diff options
Diffstat (limited to 'Engineering_Physics/Chapter15_1.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter15_1.ipynb | 303 |
1 files changed, 0 insertions, 303 deletions
diff --git a/Engineering_Physics/Chapter15_1.ipynb b/Engineering_Physics/Chapter15_1.ipynb deleted file mode 100755 index feff19f4..00000000 --- a/Engineering_Physics/Chapter15_1.ipynb +++ /dev/null @@ -1,303 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:16c7c597c3247782caaceb2ade68420e223aff8e960ccd80320d3e5521140cc3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "15: Thermal Properties " - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.1, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "f_D = 64*10**11; #Debye frequency for Al(Hz)\n", - "\n", - "#Calculation\n", - "theta_D = h*f_D/k; #Debye temperature(K)\n", - "theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n", - "\n", - "#Result\n", - "print \"The Debye temperature of aluminium is\",theta_D, \"K\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Debye temperature of aluminium is 307.3 K\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.2, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 6.02*10**26; #Avogadro's number(per kmol)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "f_D = 40.5*10**12; #Debye frequency for Al(Hz)\n", - "T = 30; #Temperature of carbon(Ks)\n", - "\n", - "#Calculation\n", - "theta_D = h*f_D/k; #Debye temperature(K)\n", - "C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\n", - "C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n", - "\n", - "#Result\n", - "print \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n", - "\n", - "#answer given in the book is wrong in the 2nd decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The lattice specific heat of carbon is 7.132 J/k-mol/K\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.3, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "theta_E = 1990; #Einstein temperature of Cu(K)\n", - "\n", - "#Calculation\n", - "f_E = k*theta_E/h; #Einstein frequency for Cu(K)\n", - "\n", - "#Result\n", - "print \"The Einstein frequency for Cu is\",f_E, \"Hz\"\n", - "print \"The frequency falls in the near infrared region\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Einstein frequency for Cu is 4.14458194989e+13 Hz\n", - "The frequency falls in the near infrared region\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.4, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "N = 6.02*10**23; #Avogadro's number(per mol)\n", - "T = 0.05; #Temperature of Cu(K)\n", - "E_F = 7; #Fermi energy of Cu(eV)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "theta_D = 348; #Debye temperature of Cu(K)\n", - "\n", - "#Calculation\n", - "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\n", - "C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n", - "\n", - "#Result\n", - "print \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\n", - "print \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n", - "\n", - "#answer for lattice heat capacity given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\n", - "The lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.5, Page number 324" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "T = 1; #For simplicity assume temperature to be unity(K)\n", - "R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\n", - "theta_E = T; #Einstein temperature(K)\n", - "\n", - "#Calculation\n", - "C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\n", - "C_V = C_V/3;\n", - "C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n", - "\n", - "#Result\n", - "print \"The Einstein lattice specific heat is\",C_V, \"X 3R\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Einstein lattice specific heat is 0.921 X 3R\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.6, Page number 324" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "v = 2; #Valency of Zn atom\n", - "N = v*6.02*10**23; #Avogadro's number(per mol)\n", - "T = 300; #Temperature of Zn(K)\n", - "E_F = 9.38; #Fermi energy of Zn(eV)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "\n", - "#Calculation\n", - "N = v*6.02*10**23; #Avogadro's number(per mol)\n", - "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\n", - "C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n", - "\n", - "#Result\n", - "print \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |