summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter11_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter11_1.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter11_1.ipynb322
1 files changed, 0 insertions, 322 deletions
diff --git a/Engineering_Physics/Chapter11_1.ipynb b/Engineering_Physics/Chapter11_1.ipynb
deleted file mode 100755
index d9dc8a6d..00000000
--- a/Engineering_Physics/Chapter11_1.ipynb
+++ /dev/null
@@ -1,322 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:9d08f8379ee15c99ce5ad85c8c37d7ad2a3a702f52e1db068a113b3963c85435"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "11: Lasers"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.1, Page number 249"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "c = 3*10**8; #Speed of light in free space(m/s)\n",
- "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
- "T = 300; #Temperature at absolute scale(K)\n",
- "lamda1 = 5500; #Wavelength of visible light(A)\n",
- "lamda2 = 10**-2; #Wavelength of microwave(m)\n",
- "\n",
- "#Calculation\n",
- "lamda1 = lamda1*10**-10; #Wavelength of visible light(m)\n",
- "rate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n",
- "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n",
- "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n",
- "\n",
- "#Result\n",
- "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n",
- "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n",
- "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.2, Page number 250"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "c = 3*10**8; #Speed of light in free space(m/s)\n",
- "lamda = 690; #Wavelength of laser light(nm)\n",
- "E_lower = 30.5; #Energy of lower state(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda = lamda*10**-9; #Wavelength of laser light(m)\n",
- "E = h*c/lamda; #Energy of the laser light(J)\n",
- "E = E/e; #Energy of the laser light(eV)\n",
- "E_ex = E_lower + E; #Energy of excited state of laser system(eV)\n",
- "E_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n",
- "\n",
- "#Result\n",
- "print \"The energy of excited state of laser system is\",E_ex, \"eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The energy of excited state of laser system is 32.31 eV\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.3, Page number 250"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "import numpy as np\n",
- "\n",
- "#Variable declaration\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
- "\n",
- "#Calculation\n",
- "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n",
- "#f/T = log(2)*k/h = A\n",
- "A = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\n",
- "A = A/10**10;\n",
- "A = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n",
- "\n",
- "#Result\n",
- "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.4, Page number 250"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda = 500; #Wavelength of laser light(nm)\n",
- "f = 15; #Focal length of the lens(cm)\n",
- "d = 2; #Diameter of the aperture of source(cm)\n",
- "P = 5; #Power of the laser(mW)\n",
- "\n",
- "#Calculation\n",
- "P = P*10**-3; #Power of the laser(W)\n",
- "lamda = lamda*10**-9; #Wavelength of laser light(m)\n",
- "d = d*10**-2; #Diameter of the aperture of source(m)\n",
- "f = f*10**-2; #Focal length of the lens(m)\n",
- "a = d/2; #Radius of the aperture of source(m)\n",
- "A = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\n",
- "I = P/A; #Intensity at the focus(W/m**2)\n",
- "I = I/10**7;\n",
- "I = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n",
- "\n",
- "#Result\n",
- "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n",
- "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n",
- "The intensity at the focus is 2.8295 *10**7 W/m**2\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.5, Page number 251"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h = 6.626*10**-34; #Planck's constant(Js)\n",
- "c = 3*10**8; #Speed of light in free space(m/s)\n",
- "lamda = 1064; #Wavelength of laser light(nm)\n",
- "P = 0.8; #Average power output per laser pulse(W)\n",
- "dt = 25; #Pulse width of laser(ms)\n",
- "\n",
- "#Calculation\n",
- "dt = dt*10**-3; #Pulse width of laser(s)\n",
- "lamda = lamda*10**-9; #Wavelength of laser light(m)\n",
- "E = P*dt; #Energy released per pulse(J)\n",
- "E1 = E*10**3;\n",
- "N = E/(h*c/lamda); #Number of photons in a pulse\n",
- "\n",
- "#Result\n",
- "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n",
- "print \"The number of photons in a pulse is\", N\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The energy released per pulse is 20.0 *10**-3 J\n",
- "The number of photons in a pulse is 1.07053023443e+17\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.6, Page number 251"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda = 693; #Wavelength of laser beam(nm)\n",
- "D = 3; #Diameter of laser beam(mm)\n",
- "d = 300; #Height of a satellite above the surface of earth(km)\n",
- "\n",
- "#Calculation\n",
- "D = D*10**-3; #Diameter of laser beam(m)\n",
- "lamda = lamda*10**-9; #Wavelength of laser beam(m)\n",
- "d = d*10**3; #Height of a satellite above the surface of earth(m)\n",
- "d_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\n",
- "dtheta = d_theta*10**4;\n",
- "dtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\n",
- "a = d_theta*d; #Diameter of the beam on the satellite(m)\n",
- "a = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n",
- "\n",
- "#Result\n",
- "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n",
- "print \"The diameter of the beam on the satellite is\",a, \"m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n",
- "The diameter of the beam on the satellite is 84.6 m\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file