho);\n", - "\n", - "#Result\n", - "print(\"relaxation time of conduction electrons in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relaxation time of conduction electrons in sec is', 3.8285032275416887e-17)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.13, Page number 75 ******" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=8.92*10**3; #density in kg/m^3\n", - "rho=1.73*10**-8; #resistivity in ohm-m\n", - "m=9.1*10**-31; #mass in kg\n", - "M=63.5; #atomic weight\n", - "e=1.6*10**-19; #charge in coulomb\n", - "A=6.02*10**26; #avagadro number\n", - "\n", - "#Calculation\n", - "n=(d*A)/M;\n", - "mew=1/(rho*n*e);\n", - "tow=m/(n*(e**2)*rho);\n", - "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"mobility of electrons in Copper in m/Vs is\",mew);\n", - "print(\"average time of collision of electrons in copper in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mobility of electrons in Copper in m/Vs is', 0.004273)\n", - "('average time of collision of electrons in copper in sec is', 2.4297841992299697e-14)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.14, Page number 76" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "MH=1.008*2*1.67*10**-27; #mass in kg\n", - "T=30; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "KE=(3/2)*KB*T; #kinetic energy in J\n", - "KEeV=KE*6.24*10**18; #kinetic energy in eV\n", - "cbar=math.sqrt((3*KB*T)/MH);\n", - "\n", - "#Result\n", - "print(\"average kinetic energy in J is\",KE);\n", - "print(\"average kinetic energy in eV is\",KEeV);\n", - "print(\"velocity of molecules in m/s is\",cbar);\n", - "\n", - "#answers for average kinetic energy in eV and velocity of electrons given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('average kinetic energy in J is', 6.2720999999999986e-21)\n", - "('average kinetic energy in eV is', 0.039137903999999994)\n", - "('velocity of molecules in m/s is', 1930.269663853336)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.15, Page number 77 ****" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Ee=10; #electron kinetic energy in eV\n", - "Ep=10; #proton kinetic energy in eV\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "mp=1.67*10**-27; #mass of proton in kg\n", - "\n", - "#Calculation\n", - "EeeV=Ee*1.6*10**-19; #electron kinetic energy in J\n", - "EpeV=Ep*1.6*10**-19; #proton kinetic energy in J\n", - "cebar=math.sqrt((2*EeeV)/me);\n", - "cpbar=math.sqrt((2*EpeV)/mp);\n", - "\n", - "#Result\n", - "print(\"velocity of electron in m/s is\",cebar);\n", - "print(\"velocity of proton in m/s is\",cpbar);\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('velocity of electron in m/s is', 1875228.9237539817)\n", - "('velocity of proton in m/s is', 43774.05241316662)\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.16, Page number 77" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "A=10; #area of cross section in mm^2\n", - "A=A*10**-6; #area of cross section in m^2\n", - "i=100; #current in amp\n", - "n=8.5*10**28; #number of electrons per mm^3\n", - "e=1.6*10**-19; #electron charge in coulumb\n", - "\n", - "#Calculation\n", - "vd=1/(n*A*e);\n", - "\n", - "#Result\n", - "print(\"drift velocity in m/s is\",vd);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('drift velocity in m/s is', 7.3529411764705884e-06)\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.17, Page number 78" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "tow=3*10**-14; #relaxation time in sec\n", - "n=8*10**28; #density of electrons per m^3\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "T=0; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "m=9.1*10**-31; #mass of electron in kg\n", - "sigma_T=((3*n*tow*(KB**2)*T)/(2*m));\n", - "sigma_T=math.ceil(sigma_T*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"thermal conductivity of copper in ohm-1 is\",sigma_T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('thermal conductivity of copper in ohm-1 is', 205.68)\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter4_2.ipynb b/Engineering_Physics/chapter4_2.ipynb deleted file mode 100755 index 80203b2d..00000000 --- a/Engineering_Physics/chapter4_2.ipynb +++ /dev/null @@ -1,756 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:544912fca601384def1f6da3b02bc7431b47e0d8f9efa5f2e7d2a367448daaa6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Magnetic Properties" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.1, Page number 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=6.5*10**-4; #magnetic field in T\n", - "M=1.4; #field with iron\n", - "\n", - "#Calculation\n", - "chi=M/H;\n", - "mew_r=1+chi;\n", - "mew_r=math.ceil(mew_r*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"relative permeability of iron is\",mew_r);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative permeability of iron is', 2154.85)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.2, Page number 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=220; #field in amp/m\n", - "M=3300; #magnetisation in amp/m\n", - "\n", - "#Calculation\n", - "chi=M/H;\n", - "mew_r=1+chi;\n", - "\n", - "#Result\n", - "print(\"relative permeability is\",mew_r);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative permeability is', 16.0)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.3, Page number 120 *****" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=5.29*10**-11; #radius of orbit in m\n", - "B=2; #applied field in Tesla\n", - "e=1.602*10**-19; #charge of electron in coulomb\n", - "m=9.108*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "mew=(e**2)*(r**2)*B/(4*m);\n", - "\n", - "#Result\n", - "print(\"magnetic moment in Am^2 is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic moment in Am^2 is', 3.94260574090909e-29)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.4, Page number 120" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "chi=0.5*10**-5; #susceptibility \n", - "H=10**6; #field strength in amp/m\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "I=chi*H;\n", - "B=mew_0*(I+H);\n", - "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of magnetisation in Amp/m is\",I);\n", - "print(\"flux density in Weber/m^2 is\",B);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of magnetisation in Amp/m is', 5.0)\n", - "('flux density in Weber/m^2 is', 1.257)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.5, Page number 120" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "e=2.86; #edge in armstrong\n", - "e=e*10**-10; #edge in m\n", - "Is=1.76*10**6; #magnetisation in amp/m\n", - "mewB=9.27*10**-24; #1 bohr magneton in amp m^2\n", - "\n", - "#Calculation\n", - "N=2/(e**3); #density per m^3\n", - "mewbar=Is/N;\n", - "mew_bar=mewbar/mewB;\n", - "mew_bar=math.ceil(mew_bar*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"average dipole moment in mewB is\",mew_bar);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('average dipole moment in mewB is', 2.221)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.6, Page number 121 ***" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=10**6; #magnetic field in amp/m\n", - "chi=1.5*10**-3; #susceptibility\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "M=chi*H;\n", - "B=mew_0*(M+H);\n", - "\n", - "#Result\n", - "print(\"magnetisation in Amp/m is\",M);\n", - "print(\"flux density in Tesla is\",B);\n", - "\n", - "#answer for flux density given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetisation in Amp/m is', 1500.0)\n", - "('flux density in Tesla is', 1.258522017028071)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.7, Page number 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "chi=3.7*10**-3; #susceptibility \n", - "H=10**4; #field strength in amp/m\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "M=chi*H;\n", - "B=mew_0*(M+H);\n", - "B=math.ceil(B*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"magnetisation in Amp/m is\",M);\n", - "print(\"flux density in Weber/m^2 is\",B);\n", - "\n", - "#answer for flux density given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetisation in Amp/m is', 37.0)\n", - "('flux density in Weber/m^2 is', 0.01262)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.8, Page number 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=0.052*10**-9; #radius of orbit in m\n", - "B=1; #magnetic field in Wb/m^2\n", - "e=1.6*10**-19; #charge of electron in coulomb\n", - "m=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "dmew=(e**2)*(r**2)*B/(4*m);\n", - "\n", - "#Result\n", - "print(\"magnetic moment in Am^2 is\",dmew);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic moment in Am^2 is', 1.901714285714286e-29)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.9, Page number 122" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "chi=-0.5*10**-5; #susceptibility \n", - "H=9.9*10**4; #field strength in amp/m\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "I=chi*H;\n", - "B=mew_0*H*(1+chi);\n", - "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", - "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of magnetisation in Amp/m is\",I);\n", - "print(\"flux density in Weber/m^2 is\",B);\n", - "\n", - "#answer for flux density given in the book is wrong " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of magnetisation in Amp/m is', -0.495)\n", - "('flux density in Weber/m^2 is', 0.1245)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.10, Page number 122" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=6.1*10**-11; #radius of H atom in m\n", - "new=8.8*10**15; #frequency in rev/sec\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "mew0=4*math.pi*10**-7;\n", - "i=e*new;\n", - "B=(mew0*i)/(2*r);\n", - "mew=i*math.pi*(r**2);\n", - "i=math.ceil(i*10**7)/10**7; #rounding off to 7 decimals\n", - "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"current in amp is\",i);\n", - "print(\"magnetic induction in weber/m^2 is\",B);\n", - "print(\"dipole moment in amp m^2 is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('current in amp is', 0.0014081)\n", - "('magnetic induction in weber/m^2 is', 14.503)\n", - "('dipole moment in amp m^2 is', 1.645933169972273e-23)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.11, Page number 123" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Is=1.96*10**6; #saturation magnetisation in amp/m\n", - "a=3; #cube edge of iron in armstrong\n", - "a=a*10**-10; #cube edge of iron in m\n", - "mew_b=9.27*10**-24; #bohr magneton in amp/m^2\n", - "n=2; #number of atoms per unit cell\n", - "\n", - "#Calculation\n", - "N=n/(a**3);\n", - "mewbar=Is/N;\n", - "mew_ab=mewbar/mew_b;\n", - "mew_ab=math.ceil(mew_ab*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"average number of Bohr magnetons in bohr magneton per atom is\",mew_ab);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('average number of Bohr magnetons in bohr magneton per atom is', 2.8544)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.12, Page number 123" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "I=3000; #magnetisation in amp/m\n", - "B=0.005; #flux density in weber/m^2\n", - "\n", - "#Calculation\n", - "mew0=4*math.pi*10**-7;\n", - "H=(B/mew0)-I;\n", - "mew_r=(I/H)+1;\n", - "H=math.ceil(H*10**3)/10**3; #rounding off to 3 decimals\n", - "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic force in amp/m is\",H);\n", - "print(\"relative permeability is\",mew_r);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic force in amp/m is', 978.874)\n", - "('relative permeability is', 4.065)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.13, Page number 124" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=1800; #magnetising field in amp/m\n", - "phi=3*10**-5; #magnetic flux in weber\n", - "A=0.2; #cross sectional area in cm^2\n", - "\n", - "#Calculation\n", - "A=A*10**-4; #cross sectional area in m^2\n", - "B=phi/A;\n", - "mew=B/H;\n", - "mew=math.ceil(mew*10**8)/10**8 #rounding off to 8 decimals\n", - "\n", - "#Result\n", - "print(\"the permeability in Henry/m is\",mew);\n", - "\n", - "#answer given in the book is wron" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the permeability in Henry/m is', 0.00083334)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.14, Page number 124 ********************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=0.04; #radius of circular loop in m\n", - "i=1000; #current in mA\n", - "i=i*10**-3; #current in amp\n", - "B=10**-3; #magnetic flux density in Wb/m^2\n", - "theta=45; #angle in degrees\n", - "\n", - "#Calculation\n", - "A=math.pi*(r**2);\n", - "mew=i*A;\n", - "tow=i*B*math.cos(theta);\n", - "mew=math.ceil(mew*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"the magnetic dipole moment in amp m^2 is\",mew);\n", - "print(\"the torque in Nm is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the magnetic dipole moment in amp m^2 is', 0.005027)\n", - "('the torque in Nm is', 0.0005253219888177298)\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.15, Page number 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "A=100; #area of hysteris loop in m^2\n", - "B=0.01; #flux density in wb/m^2\n", - "H=40; #magnetic field in amp/m\n", - "M=7650; #atomic weight in kg/m^3\n", - "\n", - "#Calculation\n", - "hl=A*B*H;\n", - "\n", - "#Result\n", - "print(\"the hysterisis loss per cycle in J/m^3 is\",hl);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the hysterisis loss per cycle in J/m^3 is', 40.0)\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.17, Page number 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "hl=200; #hysterisis loss per cycle in J/m^3\n", - "M=7650; #atomic weight in kg/m^3\n", - "m=100; #magnetisation cycles per second\n", - "\n", - "#Calculation\n", - "hpl=hl*m;\n", - "pl=hpl/M;\n", - "pl=math.ceil(pl*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"hysterisis power loss per second in watt/m^3 is\",hpl);\n", - "print(\"the power loss in watt/kg is\",pl); \n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('hysterisis power loss per second in watt/m^3 is', 20000)\n", - "('the power loss in watt/kg is', 2.6144)\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter5_2.ipynb b/Engineering_Physics/chapter5_2.ipynb deleted file mode 100755 index 14018aea..00000000 --- a/Engineering_Physics/chapter5_2.ipynb +++ /dev/null @@ -1,639 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:19dabe1afe46093105a84b4746899bd5b483ca26e3b557510765740ff72179af" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Superconductivity" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.1, Page number 148" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=3.7; #in kelvin\n", - "Hc_0=0.0306; \n", - "T=2\n", - "\n", - "#Calculation\n", - "Hc_2k=Hc_0*(1-((T/Tc)**2));\n", - "Hc_2k=math.ceil(Hc_2k*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"the critical feild at 2K in tesla is\",Hc_2k);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical feild at 2K in tesla is', 0.02166)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.2, Page number 149\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=4.2; #in kelvin\n", - "Tc=7.18; #in kelvin\n", - "Hc_0=6.5*10**4; #in amp per meter\n", - "D=10**-3\n", - "\n", - "#Calculation\n", - "R=D/2; #radius is equal to half of diameter\n", - "Hc_T=Hc_0*(1-((T/Tc)**2));\n", - "Hc_T=math.ceil(Hc_T*10)/10; #rounding off to 1 decimals\n", - "Ic=2*math.pi*R*Hc_T #critical current is calculated by 2*pi*r*Hc(T)\n", - "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical feild in Tesla is\",round(Hc_T));\n", - "print(\"the critical current in Amp is\",Ic);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical feild in Tesla is', 42759.0)\n", - "('the critical current in Amp is', 134.34)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.3, Page number 149\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda_T=75 #in nm\n", - "T=3.5 \n", - "HgTc=4.12 #in K\n", - "\n", - "#Calculation\n", - "lamda_o=lamda_T*math.sqrt(1-((T/HgTc)**4));\n", - "lamda_o=math.ceil(lamda_o*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the pentration depth at 0k is\",lamda_o);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the pentration depth at 0k is', 51.92)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.4, Page number 150" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda_T1=396 #pentration depth in armstrong\n", - "lamda_T2=1730 #pentration depth in armstrong\n", - "T1=3 #temperature in K\n", - "T2=7.1 #temperature in K\n", - "\n", - "#Calculation\n", - "#lamda_T2**2=lamda_0**2*(((Tc**4-T2**4)/Tc**4)**-1)\n", - "#lamda_T1**2=lamda_0**2*(((Tc**4-T1**4)/Tc**4)**-1)\n", - "#dividing lamda_T2**2 by lamda_T1**2 = (Tc**4-T1**4)/(Tc**4-T2**4)\n", - "#let A=lamda_T2**2 and B=lamda_T1**2\n", - "A=lamda_T2**2\n", - "B=lamda_T1**2\n", - "C=A/B\n", - "C=math.ceil(C*10**4)/10**4; #rounding off to 4 decimals\n", - "X=T1**4\n", - "Y=T2**4\n", - "Y=math.ceil(Y*10**2)/10**2; #rounding off to 2 decimals\n", - "#C*((TC**4)-Y)=(Tc**4)-X\n", - "#C*(Tc**4)-(Tc**4)=C*Y-X\n", - "#(Tc**4)*(C-1)=(C*Y)-X\n", - "#let Tc**4 be D\n", - "#D*(C-1)=(C*Y)-X\n", - "D=((C*Y)-X)/(C-1)\n", - "D=math.ceil(D*10)/10; #rounding off to 1 decimals\n", - "Tc=D**(1/4)\n", - "Tc=math.ceil(Tc*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"the pentration depth at 0k is\",Tc);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the pentration depth at 0k is', 7.1932)\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.5, Page number 150" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=7.2 #in K\n", - "Ho=6.5*10**3 #in amp per m\n", - "T=5 #in K\n", - "\n", - "#Calculation\n", - "Hc=Ho*(1-((T/Tc)**2))\n", - "Hc=math.ceil(Hc*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical magnetic feild at 5K in amp per m is\",Hc)\n", - "\n", - "# answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 3365.36)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.6, Page number 151" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=3.5 #in K\n", - "Ho=3.2*10**3 #in amp per m\n", - "T=2.5 #in K\n", - "\n", - "#Calculation\n", - "Hc=Ho*(1-((T/Tc)**2))\n", - "Hc=math.ceil(Hc*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical magnetic feild at 5K in amp per m is\",Hc)\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 1567.35)\n" - ] - } - ], - "prompt_number": 45 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.7, Page number 151" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Hc=5*10**3 #in amp per m\n", - "Ho=2*10**4 #in amp per m\n", - "T=6 #in K\n", - "\n", - "#Calculation\n", - "Tc=T/math.sqrt(1-(Hc/Ho))\n", - "Tc=math.ceil(Tc*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical magnetic feild at 5K in amp per m is\",Tc)\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 6.93)\n" - ] - } - ], - "prompt_number": 66 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.8, Page number 152" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Hc=2*10**3 #in amp per m\n", - "R=0.02 #in m\n", - "\n", - "#Calculation\n", - "Ic=2*math.pi*R*Hc\n", - "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical current is\",Ic)\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 251.33)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.9, Page number 152" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "M1=199.5 #in a.m.u\n", - "T1=5 #in K\n", - "T2=5.1 #in K\n", - "\n", - "#Calculation\n", - "M2=((T1/T2)**2)*M1\n", - "M2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"the isotopic mass of M2 is\",M2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the isotopic mass of M2 is', 191.754)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.10, Page number 152" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=3*10**-3 #in meters\n", - "Tc=8 #in K \n", - "T=5 #in K \n", - "Ho=5*10**4\n", - "\n", - "#Calculation\n", - "R=D/2\n", - "Hc=Ho*(1-((T/Tc)**2))\n", - "Ic=2*math.pi*R*Hc\n", - "Ic=math.ceil(Ic*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"critical magnetic feild in amp per m is\",round(Hc));\n", - "print(\"critical current in amp is\",Ic);\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical magnetic feild in amp per m is', 30469.0)\n", - "('critical current in amp is', 287.162)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.11, Page number 153" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "M1=199.5 \n", - "M2=203.4 \n", - "Tc1=4.185 #in K\n", - "\n", - "#Calculation\n", - "Tc2=Tc1*math.sqrt(M1/M2)\n", - "Tc2=math.ceil(Tc2*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"the critical temperature is\",Tc2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical temperature is', 4.145)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.12, Page number 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=8.5*10**-6 #in volts\n", - "e=1.6*10**-19 #in C\n", - "h=6.626*10**-24\n", - "\n", - "#Calculation\n", - "new=2*e*V/h\n", - "new=math.ceil(new*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"EM wave generated frequency in Hz is\",new)\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('EM wave generated frequency in Hz is', 0.41051)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.13, Page number 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "p1=1 #in mm\n", - "p2=6 #in mm\n", - "Tc1=5 #in K\n", - "\n", - "#Calculation\n", - "Tc2=Tc1*(p2/p1);\n", - "\n", - "#Result\n", - "print(\"the critical temperature in K is\",round(Tc2))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical temperature in K is', 30.0)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.14, Page number 154\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "Tc=8.7 #in K\n", - "Hc=6*10**5 #in A per m\n", - "Ho=3*10**6 #in A per m\n", - "\n", - "#Calculation\n", - "T=Tc*(math.sqrt(1-(Hc/Ho)))\n", - "\n", - "#Result\n", - "print(\" maximum critical temperature in K is\",T)\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(' maximum critical temperature in K is', 7.781516561699267)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter6_2.ipynb b/Engineering_Physics/chapter6_2.ipynb deleted file mode 100755 index 4c7f2be8..00000000 --- a/Engineering_Physics/chapter6_2.ipynb +++ /dev/null @@ -1,238 +0,0 @@ -{ - "metadata": { - "name": "chapter6 (1)" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Dielectric Properties" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.1, Page number 187" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the energy stored in the condenser and polarizing the dielectric\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nC=2; #capacitance in micro farad\nC=C*10**-6; #capacitance in farad\nV=1000; #voltage in Volts\nepsilon_r=100; \n\n#Calculation\nW=(C*(V**2))/2;\nC0=C/epsilon_r;\nW0=(C0*(V**2))/2;\nW_0=1-W0;\n\n#Result\nprint(\"energy stored in the condenser in Joule is\",W);\nprint(\"energy stored in the dielectric in Joule is\",W_0);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('energy stored in the condenser in Joule is', 1.0)\n('energy stored in the dielectric in Joule is', 0.99)\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.2, Page number 188" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the ratio between electronic and ionic polarizability\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_r=4.94;\nN=2.69; #let n**2 be N\n\n#Calculaion\n#(epsilon_r-1)/(epsilon_r+2) = (N*alpha)/(3*epsilon_0)\n#alpha = alpha_e+alpha_i\n#therefore (epsilon_r-1)/(epsilon_r+2) = (N*(alpha_e+alpha_i))/(3*epsilon_0)\n#let (N*(alpha_e+alpha_i))/(3*epsilon_0) be X\nX=(epsilon_r-1)/(epsilon_r+2);\n#Ez=n^2\n#therefore (N-1)/(N+2) = (N*alpha_e)/(3*epsilon_0)\n#let (N*alpha_e)/(3*epsilon_0) be Y\nY=(N-1)/(N+2);\n#dividing X/Y = (N*(alpha_e+alpha_i))/(N*alpha_e)\n#therefore X/Y = 1+(alpha_i/alpha_e)\n#let alpha_i/alpha_e be A\nR=(X/Y)-1;\nR=math.ceil(R*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"ratio between electronic and ionic polarizability is\",R);\n\n#answer given in the book is wrong in the second part", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('ratio between electronic and ionic polarizability is', 0.5756)\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.3, Page number 188" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the dielectric constant of the material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nN=3*10**28; #atoms per m^3\nalpha_e=10**-40; #farad m^2\nepsilon_0=8.854*10**-12; #f/m\n\n#Calculation\nepsilon_r=1+(N*alpha_e/epsilon_0);\nepsilon_r=math.ceil(epsilon_r*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"dielectric constant of the material is\",epsilon_r);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('dielectric constant of the material is', 1.339)\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.4, Page number 189" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the electronic polarizability of He atoms\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_0=8.854*10**-12; #f/m\nepsilon_r=1.0000684;\n\n#Calculation\nN=2.7*10**25; #atoms per m^3\nalpha_e=(epsilon_0*(epsilon_r-1))/N;\n\n#Result\nprint(\"electronic polarizability of He atoms in Fm^2 is\",alpha_e);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('electronic polarizability of He atoms in Fm^2 is', 2.2430133333322991e-41)\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.5, Page number 189" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the capacitance and charge\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_0=8.854*10**-12; #f/m\nA=100; #area in cm^2\nA=A*10**-4; #area in m^2\nV=100; #potential in V\nd=1; #plate seperation in cm\n\n#Calculation\nd=d*10**-2; #plate seperation in m\nC=(epsilon_0*A)/d;\nQ=C*V;\n\n#Result\nprint(\"charge on the plates in F is\",C);\nprint(\"charge on the capacitor in coulomb is\",Q);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('charge on the plates in F is', 8.854e-12)\n('charge on the capacitor in coulomb is', 8.854e-10)\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.6, Page number 190" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the resultant voltage across the capacitors\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nQ=2*10**-10; #charge in coulomb\nd=4; #plate seperation in mm\nd=d*10**-3; #plate seperation in m\nepsilon_r=3.5;\nepsilon_0=8.85*10**-12; #f/m\nA=650; #area in mm^2\n\n#Calculation\nA=A*10**-6; #area in m^2\nV=(Q*d)/(epsilon_0*epsilon_r*A);\nV=math.ceil(V*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"voltage across the capacitor in Volts is\",V);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('voltage across the capacitor in Volts is', 39.735)\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.7, Page number 190" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the dielectric displacement\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nV=10; #potential in volts\nd=2*10**-3; #plate seperation in m\nepsilon_r=6; #dielectric constant\nepsilon_0=8.85*10**-12; #f/m\n\n#Calculation\nE=V/d;\nD=epsilon_0*epsilon_r*E;\n\n#Result\nprint(\"dielectric displacement in cm^-2 is\",D);\n\n#answer given in the book is wrong in the 7th decimal point", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('dielectric displacement in cm^-2 is', 2.6549999999999994e-07)\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.8, Page number 191" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the polarizability and relative permittivity of He\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nR=0.55; #radius of He atom in angstrom\nR=R*10**-10; #radius of He atom in m\nepsilon_0=8.84*10**-12; #f/m\nN=2.7*10**25;\n\n#Calculation\nalpha_e=4*math.pi*epsilon_0*R**3;\nepsilon_r=(N*alpha_e/epsilon_0)+1;\nepsilon_r=math.ceil(epsilon_r*10**6)/10**6; #rounding off to 6 decimals\n\n#Result\nprint(\"polarizability in farad m^2 is\",alpha_e);\nprint(\"relative permitivity is\",epsilon_r);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('polarizability in farad m^2 is', 1.848205241292183e-41)\n('relative permitivity is', 1.000057)\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.9, Page number 191" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the field strength and total dipole moment\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nV=15; #potential difference in volts\nC=6; #capacity in micro farad\nC=C*10**-6; #capacity in farad\nepsilon_0=8.84*10**-12; #f/m\nepsilon_r=8;\nA=360; #surface area in cm^2\n\n#Calculation\nA=A*10**-4; #surface area in m^2\nE=(V*C)/(epsilon_0*epsilon_r*A);\nd=epsilon_0*(epsilon_r-1)*V*A;\n\n#Result\nprint(\"field strength in V/m is\",E);\nprint(\"total dipole moment in cm is\",d);\n\n#answer for field strength E given in the book is wrong ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('field strength in V/m is', 35350678.73303167)\n('total dipole moment in cm is', 3.34152e-11)\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.10, Page number 191" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the complex polarisability of material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilonr=4.36; #dielectric constant\nt=2.8*10**-2; #loss tangent(t)\nN=4*10**28; #number of electrons\nepsilon0=8.84*10**-12; \n\n#Calculation\nepsilon_r = epsilonr*t;\nepsilonstar = (complex(epsilonr,-epsilon_r));\nalphastar = (epsilonstar-1)/(epsilonstar+2);\nalpha_star = 3*epsilon0*alphastar/N; #complex polarizability(Fm**2)\n\n#Result\nprint(\"the complex polarizability in F-m^2 is\"'alphastar',alpha_star);\n#disp('j',I,R);\n#by taking 10^-40 common we get alphastar = (3.5-j0.06)*10^-40 F-m^2", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('the complex polarizability in F-m^2 isalphastar', (3.5037933503257222e-40-6.000743833211258e-42j))\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": "", - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter7_2.ipynb b/Engineering_Physics/chapter7_2.ipynb deleted file mode 100755 index d4161b18..00000000 --- a/Engineering_Physics/chapter7_2.ipynb +++ /dev/null @@ -1,1514 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:b26f0e8151a54ecdc596868a34547e181ac6dce2c5aea4a02c15b80e1401fd4f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Semiconductors" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.1, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T1=300; #temp in K\n", - "T2=310; #temp in K\n", - "ni1=2.5*10**19; #per cubic metre\n", - "EgeV1=0.72; #value of Eg in eV\n", - "EgeV2=1.12; #value of Eg in eV\n", - "\n", - "#Calculation\n", - "Eg1=EgeV1*1.6*10**-19; #Eg in J\n", - "Eg2=EgeV2*1.6*10**-19; #Eg in J\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "#density of electron hole pair is ni = A*(T**(3/2))*exp(-Eg/(2*KB*T))\n", - "#let (T**(3/2))*exp(-Eg/(2*KB*T)) be X\n", - "X1=(T1**(3/2))*math.exp(-Eg1/(2*KB*T1));\n", - "X2=(T2**(3/2))*math.exp(-Eg2/(2*KB*T2));\n", - "#therefore ni1=A*X1 and ni2=A*X2. dividing ni2/ni1 we get X2/X1\n", - "ni2=ni1*(X2/X1);\n", - "\n", - "#Result\n", - "print(\"the number of electron hole pairs per cubic metre is\",ni2);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the number of electron hole pairs per cubic metre is', 2.3207901206362184e+16)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.2, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4; #hall coefficient in m^3/coulomb\n", - "sigma=112; #conductivity in ohm-1 m-1\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "ne=1/(RH*e);\n", - "#sigma = e*ne*(mew_e+mew_h)\n", - "#assuming mew_h = 0\n", - "mew_e=sigma/(e*ne);\n", - "\n", - "#Result\n", - "print(\"the charge carrier density per m^3 is\",ne);\n", - "print(\"electron mobility in m^2/Vs is\",mew_e);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the charge carrier density per m^3 is', 1.7076502732240434e+22)\n", - "('electron mobility in m^2/Vs is', 0.040992)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.3, Page number 252" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=1.5*10**16; #intrinsic concentration per m^3\n", - "e=1.6*10**-19;\n", - "mew_e=0.13; #mobility of electrons in m^2/Vs\n", - "mew_h=0.05; #mobility of holes in m^2/Vs\n", - "ND=5*10**20; #conductivity in atoms/m^3\n", - "\n", - "#Calculation\n", - "sigma1=ni*e*(mew_e+mew_h);\n", - "nd=(ni**2)/ND;\n", - "sigma2=ND*e*mew_e;\n", - "NA=5*10**20;\n", - "na=(ni**2)/NA;\n", - "sigma3=NA*e*mew_h;\n", - "sigma1=math.ceil(sigma1*10**7)/10**7; #rounding off to 7 decimals\n", - "sigma2=math.ceil(sigma2*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"intrinsic conductivity of Si in ohm-1 m-1 is\",sigma1);\n", - "print(\"conductivity of Si during donor impurity in ohm-1 m-1 is\",sigma2);\n", - "print(\"conductivity of Si during acceptor impurity in ohm-1 m-1 is\",round(sigma3));" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intrinsic conductivity of Si in ohm-1 m-1 is', 0.000432)\n", - "('conductivity of Si during donor impurity in ohm-1 m-1 is', 10.41)\n", - "('conductivity of Si during acceptor impurity in ohm-1 m-1 is', 4.0)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.4, Page number 253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "sigma1=2; #conductivity in ohm-1 m-1\n", - "EgeV=0.72; #band gap in eV\n", - "KB=1.38*10**-23; #boltzmann constant\n", - "T1=20; #temp in C\n", - "T2=40; #temp in C\n", - "\n", - "#Calculation\n", - "Eg=EgeV*1.6*10**-19; #in J\n", - "T1=T1+273; #temp in K\n", - "T2=T2+273; #temp in K\n", - "#sigma2/sigma1 = exp((-Eg/(2*KB))*((1/T2)-(1/T1)))\n", - "#by taking log on both sides we get 2.303*log10(sigma2/sigma1) = (Eg/(2*KB))*((1/T1)-(1/T2))\n", - "#let (Eg/(2*KB))*((1/T1)-(1/T2)) be X\n", - "X=(Eg/(2*KB))*((1/T1)-(1/T2));\n", - "#let log10(sigma2/sigma1) be Y\n", - "Y=X/2.303;\n", - "#log10(sigma2/sigma1) = log10(sigma2)-log10(sigma1)\n", - "#let log10(sigma2) be A\n", - "A=Y+math.log10(sigma1);\n", - "sigma2=10**A;\n", - "sigma2=math.ceil(sigma2*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the conductivity in mho m-1 is\",sigma2);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the conductivity in mho m-1 is', 4.97)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.5, Page number 253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mew_n=1300*10**-4; #in m^2/Vs\n", - "mew_p=500*10**-4; #in m^2/Vs\n", - "sigma=3*10**4; #conductivity in ohm-1 m-1\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "N=sigma/(e*mew_n);\n", - "ni=1.5*10**16; #per m^3\n", - "p=(ni**2)/N;\n", - "P=sigma/(e*mew_p);\n", - "n=(ni**2)/P;\n", - "N=math.ceil(N*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"concentration of electrons in n-type per cubic metre are\",N);\n", - "print(\"concentration of holes in n-type per cubic metre are\",round(p));\n", - "print(\"concentration of electrons in p-type per cubic metre are\",round(n));\n", - "print(\"concentration of holes in p-type per cubic metre are\",P);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of electrons in n-type per cubic metre are', 1.4423076923076921e+24)\n", - "('concentration of holes in n-type per cubic metre are', 156000000.0)\n", - "('concentration of electrons in p-type per cubic metre are', 60000000.0)\n", - "('concentration of holes in p-type per cubic metre are', 3.7499999999999995e+24)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.6, Page number 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=2.37*10**19; #intrinsic carrier density per m^3\n", - "mew_e=0.38; #in m**2/Vs\n", - "mew_n=0.18; #in m**2/Vs\n", - "\n", - "#Calculation\n", - "e=1.6*10**-19;\n", - "sigmai=ni*e*(mew_e+mew_n);\n", - "rho=1/sigmai;\n", - "rho=math.ceil(rho*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"resistivity in ohm m is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('resistivity in ohm m is', 0.471)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.7, Page number 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=1.12; #band gap in eV\n", - "K=1.38*10**-23;\n", - "T=300; #temp in K\n", - "\n", - "#Calculation\n", - "#EF = (Eg/2)+(3*K*T/4)*log(mh/me)\n", - "#given me=0.12m0 and mh=0.28m0. therefore mh/me = 0.28/0.12 \n", - "#let mh/me be X. therefore X=0.28/0.12 \n", - "X=0.28/0.12;\n", - "EF=(Eg/2)+((3*K*T/4)*math.log(X));\n", - "\n", - "#Result\n", - "print(\"the position of fermi level in eV is\",EF);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the position of fermi level in eV is', 0.56)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.8, Page number 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "KB=1.38*10**-23;\n", - "T=300; #temp in K\n", - "h=6.626*10**-34;\n", - "m0=9.11*10**-31;\n", - "mh=m0;\n", - "me=m0;\n", - "EgeV=0.7; #energy gap in eV\n", - "\n", - "#Calculation\n", - "Eg=EgeV*1.6*10**-19; #in J\n", - "A=((2*math.pi*KB/(h**2))**(3/2))*(me*mh)**(3/4);\n", - "B=T**(3/2);\n", - "C=math.exp(-Eg/(2*KB*T));\n", - "ni=2*A*B*C;\n", - "\n", - "#Result\n", - "print(\"concentration of intrinsic charge carriers per cubic metre is\",ni);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of intrinsic charge carriers per cubic metre is', 3.3481803992458756e+19)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.9, Page number 255" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=2.4*10**19;\n", - "mew_e=0.39;\n", - "mew_h=0.19;\n", - "e=1.6*10**-19;\n", - "\n", - "#Result\n", - "sigmai=ni*e*(mew_e+mew_h);\n", - "rhoi=1/sigmai;\n", - "rhoi=math.ceil(rhoi*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"resistivity in ohm m is\",rhoi);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('resistivity in ohm m is', 0.45)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.10, Page number 255" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "l=1; #length in cm\n", - "l=l*10**-2; #length in m\n", - "e=1.6*10**-19;\n", - "w=1; #width in mm\n", - "t=1; #thickness in mm\n", - "\n", - "#Calculation\n", - "w=w*10**-3; #width in m\n", - "t=t*10**-3; #thickness in m\n", - "A=w*t;\n", - "ni=2.5*10**19;\n", - "mew_e=0.39;\n", - "mew_p=0.19;\n", - "sigma=ni*e*(mew_p+mew_e);\n", - "R=l/(sigma*A);\n", - "\n", - "#Result\n", - "print(\"resistance of intrinsic Ge rod in ohm is\",R);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('resistance of intrinsic Ge rod in ohm is', 4310.3448275862065)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.11, Page number 255" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=1.1; #energy gap in eV\n", - "m=9.109*10**-31;\n", - "k=1.38*10**-23;\n", - "T=300;\n", - "e=1.6*10**-19;\n", - "h=6.626*10**-34;\n", - "mew_e=0.48; #electron mobility\n", - "mew_h=0.013; #hole mobility\n", - "\n", - "#Calculation\n", - "C=2*(2*math.pi*m*k/(h**2))**(3/2);\n", - "X=2*k*T/e;\n", - "Y=-Eg/X;\n", - "A=math.exp(Y);\n", - "ni=C*(T**(3/2))*A;\n", - "sigma=ni*e*(mew_e+mew_h);\n", - "sigma=math.ceil(sigma*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity in ohm-1 m-1 is\",sigma);\n", - "\n", - "# answer given in the book is wrong, Page number 255" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity in ohm-1 m-1 is', 0.001162)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.12, Page number 256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "m=9.109*10**-31;\n", - "k=1.38*10**-23;\n", - "T=300;\n", - "e=1.6*10**-19;\n", - "h=6.626*10**-34;\n", - "Eg=0.7;\n", - "mew_e=0.4; #electron mobility\n", - "mew_h=0.2; #hole mobility\n", - "\n", - "#Calculation\n", - "C=2*(2*math.pi*m*k/((h**2)))**(3/2);\n", - "X=2*k*T/e;\n", - "ni=C*(T**(3/2))*math.exp(-Eg/X);\n", - "sigma=ni*e*(mew_e+mew_h);\n", - "sigma=math.ceil(sigma*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity in ohm-1 m-1\",sigma);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity in ohm-1 m-1', 3.214)\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.13, Page number 256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "k=8.616*10**-5;\n", - "T1=20; #temp in C\n", - "T1=T1+273; #temp in K\n", - "T2=32; #temp in C\n", - "rho2=4.5; #resistivity in ohm m\n", - "rho1=2; #resistivity in ohm m\n", - "\n", - "#Calculation\n", - "T2=T2+273; #temp in K\n", - "dy=math.log10(rho2)-math.log10(rho1);\n", - "dx=(1/T1)-(1/T2);\n", - "Eg=2*k*dy/dx;\n", - "Eg=math.ceil(Eg*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy band gap in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy band gap in eV is', 0.452)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.13, Page number 256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "k=8.616*10**-5;\n", - "T1=20; #temp in C\n", - "T2=32; ##temp in C\n", - "rho2=4.5; #resistivity in ohm m\n", - "rho1=2; #resistivity in ohm m\n", - "\n", - "#Calculation\n", - "T1=T1+273; #temp in K\n", - "T2=T2+273; #temp in K\n", - "dy=math.log10(rho2)-math.log10(rho1);\n", - "dx=(1/T1)-(1/T2);\n", - "Eg=2*k*dy/dx;\n", - "Eg=math.ceil(Eg*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy band gap in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy band gap in eV is', 0.452)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.14, Page number 257" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "EgeV=1; #energy in eV\n", - "k=1.38*10**-23;\n", - "Eg=EgeV*1.602*10**-19; #in J\n", - "#EF can be taken as (Ev+0.5)eV\n", - "#therefore (Ev+0.5)eV = (Ec+Ev)/2--------(1)\n", - "#let fermi level shift by 10% then (Ev+0.6)eV = ((Ec+Ev)/2)+((3*k*T/4)*log(4))-----(2)\n", - "#subtracting (1) from (2)\n", - "#0.1 eV = (3*k*T/4)*math.log(4)\n", - "E=0.1; #energy in eV\n", - "E=E*1.602*10**-19; #energy in J\n", - "T=(4*E)/(3*k*math.log(4));\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 1116.520509905372)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.15, Page number 257" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=1.5*10**16;\n", - "e=1.6*10**-19;\n", - "mew_e=0.13;\n", - "mew_h=0.05;\n", - "\n", - "#Calculation\n", - "sigma=ni*e*(mew_e+mew_h);\n", - "M=28.1; #atomic weight of Si\n", - "d=2.33*10**3; #density in kg/m^3\n", - "v=M/d;\n", - "N=6.02*10**26;\n", - "N1=N/v;\n", - "#1 donor type impurity is added to 1 impurity atom\n", - "ND=N1/(10**8);\n", - "p=(ni**2)/ND;\n", - "sigma_exd=ND*e*mew_e;\n", - "#1 acceptor type impurity is added to 1 impurity atom\n", - "Na=N1/(10**8);\n", - "n=(ni**2)/Na;\n", - "sigma_exa=Na*e*mew_h;\n", - "sigma=math.ceil(sigma*10**7)/10**7 #rounding off to 7 decimals\n", - "sigma_exd=math.ceil(sigma_exd*10**3)/10**3 #rounding off to 3 decimals\n", - "sigma_exa=math.ceil(sigma_exa*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity in ohm-1 m-1 is\",sigma);\n", - "print(\"number of Si atoms per m^3 is\",N1);\n", - "print(\"conductivity for donor type impurity in ohm-1 m-1 is\",sigma_exd);\n", - "print(\"conductivity for acceptor type impurity in ohm-1 m-1 is\",sigma_exa);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity in ohm-1 m-1 is', 0.000432)\n", - "('number of Si atoms per m^3 is', 4.991672597864769e+28)\n", - "('conductivity for donor type impurity in ohm-1 m-1 is', 10.383)\n", - "('conductivity for acceptor type impurity in ohm-1 m-1 is', 3.994)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.16, Page number 258" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T=300; #temperature in K\n", - "KB=1.38*10**-23;\n", - "e=1.6*10**-19;\n", - "mew_e=0.19; #mobility of electrons in m^2/Vs\n", - "\n", - "#Calculation\n", - "Dn=mew_e*KB*T/e;\n", - "Dn=math.ceil(Dn*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"diffusion coefficient of electrons in m^2/s is\",Dn);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('diffusion coefficient of electrons in m^2/s is', 0.004917)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.17, Page number 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "\n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4; #hall coefficient in m^3/coulomb\n", - "I=10**-2; #current in amp\n", - "B=0.5; #magnetic field in wb/m^2\n", - "t=1; #thickness in mm\n", - "\n", - "#Calculation\n", - "t=t*10**-3; #thickness in m\n", - "VH=(RH*I*B)/t;\n", - "VH=VH*10**3; #converting from Volts to mV\n", - "\n", - "#Result\n", - "print(\"Hall voltage in mV is\",VH);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Hall voltage in mV is', 1.83)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.18, Page number 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=-7.35*10**-5; #hall coefficient\n", - "e=1.6*10**-19;\n", - "sigma=200;\n", - "\n", - "#Calculation\n", - "n=(-1/(RH*e));\n", - "mew=sigma/(n*e);\n", - "\n", - "#Result\n", - "print(\"density of charge carriers in m^3 is\",n);\n", - "print(\"mobility of charge carriers in m^2/Vs is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of charge carriers in m^3 is', 8.503401360544217e+22)\n", - "('mobility of charge carriers in m^2/Vs is', 0.0147)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.19, Page number 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "I=50; #current in amp\n", - "B=1.5; #magnetic field in T\n", - "n=8.4*10**28; #free electron concentration in electron/m^3\n", - "t=0.5; #thickness in cm\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "t=t*10**-2; #thickness in m\n", - "VH=(I*B)/(n*e*t);\n", - "VH=VH*10**6; #converting VH from V to micro V\n", - "VH=math.ceil(VH*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"magnitude of Hall voltage in microVolt is\",VH);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnitude of Hall voltage in microVolt is', 1.1161)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.20, Page number 260" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "\n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4;\n", - "e=1.6*10**-19;\n", - "rho_n=8.93*10**-3;\n", - "\n", - "#Calculation\n", - "n=1/(RH*e);\n", - "mew_e=RH/rho_n;\n", - "mew_e=math.ceil(mew_e*10**5)/10**5 #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"n per m^3 is\",n);\n", - "print(\"mew_e in m^2/V is\",mew_e);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('n per m^3 is', 1.7076502732240434e+22)\n", - "('mew_e in m^2/V is', 0.04099)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.21, Page number 260" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mew_e=0.13; #electron mobility in m^2/Vs\n", - "mew_h=0.048; #hole mobility in m^2/Vs\n", - "ni=1.5*10**16;\n", - "e=1.6*10**-19;\n", - "T=300; #temp in K\n", - "ND=10**23; #density per m^3\n", - "\n", - "#Calculation\n", - "sigmai=ni*e*(mew_e+mew_h);\n", - "sigma=ND*mew_e*e;\n", - "p=(ni**2)/ND;\n", - "sigmai=math.ceil(sigmai*10**5)/10**5 #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity of intrinsic Si in s is\",sigmai);\n", - "print(\"conductivity in s is\",sigma);\n", - "print(\"equilibrium hole concentration per m^3 is\",round(p));\n", - "\n", - "#answers for sigmai and sigma given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity of intrinsic Si in s is', 0.00043)\n", - "('conductivity in s is', 2080.0)\n", - "('equilibrium hole concentration per m^3 is', 2250000000.0)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.22, Page number 261" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T=300; #temp in K\n", - "kB=1.38*10**-23;\n", - "mew_e=0.36; #mobility of electrons in m^2/Vs\n", - "e=1.6*10**-19;\n", - "mew_h=0.7; #mobility of electrons in m^2/Vs\n", - "sigma=2.12; #conductivity in ohm-1 m-1\n", - "C=4.83*10**21; #proportional constant\n", - "\n", - "#Calculation\n", - "ni=sigma/(e*(mew_e+mew_h));\n", - "#exp(-Eg/(2*kB*T)) = (C*(T^(3/2)))/ni\n", - "#let X be (C*(T^(3/2)))/ni\n", - "X=(C*(T**(3/2)))/ni;\n", - "#exp(-Eg/(2*kB*T)) = X \n", - "#applyinf log on both sides\n", - "#Eg/(2*kB*T) = log(X)\n", - "Eg=2*kB*T*math.log(X);\n", - "\n", - "#Result\n", - "print(\"forbidden energy gap in eV is\",Eg);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('forbidden energy gap in eV is', 1.2016388762259164e-19)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.23, Page number 261" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=0.4; #energy gap in eV\n", - "Eg=Eg*1.6*10**-19; #Eg in J\n", - "KB=1.38*10**-23;\n", - "T1=0; #temp 1 in C\n", - "T2=50; #temp 2 in C\n", - "T3=100; #temp 3 in C\n", - "\n", - "#Calculation\n", - "T1k=T1+273; #temp 1 in K\n", - "T2k=T2+273; #temp 2 in K\n", - "T3k=T3+273; #temp 3 in K\n", - "#F(E) = 1/(1+(exp((E-Ep)/(KB*T))))\n", - "#but E-Ep = (1/2)*Eg\n", - "#therefore F(E) = 1/(1+(exp(Eg/(2*KB*T))))\n", - "FE1=1/(1+(math.exp(Eg/(2*KB*T1k))));\n", - "FE2=1/(1+(math.exp(Eg/(2*KB*T2k))));\n", - "FE3=1/(1+(math.exp(Eg/(2*KB*T3k))));\n", - "FE1=math.ceil(FE1*10**6)/10**6 #rounding off to 6 decimals\n", - "FE2=math.ceil(FE2*10**6)/10**6 #rounding off to 6 decimals\n", - "FE3=math.ceil(FE3*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"probability of occupation at 0 C in eV is\",FE1);\n", - "print(\"probability of occupation at 50 C in eV is\",FE2);\n", - "print(\"probability of occupation at 100 C in eV is\",FE3);\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of occupation at 0 C in eV is', 0.000205)\n", - "('probability of occupation at 50 C in eV is', 0.000762)\n", - "('probability of occupation at 100 C in eV is', 0.001992)\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.24, Page number 262" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=1.2; #energy in eV\n", - "Eg=Eg*1.6*10**-19; #in J\n", - "KB=1.38*10**-23;\n", - "T1=600; #temp in K\n", - "T2=300; #temp in K\n", - "\n", - "#Calculation\n", - "#sigma is proportional to exp(-Eg/(2*KB*T))\n", - "#let sigma1/sigma2 be R\n", - "R=math.exp((Eg/(2*KB))*((1/T2)-(1/T1)));\n", - "\n", - "#Result\n", - "print(\"the ratio between conductivity is\",round(R));\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the ratio between conductivity is', 108467.0)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.25, Page number 263" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=2.5*10**19; #density of charge carriers in m^3\n", - "r=1/(10**6); #ratio\n", - "e=1.6*10**-19;\n", - "mew_e=0.36; #mobility of electrons in m^2/Vs\n", - "mew_h=0.18; #mobility of holes in m^2/Vs\n", - "N=4.2*10**28; #number of Si atoms per m^3\n", - "\n", - "#Calculation\n", - "Ne=r*N;\n", - "Nh=(ni**2)/Ne;\n", - "sigma=(Ne*e*mew_e)+(Nh*e*mew_h);\n", - "rho=1/sigma;\n", - "rho=math.ceil(rho*10**8)/10**8 #rounding off to 8 decimals\n", - "\n", - "#Result\n", - "print(\"number of impurity atoms per m^3 is\",Ne);\n", - "print(\"the resistivity of doped Ge in ohm m is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('number of impurity atoms per m^3 is', 4.2e+22)\n", - "('the resistivity of doped Ge in ohm m is', 0.00041336)\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.26, Page number 264" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n=5*10**17; #concentration in m^3\n", - "vd=350; #drift velocity in m/s\n", - "E=1000; #electric field in V/m\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "mew=vd/E;\n", - "sigma=n*e*mew;\n", - "sigma=math.ceil(sigma*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"the conductivity of material in ohm m is\",sigma);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the conductivity of material in ohm m is', 0.028)\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.27, Page number 264" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "sigma_e=2.2*10**-4; #conductivity\n", - "mew_e=125*10**-3; #mobility of electrons in m^2/Vs\n", - "e=1.602*10**-19;\n", - "\n", - "#Calculation\n", - "ne=sigma_e/(e*mew_e);\n", - "\n", - "#Result\n", - "print(\"concentration in m^3 is\",ne);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration in m^3 is', 1.0986267166042448e+16)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.28, Page number 265" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4; #hall coefficient in m^3/c\n", - "rho_i=8.93*10**-3; #resistivity in ohm m\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "nh=1/(RH*e);\n", - "mew_h=1/(rho_i*nh*e);\n", - "mew_h=math.ceil(mew_h*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"density of charge carriers in m^3 is\",nh);\n", - "print(\"mobility of charge carriers is %f m^2/Vs\",mew_h);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of charge carriers in m^3 is', 1.7076502732240434e+22)\n", - "('mobility of charge carriers is %f m^2/Vs', 0.041)\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.29, Page number 265" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "I=3; #current in mA\n", - "I=I*10**-3; #current in amp\n", - "e=1.6*10**-19;\n", - "RH=3.66*10**-4; #hall coefficient in m^3/C\n", - "B=1; #flux density in w/m^2\n", - "d=2; #dimension along Y in cm\n", - "z=1; #dimension along z in mm\n", - "\n", - "#Calculation\n", - "d=d*10**-2; #dimension along Y in m\n", - "z=z*10**-3; #dimension along z in m\n", - "A=d*z; #area in m^2\n", - "EH=RH*I*B/A;\n", - "VH=EH*d;\n", - "VH=VH*10**3; #converting from V to mV\n", - "n=1/(RH*e);\n", - "VH=math.ceil(VH*10**2)/10**2 #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"Hall voltage in mV is\",VH);\n", - "print(\"charge carrier concentration in m^3 is\",n);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Hall voltage in mV is', 1.1)\n", - "('charge carrier concentration in m^3 is', 1.7076502732240434e+22)\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter8_2.ipynb b/Engineering_Physics/chapter8_2.ipynb deleted file mode 100755 index 2dc13b1f..00000000 --- a/Engineering_Physics/chapter8_2.ipynb +++ /dev/null @@ -1,253 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:064d55405a5d05f007b28f32cf39a9f99d10f303fc4084e2d14d99aaeb87858c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Physics of Nano Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.1, Page number 320" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=5; #radius in m\n", - "pi=3.14;\n", - "\n", - "#Calculation \n", - "SA=4*pi*r**2; #surface area of sphere in m^2\n", - "V=(4/3)*pi*r**3; #volume of sphere in m^3\n", - "R=SA/V; #ratio\n", - "#surface area to volume ratio can also be given by 3/radius\n", - "\n", - "#Result\n", - "print(\"surface area to volume ratio of sphere in m-1 is\",R);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('surface area to volume ratio of sphere in m-1 is', 0.6)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.2, Page number 321" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=26; #distance in m\n", - "r=d/2; #radius in m\n", - "pi=3.14;\n", - "\n", - "#Calculation\n", - "SA=4*pi*r**2; #surface area of sphere in m^2\n", - "V=(4/3)*pi*r**3; #volume of sphere in m^3\n", - "R=SA/V; #ratio\n", - "R=math.ceil(R*10**3)/10**3; #rounding off to 3 decimals\n", - "#surface area to volume ratio can also be given by 3/radius\n", - "\n", - "#Result\n", - "print(\"surface area to volume ratio of sphere in m-1 is\",R);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('surface area to volume ratio of sphere in m-1 is', 0.231)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.3, Page number 321" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=1; #radius in m\n", - "h=1; #height in m\n", - "pi=3.14\n", - "\n", - "#Calculation\n", - "V=(1/3)*pi*(r**2)*h;\n", - "V=math.ceil(V*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"volume of cone in m^3 is\",V); " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('volume of cone in m^3 is', 1.05)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.4, Page number 321" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=3; # radius in m\n", - "h=4; # height in m\n", - "pi=3.14\n", - "\n", - "#Calculation\n", - "SA=pi*r*math.sqrt((r**2)+(h**2));\n", - "TSA=SA+(pi*r**2);\n", - "\n", - "#Result\n", - "print(\"total surface area of cone in m^2 is\",TSA);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('total surface area of cone in m^2 is', 75.36)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.5, Page number 322" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "V=100; #volume of cone in cubic inches\n", - "r=5; #radius of cone in inches\n", - "pi=3.14;\n", - "\n", - "#Calculation\n", - "r_m=r*0.0254; #radius of cone in m\n", - "#volume V=(1/3)*pi*(r**2)*h\n", - "#therefore h = (3*V)/(pi*r**2)\n", - "h=(3*V)/(pi*r**2); #height in inches\n", - "R=3/r_m;\n", - "h=math.ceil(h*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"height of the cone in inches is\",h);\n", - "print(\"surface area to volume ratio in m-1 is\",R);\n", - "\n", - "#answer for the surface area to volume ratio given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('height of the cone in inches is', 3.822)\n", - "('surface area to volume ratio in m-1 is', 23.62204724409449)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/screenshots/Capture1.png b/Engineering_Physics/screenshots/Capture1.png Binary files differdeleted file mode 100755 index b8e54e85..00000000 --- a/Engineering_Physics/screenshots/Capture1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Capture2.png b/Engineering_Physics/screenshots/Capture2.png Binary files differdeleted file mode 100755 index 74b4cf73..00000000 --- a/Engineering_Physics/screenshots/Capture2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled.png b/Engineering_Physics/screenshots/Untitled.png Binary files differdeleted file mode 100755 index 86bbbd1e..00000000 --- a/Engineering_Physics/screenshots/Untitled.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled1.png b/Engineering_Physics/screenshots/Untitled1.png Binary files differdeleted file mode 100755 index 2584f5af..00000000 --- a/Engineering_Physics/screenshots/Untitled1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled1_1.png b/Engineering_Physics/screenshots/Untitled1_1.png Binary files differdeleted file mode 100755 index 6c937ec4..00000000 --- a/Engineering_Physics/screenshots/Untitled1_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled2.png b/Engineering_Physics/screenshots/Untitled2.png Binary files differdeleted file mode 100755 index 7461d551..00000000 --- a/Engineering_Physics/screenshots/Untitled2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled2_1.png b/Engineering_Physics/screenshots/Untitled2_1.png Binary files differdeleted file mode 100755 index a47a6ec9..00000000 --- a/Engineering_Physics/screenshots/Untitled2_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled3.png b/Engineering_Physics/screenshots/Untitled3.png Binary files differdeleted file mode 100755 index 492ad660..00000000 --- a/Engineering_Physics/screenshots/Untitled3.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled3_1.png b/Engineering_Physics/screenshots/Untitled3_1.png Binary files differdeleted file mode 100755 index cdbc1a6f..00000000 --- a/Engineering_Physics/screenshots/Untitled3_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled_1.png b/Engineering_Physics/screenshots/Untitled_1.png Binary files differdeleted file mode 100755 index cb197fae..00000000 --- a/Engineering_Physics/screenshots/Untitled_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled_2.png b/Engineering_Physics/screenshots/Untitled_2.png Binary files differdeleted file mode 100755 index cb197fae..00000000 --- a/Engineering_Physics/screenshots/Untitled_2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/capture.png b/Engineering_Physics/screenshots/capture.png Binary files differdeleted file mode 100755 index b105e148..00000000 --- a/Engineering_Physics/screenshots/capture.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot1.PNG b/Engineering_Physics/screenshots/screenshot1.PNG Binary files differdeleted file mode 100755 index 419ba452..00000000 --- a/Engineering_Physics/screenshots/screenshot1.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot1.png b/Engineering_Physics/screenshots/screenshot1.png Binary files differdeleted file mode 100755 index 94f80068..00000000 --- a/Engineering_Physics/screenshots/screenshot1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot2.PNG b/Engineering_Physics/screenshots/screenshot2.PNG Binary files differdeleted file mode 100755 index bf169152..00000000 --- a/Engineering_Physics/screenshots/screenshot2.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot2.png b/Engineering_Physics/screenshots/screenshot2.png Binary files differdeleted file mode 100755 index f4cda54b..00000000 --- a/Engineering_Physics/screenshots/screenshot2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot3.PNG b/Engineering_Physics/screenshots/screenshot3.PNG Binary files differdeleted file mode 100755 index 4062fb31..00000000 --- a/Engineering_Physics/screenshots/screenshot3.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot3.png b/Engineering_Physics/screenshots/screenshot3.png Binary files differdeleted file mode 100755 index 4367a009..00000000 --- a/Engineering_Physics/screenshots/screenshot3.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/shot1.PNG b/Engineering_Physics/screenshots/shot1.PNG Binary files differdeleted file mode 100755 index 7e165764..00000000 --- a/Engineering_Physics/screenshots/shot1.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/shot2.PNG b/Engineering_Physics/screenshots/shot2.PNG Binary files differdeleted file mode 100755 index c4b3d4ef..00000000 --- a/Engineering_Physics/screenshots/shot2.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/shot3.PNG b/Engineering_Physics/screenshots/shot3.PNG Binary files differdeleted file mode 100755 index e14ec109..00000000 --- a/Engineering_Physics/screenshots/shot3.PNG +++ /dev/null |