summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter9_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter9_1.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter9_1.ipynb311
1 files changed, 8 insertions, 303 deletions
diff --git a/Engineering_Physics/Chapter9_1.ipynb b/Engineering_Physics/Chapter9_1.ipynb
index bea06702..ff53dd34 100755
--- a/Engineering_Physics/Chapter9_1.ipynb
+++ b/Engineering_Physics/Chapter9_1.ipynb
@@ -1,7 +1,6 @@
{
"metadata": {
- "name": "",
- "signature": "sha256:1c769d85a6ecede1e3083e9252f10446216c71537365688b1cba3c5693bdfee6"
+ "name": "Chapter9"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -12,45 +11,25 @@
"cell_type": "heading",
"level": 1,
"metadata": {},
- "source": [
- "9: Quantum Mechanics"
- ]
+ "source": "9: Superconducting Materials"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 9.1, Page number 202"
- ]
+ "source": "Example number 9.1, Page number 255"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V = 100; #Accelerating potential for electron(volt)\n",
- "\n",
- "#Calculation\n",
- "lamda = math.sqrt(150/V)*10**-10; #de-Broglie wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"The De-Broglie wavelength of electron is\",lamda, \"m\""
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nH0 = 6.5*10**4; #magnetic field intensity(A/m)\nT = 4.2; #temperature(K)\nTc = 7.18; #critical temperature(K)\n\n#Calculation\nHc = H0*(1-((T**2)/(Tc**2))); #critical magnetic field intensity(A/m)\nHc = Hc*10**-4;\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"critical magnetic field intensity is\",Hc,\"*10**4 A/m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The De-Broglie wavelength of electron is 1.22474487139e-10 m\n"
- ]
+ "text": "critical magnetic field intensity is 4.276 *10**4 A/m\n"
}
],
"prompt_number": 1
@@ -59,296 +38,22 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 9.2, Page number 203"
- ]
+ "source": "Example number 9.2, Page number 255"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "m = 9.11*10**-31; #Mass of the electron(kg)\n",
- "Ek = 10; #Kinetic energy of electron(eV)\n",
- "\n",
- "#Calculation\n",
- "p = math.sqrt(2*m*Ek*e); #Momentum of the electron(kg-m/s)\n",
- "lamda = h/p ; #de-Broglie wavelength of electron from De-Broglie relation(m)\n",
- "lamda = lamda*10**9; #de-Broglie wavelength of electron from De-Broglie relation(nm)\n",
- "lamda = math.ceil(lamda*10**2)/10**2; #rounding off the value of lamda to 2 decimals\n",
- "\n",
- "#Result\n",
- "print \"The de-Broglie wavelength of electron is\",lamda, \"nm\""
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nTc1 = 4.185; #critical temperature for M1(K)\nTc2 = 4.133; #critical temperature for M2(K)\nM1 = 199.5; #isotopic mass\nalpha = 0.5;\n\n#Calculation\nA = math.pow(M1,alpha)*Tc1/Tc2;\nM2 = math.pow(A,1/alpha); #isotopic mass\nM2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"isotopic mass is\",M2\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The de-Broglie wavelength of electron is 0.39 nm\n"
- ]
+ "text": "isotopic mass is 204.552\nanswer given in the book is wrong\n"
}
],
"prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.3, Page number 203. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.4, Page number 203"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "m = 9.11*10**-31; #Mass of the electron(kg)\n",
- "v = 1.1*10**6; #Speed of the electron(m/s)\n",
- "pr = 0.1; #precision in percent\n",
- "\n",
- "#Calculation\n",
- "p = m*v; #Momentum of the electron(kg-m/s)\n",
- "dp = pr/100*p; #Uncertainty in momentum(kg-m/s)\n",
- "h_bar = h/(2*math.pi); #Reduced Planck's constant(Js)\n",
- "dx = h_bar/(2*dp); #Uncertainty in position(m)\n",
- "\n",
- "#Result\n",
- "print \"The uncertainty in position of electron is\",dx, \"m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The uncertainty in position of electron is 5.26175358211e-08 m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.5, Page number 203"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "dt = 10**-8; #Uncertainty in time(s)\n",
- "\n",
- "#Calculation\n",
- "h_bar = h/(2*math.pi); #Reduced Planck's constant(Js)\n",
- "dE = h_bar/(2*dt*e); #Uncertainty in energy of the excited state(m)\n",
- "\n",
- "#Result\n",
- "print \"The uncertainty in energy of the excited state is\",dE, \"eV\"\n",
- "\n",
- "#answer given in the book is wrong"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The uncertainty in energy of the excited state is 3.2955020404e-08 eV\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.6, Page number 204"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c = 3*10**8; #Speed of light(m/s)\n",
- "dt = 10**-8; #Average lifetime(s)\n",
- "lamda = 400; #Wavelength of spectral line(nm)\n",
- "\n",
- "#Calculation\n",
- "lamda = lamda*10**-9; #Wavelength of spectral line(m)\n",
- "#From Heisenberg uncertainty principle,\n",
- "#dE = h_bar/(2*dt) and also dE = h*c/lambda^2*d_lambda, which give\n",
- "#h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for d_lambda\n",
- "d_lamda = (lamda**2)/(4*math.pi*c*dt); #Width of spectral line(m)\n",
- "\n",
- "#Result\n",
- "print \"The width of spectral line is\",d_lamda, \"m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The width of spectral line is 4.24413181578e-15 m\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.7, Page number 204. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.8, Page number 204. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.9, Page number 205. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.10, Page number 205. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.11, Page number 205. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.12, Page number 206. theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.13, Page number 206. theoritical proof "
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.14, Page number 207"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "from scipy.integrate import quad\n",
- "\n",
- "#Variable declaration\n",
- "a = 2*10**-10; # Width of 1D box(m)\n",
- "x1=0; # Position of first extreme of the box(m)\n",
- "x2=1*10**-10; # Position of second extreme of the box(m)\n",
- "\n",
- "#Calculation\n",
- "def intg(x):\n",
- " return ((2/a)*(math.sin(2*math.pi*x/a))**2)\n",
- "S=quad(intg,x1,x2)[0]\n",
- "\n",
- "#Result\n",
- "print \"The probability of finding the electron between x = 0 and x = 10**-10 is\",S"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The probability of finding the electron between x = 0 and x = 10**-10 is 0.5\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
}
],
"metadata": {}