diff options
Diffstat (limited to 'Engineering_Physics/Chapter_11.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter_11.ipynb | 319 |
1 files changed, 0 insertions, 319 deletions
diff --git a/Engineering_Physics/Chapter_11.ipynb b/Engineering_Physics/Chapter_11.ipynb deleted file mode 100755 index d8455a9b..00000000 --- a/Engineering_Physics/Chapter_11.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3ff449f1ffe03bd2c9931a55b263d24ea75427a65a897e285709531b99dfed25" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Dielectric materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.1, Page number 335" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "A=10*10*10**-6; #area of capacitor in m^2\n", - "d=2*10**-3; #distance of seperation in m\n", - "C=10**-9; #capacitance in F\n", - "\n", - "#Calculation\n", - "epsilon_r=(C*d)/(epsilon_0*A);\n", - "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"dielectric constant of material is\",epsilon_r);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('dielectric constant of material is', 2258.87)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.2, Page number 335" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "epsilon_r=1.0000684; #dielectric constant of He gas\n", - "N=2.7*10**25; #concentration of dipoles per m^3\n", - "\n", - "#Calculation\n", - "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n", - "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n", - "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n", - "\n", - "#Result\n", - "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.3, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "epsilon_r=6; #dielectric constant\n", - "E=100; #electric field intensity in V/m\n", - "\n", - "#Calculation\n", - "P=epsilon_0*(epsilon_r-1)*E;\n", - "\n", - "#Result\n", - "print(\"polarization in C/m^2 is\",P);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('polarization in C/m^2 is', 4.426999999999999e-09)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.4, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "R=0.158; #radius of Ne in nm\n", - "\n", - "#Calculation\n", - "R=R*10**-9; #converting nm to m\n", - "alpha_e=4*math.pi*epsilon_0*R**3;\n", - "\n", - "#Result\n", - "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.5, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "C=0.02; #capacitance in micro farad\n", - "epsilon_r=6; #dielectric constant\n", - "t=0.002; #thickness of mica in cm\n", - "d=0.002; #thickness of metal sheet in cm\n", - "\n", - "#Calculation\n", - "C=C*10**-6; #converting micro farad to farad\n", - "d=d*10**-2; #converting cm to m\n", - "A=(C*d)/(epsilon_0*epsilon_r);\n", - "A=A*10**3;\n", - "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n", - "A1=A*10; #converting m**2 to cm**2\n", - "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n", - "print(\"area of metal sheet in cm^2 is\",A1);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n", - "('area of metal sheet in cm^2 is', 75.296)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.6, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "E=1000; #electric field in V/m\n", - "P=4.3*10**-8; #polarization in C/m^2\n", - "\n", - "#Calculation\n", - "epsilon_r=(P/(E*epsilon_0)+1);\n", - "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"dielectric constant is\",epsilon_r);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('dielectric constant is', 5.8566)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.7, Page number 337" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "chi=4.94; #relative susceptibility\n", - "N=10**28; #number of dipoles per m^3\n", - "\n", - "#Calculation\n", - "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n", - "#epsilon_0*chi*E=N*alpha*E\n", - "alpha=(epsilon_0*chi)/N;\n", - "\n", - "#Result\n", - "print(\"polarisability of material in F/m^2 is\",alpha);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('polarisability of material in F/m^2 is', 4.373876e-39)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |