summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter3_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter3_1.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter3_1.ipynb83
1 files changed, 0 insertions, 83 deletions
diff --git a/Engineering_Physics/Chapter3_1.ipynb b/Engineering_Physics/Chapter3_1.ipynb
deleted file mode 100755
index 9e2d3109..00000000
--- a/Engineering_Physics/Chapter3_1.ipynb
+++ /dev/null
@@ -1,83 +0,0 @@
-{
- "metadata": {
- "name": "Chapter3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": "3: Fibre Optics and Applications"
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": "Example number 3.1, Page number 84"
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"",
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n"
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": "Example number 3.2, Page number 85"
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"",
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n"
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": "Example number 3.3, Page number 85"
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": "#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\"\nprint \"alpha = alpha_m rays have\",int(n),\"m-1 internal reflections\"\nprint \"answer given in the book is wrong\"",
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": "alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\nalpha = alpha_m rays have 2041 m-1 internal reflections\nanswer given in the book is wrong\n"
- }
- ],
- "prompt_number": 7
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file