diff options
Diffstat (limited to 'Engineering_Physics/Chapter_8.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter_8.ipynb | 519 |
1 files changed, 0 insertions, 519 deletions
diff --git a/Engineering_Physics/Chapter_8.ipynb b/Engineering_Physics/Chapter_8.ipynb deleted file mode 100755 index be4820c5..00000000 --- a/Engineering_Physics/Chapter_8.ipynb +++ /dev/null @@ -1,519 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a97623c1294ef4fbd99f1423addadcfc2341e13ca402c26d0b2a69dd71e1782a" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Conducting materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.1, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "n=2.533*10**28; #concentration of electrons per m^3\n", - "e=1.6*10**-19;\n", - "tow_r=3.1*10**-14; #relaxation time in sec\n", - "\n", - "#Calculation\n", - "rho=m/(n*(e**2*tow_r));\n", - "\n", - "#Result\n", - "print(\"electrical resistivity in ohm metre is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.2, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "s=3.75*10**3; #slope\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "Eg=2*k*s;\n", - "Eg=Eg/(1.6*10**-19); #converting J to eV\n", - "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of semiconductor in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of semiconductor in eV is', 0.647)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.3, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=989; #temperature in C\n", - "k=1.38*10**-23;\n", - "#let E-EF be E\n", - "E=0.5; #occupied level of electron in eV\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "E=E*1.6*10**-19; #converting eV to J\n", - "#let fermi=dirac distribution function f(E) be f\n", - "f=1/(1+math.exp(E/(k*T)));\n", - "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"probability of occupation of electrons is\",f);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of occupation of electrons is', 0.011)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.4, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "mew_e=0.0035; #mobility of electrons in m^2/Vs\n", - "E=0.5; #electric field strength in V/m\n", - "\n", - "#Calculation\n", - "vd=mew_e*E;\n", - "vd=vd*10**3;\n", - "\n", - "#Result\n", - "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.5, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**23; #avagadro number\n", - "e=1.6*10**-19;\n", - "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n", - "w=63.5; #atomic weight \n", - "d=8.92*10**3; #density in kg/m^3\n", - "\n", - "#Calculation\n", - "d=d*10**3;\n", - "sigma=1/rho;\n", - "sigmaa=sigma/10**7;\n", - "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n", - "n=(d*A)/w;\n", - "mew=sigma/(n*e); #mobility of electrons\n", - "mew=mew*10**3;\n", - "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n", - "print(\"concentration of carriers per m^3\",n);\n", - "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n", - "('concentration of carriers per m^3', 8.459250393700786e+28)\n", - "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.6, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=18.1*10**28; #concentration of electrons per m^3\n", - "h=6.62*10**-34; #planck constant in Js\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "X=h**2/(8*me);\n", - "E_F0=X*(((3*n)/math.pi)**(2/3));\n", - "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n", - "\n", - "#Result\n", - "print(\"Fermi energy in eV is\",E_F0);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Fermi energy in eV is', 3.762396978021977e-19)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.7, Page number 233" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "E_F0=5.5; #fermi energy in eV\n", - "h=6.63*10**-34; #planck constant in Js\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "E_F0=E_F0*1.6*10**-19; #converting eV to J\n", - "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n", - "\n", - "#Result\n", - "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n", - "\n", - "#answer given in the book is wrong\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.8, Page number 233" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Eg=1.07; #energy gap of silicon in eV\n", - "k=1.38*10**-23;\n", - "T=298; #temperature in K\n", - "\n", - "#Calculation\n", - "Eg=Eg*1.6*10**-19; #converting eV to J\n", - "#let the probability of electron f(E) be X\n", - "#X=1/(1+exp((E-Ef)/(k*T)))\n", - "#but E=Ec and Ec-Ef=Eg/2\n", - "X=1/(1+math.exp(Eg/(2*k*T)))\n", - "\n", - "#Result\n", - "print(\"probability of an electron thermally excited is\",X);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of an electron thermally excited is', 9.122602463573379e-10)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.9, Page number 234" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "vf=0.86*10**6; #fermi velocity in m/sec\n", - "\n", - "#Calculation\n", - "Efj=(m*vf**2)/2;\n", - "Ef=Efj/(1.6*10**-19); #converting J to eV\n", - "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n", - "Tf=Efj/k;\n", - "Tf=Tf/10**4;\n", - "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"fermi energy of metal in J is\",Efj);\n", - "print(\"fermi energy of metal in eV is\",Ef);\n", - "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi energy of metal in J is', 3.3651800000000002e-19)\n", - "('fermi energy of metal in eV is', 2.104)\n", - "('fermi temperature in K is', 2.4386, '*10**4')\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.10, Page number 234" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n", - "K=387; #thermal conductivity of Cu in W/mK\n", - "T=27; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "L=K/(sigma*T);\n", - "\n", - "#Result\n", - "print(\"lorentz number in W ohm/K^2 is\",L);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.11, Page number 235" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "e=1.6*10**-19;\n", - "k=1.38*10**-23;\n", - "n=8.49*10**28; #concentration of electrons in Cu per m^3\n", - "tow_r=2.44*10**-14; #relaxation time in sec\n", - "T=20; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "sigma=(n*(e**2)*tow_r)/m;\n", - "sigmaa=sigma/10**7;\n", - "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n", - "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n", - "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n", - "L=K/(sigma*T);\n", - "\n", - "#Result\n", - "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n", - "print(\"thermal conductivity in W/mK is\",K);\n", - "print(\"Lorentz number in W ohm/K^2 is\",L);\n", - "\n", - "#answer for lorentz number given in the book is wrong\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n", - "('thermal conductivity in W/mK is', 417.89)\n", - "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |