diff options
Diffstat (limited to 'Engineering_Physics/Chapter11_1.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter11_1.ipynb | 322 |
1 files changed, 0 insertions, 322 deletions
diff --git a/Engineering_Physics/Chapter11_1.ipynb b/Engineering_Physics/Chapter11_1.ipynb deleted file mode 100755 index d9dc8a6d..00000000 --- a/Engineering_Physics/Chapter11_1.ipynb +++ /dev/null @@ -1,322 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9d08f8379ee15c99ce5ad85c8c37d7ad2a3a702f52e1db068a113b3963c85435" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "11: Lasers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.1, Page number 249" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "T = 300; #Temperature at absolute scale(K)\n", - "lamda1 = 5500; #Wavelength of visible light(A)\n", - "lamda2 = 10**-2; #Wavelength of microwave(m)\n", - "\n", - "#Calculation\n", - "lamda1 = lamda1*10**-10; #Wavelength of visible light(m)\n", - "rate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", - "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", - "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n", - "\n", - "#Result\n", - "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n", - "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n", - "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.2, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "lamda = 690; #Wavelength of laser light(nm)\n", - "E_lower = 30.5; #Energy of lower state(eV)\n", - "\n", - "#Calculation\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "E = h*c/lamda; #Energy of the laser light(J)\n", - "E = E/e; #Energy of the laser light(eV)\n", - "E_ex = E_lower + E; #Energy of excited state of laser system(eV)\n", - "E_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n", - "\n", - "#Result\n", - "print \"The energy of excited state of laser system is\",E_ex, \"eV\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy of excited state of laser system is 32.31 eV\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.3, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "\n", - "#Calculation\n", - "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n", - "#f/T = log(2)*k/h = A\n", - "A = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\n", - "A = A/10**10;\n", - "A = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n", - "\n", - "#Result\n", - "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.4, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda = 500; #Wavelength of laser light(nm)\n", - "f = 15; #Focal length of the lens(cm)\n", - "d = 2; #Diameter of the aperture of source(cm)\n", - "P = 5; #Power of the laser(mW)\n", - "\n", - "#Calculation\n", - "P = P*10**-3; #Power of the laser(W)\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "d = d*10**-2; #Diameter of the aperture of source(m)\n", - "f = f*10**-2; #Focal length of the lens(m)\n", - "a = d/2; #Radius of the aperture of source(m)\n", - "A = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\n", - "I = P/A; #Intensity at the focus(W/m**2)\n", - "I = I/10**7;\n", - "I = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n", - "\n", - "#Result\n", - "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n", - "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n", - "The intensity at the focus is 2.8295 *10**7 W/m**2\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.5, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "lamda = 1064; #Wavelength of laser light(nm)\n", - "P = 0.8; #Average power output per laser pulse(W)\n", - "dt = 25; #Pulse width of laser(ms)\n", - "\n", - "#Calculation\n", - "dt = dt*10**-3; #Pulse width of laser(s)\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "E = P*dt; #Energy released per pulse(J)\n", - "E1 = E*10**3;\n", - "N = E/(h*c/lamda); #Number of photons in a pulse\n", - "\n", - "#Result\n", - "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n", - "print \"The number of photons in a pulse is\", N\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy released per pulse is 20.0 *10**-3 J\n", - "The number of photons in a pulse is 1.07053023443e+17\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.6, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda = 693; #Wavelength of laser beam(nm)\n", - "D = 3; #Diameter of laser beam(mm)\n", - "d = 300; #Height of a satellite above the surface of earth(km)\n", - "\n", - "#Calculation\n", - "D = D*10**-3; #Diameter of laser beam(m)\n", - "lamda = lamda*10**-9; #Wavelength of laser beam(m)\n", - "d = d*10**3; #Height of a satellite above the surface of earth(m)\n", - "d_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\n", - "dtheta = d_theta*10**4;\n", - "dtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\n", - "a = d_theta*d; #Diameter of the beam on the satellite(m)\n", - "a = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n", - "\n", - "#Result\n", - "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n", - "print \"The diameter of the beam on the satellite is\",a, \"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n", - "The diameter of the beam on the satellite is 84.6 m\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |