summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter_11.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter_11.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter_11.ipynb319
1 files changed, 0 insertions, 319 deletions
diff --git a/Engineering_Physics/Chapter_11.ipynb b/Engineering_Physics/Chapter_11.ipynb
deleted file mode 100755
index d8455a9b..00000000
--- a/Engineering_Physics/Chapter_11.ipynb
+++ /dev/null
@@ -1,319 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:3ff449f1ffe03bd2c9931a55b263d24ea75427a65a897e285709531b99dfed25"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Dielectric materials"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.1, Page number 335"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "A=10*10*10**-6; #area of capacitor in m^2\n",
- "d=2*10**-3; #distance of seperation in m\n",
- "C=10**-9; #capacitance in F\n",
- "\n",
- "#Calculation\n",
- "epsilon_r=(C*d)/(epsilon_0*A);\n",
- "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n",
- "\n",
- "#Result\n",
- "print(\"dielectric constant of material is\",epsilon_r);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('dielectric constant of material is', 2258.87)\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.2, Page number 335"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "epsilon_r=1.0000684; #dielectric constant of He gas\n",
- "N=2.7*10**25; #concentration of dipoles per m^3\n",
- "\n",
- "#Calculation\n",
- "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n",
- "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n",
- "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n",
- "\n",
- "#Result\n",
- "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.3, Page number 336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "epsilon_r=6; #dielectric constant\n",
- "E=100; #electric field intensity in V/m\n",
- "\n",
- "#Calculation\n",
- "P=epsilon_0*(epsilon_r-1)*E;\n",
- "\n",
- "#Result\n",
- "print(\"polarization in C/m^2 is\",P);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('polarization in C/m^2 is', 4.426999999999999e-09)\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.4, Page number 336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "R=0.158; #radius of Ne in nm\n",
- "\n",
- "#Calculation\n",
- "R=R*10**-9; #converting nm to m\n",
- "alpha_e=4*math.pi*epsilon_0*R**3;\n",
- "\n",
- "#Result\n",
- "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.5, Page number 336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "C=0.02; #capacitance in micro farad\n",
- "epsilon_r=6; #dielectric constant\n",
- "t=0.002; #thickness of mica in cm\n",
- "d=0.002; #thickness of metal sheet in cm\n",
- "\n",
- "#Calculation\n",
- "C=C*10**-6; #converting micro farad to farad\n",
- "d=d*10**-2; #converting cm to m\n",
- "A=(C*d)/(epsilon_0*epsilon_r);\n",
- "A=A*10**3;\n",
- "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n",
- "A1=A*10; #converting m**2 to cm**2\n",
- "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n",
- "\n",
- "#Result\n",
- "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n",
- "print(\"area of metal sheet in cm^2 is\",A1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n",
- "('area of metal sheet in cm^2 is', 75.296)\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.6, Page number 336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "E=1000; #electric field in V/m\n",
- "P=4.3*10**-8; #polarization in C/m^2\n",
- "\n",
- "#Calculation\n",
- "epsilon_r=(P/(E*epsilon_0)+1);\n",
- "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n",
- "\n",
- "#Result\n",
- "print(\"dielectric constant is\",epsilon_r);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('dielectric constant is', 5.8566)\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.7, Page number 337"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#Variable declaration\n",
- "epsilon_0=8.854*10**-12;\n",
- "chi=4.94; #relative susceptibility\n",
- "N=10**28; #number of dipoles per m^3\n",
- "\n",
- "#Calculation\n",
- "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n",
- "#epsilon_0*chi*E=N*alpha*E\n",
- "alpha=(epsilon_0*chi)/N;\n",
- "\n",
- "#Result\n",
- "print(\"polarisability of material in F/m^2 is\",alpha);\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "('polarisability of material in F/m^2 is', 4.373876e-39)\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file