diff options
Diffstat (limited to 'Engineering_Physics/Chapter4_1.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter4_1.ipynb | 553 |
1 files changed, 0 insertions, 553 deletions
diff --git a/Engineering_Physics/Chapter4_1.ipynb b/Engineering_Physics/Chapter4_1.ipynb deleted file mode 100755 index f4145c55..00000000 --- a/Engineering_Physics/Chapter4_1.ipynb +++ /dev/null @@ -1,553 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:e9b50f0b4ca0520935774156fedb1fdaaf2b2fd5241b8184a650d42b25d657cd"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "4: Interference"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.1, Page number 69"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "i=40; #angle of incidence(degrees)\n",
- "mew=1.2; #refractive index\n",
- "t=0.23; #thickness of the film(micro m)\n",
- "\n",
- "#Calculation\n",
- "i=i*math.pi/180; #angle of incidence(radian)\n",
- "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
- "lambda1=(2*mew*t*math.cos(r))*10**3; #wavelength absent(nm) \n",
- "lambda2=lambda1/2;\n",
- "\n",
- "#Result\n",
- "print \"The wavelength absent is\",round(lambda1,1),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength absent is 466.1 nm\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.2, Page number 69"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lambda1=400*10**-9; #wavelength 1(m)\n",
- "lambda2=600*10**-9; #wavelength 2(m)\n",
- "#2*t=n*lambda\n",
- "n=150; \n",
- "\n",
- "#Calculation \n",
- "t=((n*lambda2)/2)*10**6; #thickness of the air film(micro meter)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the air film is\",t,\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The thickness of the air film is 45.0 micro m\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.3, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=600*10**-9; #wavelength(m)\n",
- "mew=2;\n",
- "theta=0.025; #wedge-angle(degrees)\n",
- "\n",
- "#Calculation \n",
- "theta=theta*math.pi/180; #wedge-angle(radian)\n",
- "x=(lamda/(2*mew*math.sin(theta)))*10**2; #bandwidth(cm)\n",
- "\n",
- "#Result\n",
- "print \"The bandwidth is\",round(x,3),\"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The bandwidth is 0.034 cm\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.4, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "xair=0.15; #bandwidth of air(cm)\n",
- "xliq=0.115; #bandwidth of liquid(cm)\n",
- "mewair=1; #refractive index of air\n",
- "\n",
- "#Calculation \n",
- "mewliq=(xair*mewair)/xliq; #refractive index of liquid\n",
- "\n",
- "#Result\n",
- "print \"The refractive index of liquid is\",round(mewliq,1)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refractive index of liquid is 1.3\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.5, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=9;\n",
- "lamda=589*10**-9; #wavelength of light used(m)\n",
- "R=0.95; #radius of curvature of lens(m)\n",
- "mew=1;\n",
- "\n",
- "#Calculation \n",
- "D=(math.sqrt((4*n*lamda*R)/mew))*10**2; #diameter of the ninth dark ring(m)\n",
- "\n",
- "#Result\n",
- "print \"The diameter of the ninth dark ring is\",round(D,2),\"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The diameter of the ninth dark ring is 0.45 cm\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.6, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=0.055; #distance in fringe shift(mm)\n",
- "n=200; #number of fringes\n",
- "\n",
- "#Calculation \n",
- "lamda=((2*x)/n)*10**6; #wavelength(nm)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light used is\",lamda,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light used is 550.0 nm\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.7, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=50; #number of fringes\n",
- "lamda=500*10**-9; #wavelength of light used(m)\n",
- "mew=1.5; #refractive index of the plate\n",
- "\n",
- "#Calculation \n",
- "t=((n*lamda)/(2*(mew-1)))*10**6; #thickness of the plate(micro meter)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the plate is\",t,\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The thickness of the plate is 25.0 micro m\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.8, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=550*10**-9; #wavelength(m)\n",
- "mew=1.38; #refractive index\n",
- "\n",
- "#Calculation \n",
- "t=(lamda/(4*mew))*10**9; #thickness(nm)\n",
- "\n",
- "#Result\n",
- "print \"The minimum thickness of the plate for normal incidence of light is\",round(t,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The minimum thickness of the plate for normal incidence of light is 99.638 nm\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.9, Page number 70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "i=35; #angle of incidence(degrees)\n",
- "mew=1.4; #refractive index\n",
- "n=50; \n",
- "lamda=459*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation \n",
- "i=i*math.pi/180; #angle of incidence(radian)\n",
- "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
- "#2*mew*cos(r)=n*lambda\n",
- "#n(459)=(n+1)450\n",
- "t=(n*lamda/(2*mew*math.cos(r)))*10**6; #thickness of the film(micro meter)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the film is\",round(t,3),\"micro m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The thickness of the film is 8.985 micro m\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.10, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=500*10**-9; #wavelength(m)\n",
- "x=0.07; #observed band width(cm)\n",
- "mew=1; #refractive index\n",
- "\n",
- "#Calculation \n",
- "theta=(math.asin(lamda/(2*mew*x)))*10**2; #wedge angle(radian)\n",
- "theta=theta*180/math.pi; #wedge angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"The wedge angle is\",round(theta,2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wedge angle is 0.02 degrees\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.11, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "dair=0.42; #diameter of certain rings(cm)\n",
- "dliq=0.38; #diameter of rings when liquid is introduced(cm)\n",
- "\n",
- "#Calculation \n",
- "mew=dair**2/dliq**2; #refractive index of liquid\n",
- "\n",
- "#Result\n",
- "print \"The refravtive index of liquid is\",round(mew,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refravtive index of liquid is 1.22\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.12, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=8; #eigth ring\n",
- "n=3; #third ring\n",
- "dm=0.4; #diameter of the eigth ring(cm)\n",
- "dn=0.2; #diameter of the third ring(cm)\n",
- "R=101; #Radius of curvature(cm)\n",
- "\n",
- "#Calculation \n",
- "lamda=(((dm**2)-(dn**2))/(4*R*(m-n))); #wavelength of light(cm) \n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light used is\",round(lamda*10**5,4),\"*10**-5 cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light used is 5.9406 *10**-5 cm\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.13, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mew=1.38; #refractive index of magnesium floride\n",
- "t=175; #thickness of coating of magnesium fluoride(nm)\n",
- "\n",
- "#Calculation \n",
- "lamda=4*t*mew; #wavelength(nm)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength which has high transmission is\",lamda,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength which has high transmission is 966.0 nm\n"
- ]
- }
- ],
- "prompt_number": 41
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |