summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter5.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter5.ipynb469
1 files changed, 0 insertions, 469 deletions
diff --git a/Engineering_Physics/Chapter5.ipynb b/Engineering_Physics/Chapter5.ipynb
deleted file mode 100755
index d125b365..00000000
--- a/Engineering_Physics/Chapter5.ipynb
+++ /dev/null
@@ -1,469 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f4c05fd79d4d56cbd4b08f847aeb0bba767b388c9bbe1bea8066d97e3ac78212"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "5: Diffraction"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.1, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1;\n",
- "lamda=600*10**-9; #wavelength(m)\n",
- "theta=35; #angle at which first minimum falls(degrees)\n",
- "\n",
- "#Calculation \n",
- "theta=theta*math.pi/180; #angle at which first minimum falls(radian)\n",
- "d=((n*lamda)/math.sin(theta))*10**6; #width of the slit(micro m)\n",
- "\n",
- "#Result\n",
- "print \"The width of the slit is\",round(d,2),\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The width of the slit is 1.05 micro m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.2, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "D=0.95; #distance of the screen from the slit(m)\n",
- "lamda=589*10**-9; #wavelength(m)\n",
- "d=0.5*10**-3; #width of the slit(m)\n",
- "\n",
- "#Calculation \n",
- "y=((2*D*lamda)/d)*10**3; #width of a central band(mm)\n",
- "\n",
- "#Result\n",
- "print \"The width of the central band is\",round(y,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The width of the central band is 2.24 mm\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.3, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "D=1.1; #distance of the screen from the slit(m)\n",
- "lamda=589*10**-9; #wavelength(m)\n",
- "y=4.5*10**-3; #distance of first minimum on either side of central maximum(m)\n",
- "\n",
- "#Calculation \n",
- "d=((D*lamda)/y)*10**3 #slit width(mm)\n",
- "\n",
- "#Result\n",
- "print \"The slit width is\",round(d,3),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The slit width is 0.144 mm\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.4, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=4;\n",
- "lamda=589.6*10**-9; #wavelength(m)\n",
- "D=0.95; #distance of the screen from the slit(m)\n",
- "w=0.28*10**-3; #width of the slit(m)\n",
- "\n",
- "#Calculation \n",
- "d=((n*lamda*D)/w)*10**3; #distance between centres(mm)\n",
- "\n",
- "#Result\n",
- "print \"The distance between centres of central maximum and the fourth dark fringe is\",int(d),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The distance between centres of central maximum and the fourth dark fringe is 8 mm\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.5, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "s=5*math.pi/2; #secondary maximum\n",
- "\n",
- "#Calculation \n",
- "I=(math.sin(s)/s)**2; #I2/I0\n",
- "\n",
- "#Result\n",
- "print \"Ratio of intensities of central & second secondary maximum is\",round(I,3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ratio of intensities of central & second secondary maximum is 0.016\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.6, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=450*10**-9; #wavelength(m)\n",
- "n=2;\n",
- "dlambda=1*10**-9; #difference in wavelength(m)\n",
- "\n",
- "#Calculation \n",
- "N=lamda/(n*dlambda); #minimum number of lines per cm \n",
- "\n",
- "#Result\n",
- "print \"The minimum number of lines per cm is\",N/2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The minimum number of lines per cm is 112.5\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.7, Page number 86"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1;\n",
- "lamda=650*10**-9; #wavelength(m)\n",
- "d=2*10**-6; #width of the slit(m)\n",
- "\n",
- "#Calculation \n",
- "theta=math.asin((n*lamda)/d); #angle at which first minimum will be observed(radian)\n",
- "theta=theta*180/math.pi; #angle at which first minimum will be observed(degrees)\n",
- "\n",
- "#Result\n",
- "print \"The angle at which first minimum will be observed is\",round(theta,3),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The angle at which first minimum will be observed is 18.966 degrees\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.8, Page number 87"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=600*10**-9; #wavelength(m)\n",
- "y=2*10**-3; #width of the central band(m)\n",
- "D=1; #distance of the screen from the slit(m)\n",
- "\n",
- "#Calculation \n",
- "d=((2*D*lamda)/y)*10**3; #slit width(mm)\n",
- "\n",
- "#Result\n",
- "print \"The slit width is\",d,\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The slit width is 0.6 mm\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.9, Page number 87"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "y=6*10**-3; #first minimum is observed(m)\n",
- "d=90*10**-6; #slit width(m)\n",
- "D=0.98; #distance of the screen from the slit(m)\n",
- "\n",
- "#Calculation \n",
- "lamda=((y*d)/D)*10**9; #wavelength(nm)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light used is\",int(lamda),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light used is 551 nm\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.10, Page number 87"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1;\n",
- "lambda1=450*10**-9; #wavelength of first spectral line(m)\n",
- "d=1/5000; #number of lines\n",
- "\n",
- "#Calculation \n",
- "theta1=math.asin((n*lambda1)/d); \n",
- "theta1=round(theta1*10**2*180/math.pi);\n",
- "theta2=theta1+2.97;\n",
- "theta2=theta2*math.pi/180;\n",
- "lambda2=d*math.sin(theta2)/n; #wavelength of second spectral line(nm)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength of second spectral line is\",int(lambda2*10**7),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of second spectral line is 550 nm\n"
- ]
- }
- ],
- "prompt_number": 41
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 5.11, Page number 87"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=3;\n",
- "lamda=700*10**-9; #wavelength(m)\n",
- "theta=90; #angle(degrees)\n",
- "\n",
- "#Calculation \n",
- "theta=theta*math.pi/180; #angle(radian)\n",
- "d=n*lamda/math.sin(theta); #grating element(m)\n",
- "\n",
- "#Result\n",
- "print \"The minimum grating element required to observe the entire third order spectrum is\",d*10**6,\"*10**-6 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The minimum grating element required to observe the entire third order spectrum is 2.1 *10**-6 m\n"
- ]
- }
- ],
- "prompt_number": 45
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file