summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter12_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter12_1.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter12_1.ipynb234
1 files changed, 0 insertions, 234 deletions
diff --git a/Engineering_Physics/Chapter12_1.ipynb b/Engineering_Physics/Chapter12_1.ipynb
deleted file mode 100755
index c394fc3a..00000000
--- a/Engineering_Physics/Chapter12_1.ipynb
+++ /dev/null
@@ -1,234 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:435dc2503f7ab5f5c4bb167df36c6ef12f8211207bc52e60997787c4d2bd8d5c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "12: Holography and Fibre Optics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.1, Page number 271"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n1 = 1.43; #Refractive index of fibre core\n",
- "n2 = 1.4; #Refractive index of fibre cladding\n",
- "\n",
- "#Calculation\n",
- "#As sin (alpha_c) = n2/n1, solving for alpha_c\n",
- "alpha_c = math.asin(n2/n1); #Critical angle for optical fibre(rad)\n",
- "alpha_c = alpha_c*57.2957795; #Critical angle for optical fibre(degrees)\n",
- "alpha_c = math.ceil(alpha_c*10**3)/10**3; #rounding off the value of alpha_c to 3 decimals\n",
- "#AS cos(theta_c) = n2/n1, solving for theta_c\n",
- "theta_c = math.acos(n2/n1); #Critical propagation angle for optical fibre(rad)\n",
- "theta_c = theta_c*57.2957795; #Critical propagation angle for optical fibre(degrees)\n",
- "theta_c = math.ceil(theta_c*10**2)/10**2; #rounding off the value of theta_c to 2 decimals\n",
- "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n",
- "NA = math.ceil(NA*10**3)/10**3; #rounding off the value of NA to 3 decimals\n",
- "\n",
- "#Result\n",
- "print \"The critical angle for optical fibre is\",alpha_c, \"degrees\"\n",
- "print \"The critical propagation angle for optical fibre is\",theta_c, \"degrees\"\n",
- "print \"Numerical aperture for optical fibre is\",NA\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The critical angle for optical fibre is 78.244 degrees\n",
- "The critical propagation angle for optical fibre is 11.76 degrees\n",
- "Numerical aperture for optical fibre is 0.292\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.2, Page number 271"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n1 = 1.45; #Refractive index of fibre core\n",
- "n2 = 1.4; #Refractive index of fibre cladding\n",
- "\n",
- "#Calculation\n",
- "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n",
- "NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n",
- "#As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\n",
- "theta_a = math.asin(math.sqrt(n1**2 - n2**2)); #Half of acceptance angle of optical fibre(rad)\n",
- "theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n",
- "theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n",
- "theta_accp = math.ceil(theta_accp*10**2)/10**2; #rounding off the value of theta_accp to 2 decimals\n",
- "Delta = (n1 - n2)/n1; #Relative refractive index difference\n",
- "Delta = math.ceil(Delta*10**4)/10**4; #rounding off the value of Delta to 4 decimals\n",
- "\n",
- "#Result\n",
- "print \"Numerical aperture for optical fibre is\", NA\n",
- "print \"The acceptance angle of optical fibre is\",theta_accp, \"degrees\"\n",
- "print \"Relative refractive index difference is\", Delta\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture for optical fibre is 0.3775\n",
- "The acceptance angle of optical fibre is 44.36 degrees\n",
- "Relative refractive index difference is 0.0345\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.3, Page number 271"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n1 = 1.55; #Refractive index of fibre core\n",
- "n2 = 1.53; #Refractive index of fibre cladding\n",
- "n0 = 1.3; #Refractive index of medium\n",
- "\n",
- "#Calculation\n",
- "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n",
- "NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n",
- "#n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\n",
- "theta_a = math.asin(math.sqrt(n1**2 - n2**2)/n0); #Half of acceptance angle of optical fibre(rad)\n",
- "theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n",
- "theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n",
- "\n",
- "#Result\n",
- "print \"Numerical aperture for step index fibre is\",NA\n",
- "print \"The acceptance angle of step index fibre is\",int(theta_accp), \"degrees\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture for step index fibre is 0.2482\n",
- "The acceptance angle of step index fibre is 22 degrees\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.4, Page number 271 Theoritical proof"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.5, Page number 272"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "alpha = 2; #Power loss through optical fibre(dB/km)\n",
- "P_in = 500; #Poer input of optical fibre(micro-watt)\n",
- "z = 10; #Length of the optical fibre(km)\n",
- "\n",
- "#Calculation\n",
- "#As alpha = 10/z*log10(P_in/P_out), solving for P_out\n",
- "P_out = P_in/10**(alpha*z/10); #Output power in fibre optic communication(micro-Watt)\n",
- "\n",
- "#Result\n",
- "print \"The output power in fibre optic communication is\",P_out, \"micro-Watt\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The output power in fibre optic communication is 5.0 micro-Watt\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file