diff options
Diffstat (limited to 'Engineering_Physics/Chapter10.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter10.ipynb | 493 |
1 files changed, 0 insertions, 493 deletions
diff --git a/Engineering_Physics/Chapter10.ipynb b/Engineering_Physics/Chapter10.ipynb deleted file mode 100755 index 7a9d784a..00000000 --- a/Engineering_Physics/Chapter10.ipynb +++ /dev/null @@ -1,493 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:9dafdb7acb5e988ab3a5ace98a3f2deebed0e1d539e288cbefca9baaaeda9388"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "10: Quantum Mechanics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.1, Page number 196"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=10**7; #speed of electron(m/s)\n",
- "h=6.626*10**-34; #plancks constant\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation \n",
- "lamda=h/(m*v); #de Broglie wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"The de Broglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The de Broglie wavelength is 7.28 *10**-11 m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.2, Page number 196"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant\n",
- "lamda=0.3; #de Broglie wavelength(nm)\n",
- "#For electron\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "#For proton\n",
- "mp=1.672*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculation \n",
- "p=h/(lamda*10**-9); #uncertainity in determining momentum(kg m/s)\n",
- "K1=p**2/(2*me); #kinetic energy of electron(J)\n",
- "K2=p**2/(2*mp); #kinetic energy of proton(J)\n",
- "\n",
- "#Result\n",
- "print \"The kinetic energy of electron is\",round(K1*10**18,1),\"*10**-18 J\"\n",
- "print \"The kinetic energy of proton is\",round(K2*10**21,2),\"*10**-21 J\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The kinetic energy of electron is 2.7 *10**-18 J\n",
- "The kinetic energy of proton is 1.46 *10**-21 J\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.3, Page number 196"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "#K=p^2/(lambda^2*2*m) where K is kinetic energy\n",
- "h=6.626*10**-34; #plancks constant\n",
- "lamda=10**-14; #de Broglie wavelength(m)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19;\n",
- "\n",
- "#Calculation \n",
- "K=(h**2/((lamda**2)*2*m*e))*10**-9; \n",
- "\n",
- "#Result\n",
- "print \"The kinetic energy is\",int(K),\"GeV\"\n",
- "print \"It is not possible to confine the electron to a nucleus.\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The kinetic energy is 15 GeV\n",
- "It is not possible to confine the electron to a nucleus.\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.4, Page number 197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "v=6*10**3; #speed of electron(m/s)\n",
- "h=6.626*10**-34; #plancks constant\n",
- "a=0.00005; \n",
- "\n",
- "#Calculation \n",
- "p=m*v; #uncertainity in momentum(kg m/s)\n",
- "deltap=a*p; #uncertainity in p\n",
- "deltax=(h/(4*math.pi*deltap))*10**3 #uncertainity in position(mm)\n",
- "\n",
- "#Result\n",
- "print \"The uncertainity in position is\",round(deltax,3),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The uncertainity in position is 0.193 mm\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.5, Page number 197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "L=3*10**-5; #diameter of the sphere(nm)\n",
- "h=6.626*10**-34; #plancks constant\n",
- "m=1.67*10**-27; #mass of the particle(kg)\n",
- "n=1;\n",
- "e=1.6*10**-19;\n",
- "\n",
- "#Calculation \n",
- "E1=((h**2)*(n**2))/(8*m*(L**2)*e)*10**12 #first energy level(MeV)\n",
- "E2=E1*2**2; #second energy level(MeV)\n",
- "\n",
- "#Result\n",
- "print \"The first energy level is\",round(E1,3),\"MeV\"\n",
- "print \"The second energy level is\",round(E2,4),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The first energy level is 0.228 MeV\n",
- "The second energy level is 0.9128 MeV\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.6, Page number 197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant\n",
- "a=2*10**12; #angular frequency(rad/s)\n",
- "e=1.6*10**-19;\n",
- "\n",
- "#Calculation \n",
- "E0=(0.5*(h/(2*math.pi*e))*a)*10**3; #ground state energy(MeV)\n",
- "E1=(1.5*(h/(2*math.pi*e))*a)*10**3; #first excited state energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"The ground state energy is\",round(E0,3),\"MeV\" \n",
- "print \"The first excited state energy is\",round(E1,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The ground state energy is 0.659 MeV\n",
- "The first excited state energy is 1.977 MeV\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.7, Page number 197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant\n",
- "E=85; #Energy(keV)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "e=1.6*10**-19;\n",
- "\n",
- "#Calculation \n",
- "lamda=(h*c)/(E*10**3*e); #de Broglie wavelength(m)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "K=((h**2)/((lamda**2)*2*m*e)); #kinetic energy of electron(keV)\n",
- "\n",
- "#Result\n",
- "print \"The kinetic energy of the electron is\",round(K*10**-3,2),\"keV\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The kinetic energy of the electron is 7.06 keV\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.8, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=0.08; #de Briglie wavelength(nm)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.626*10**-34; #plancks constant\n",
- "\n",
- "#Calculation \n",
- "v=h/(m*lamda*10**-9); #velocity of the electron(m/s)\n",
- "\n",
- "#Result\n",
- "print \"The velocity of the electron is\",round(v/10**6,1),\"*10**6 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of the electron is 9.1 *10**6 m/s\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.9, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant\n",
- "lamda=589*10**-9; #wavelength(m)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19;\n",
- "\n",
- "#Calculation \n",
- "V=((h**2)/((lamda**2)*2*m*e))*10**6; #potential diference(micro V)\n",
- "\n",
- "#Result\n",
- "print \"The potential difference through which an electron should be accelerated is\",round(V,2),\"micro V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The potential difference through which an electron should be accelerated is 4.35 micro V\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.10, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=0.92*10**-9; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.626*10**-34; #plancks constant\n",
- "\n",
- "#Calculation \n",
- "deltav=h/(4*math.pi*m*deltax); #uncertainity in velocity(m/s)\n",
- "\n",
- "#Result\n",
- "print \"The uncertainity in velocity is\",round(deltav/10**4,1),\"*10**4 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The uncertainity in velocity is 6.3 *10**4 m/s\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.11, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant\n",
- "n=3; #for second excited state\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "E=0.5; #energy(MeV)\n",
- "e=1.6*10**-19;\n",
- "\n",
- "#Calculation \n",
- "L=((h*n)/math.sqrt(8*m*E*10**6*e))*10**15; #length of the box(fm)\n",
- "\n",
- "#Result\n",
- "print \"The length of the box for proton in its second excited state is\",round(L,1),\"fm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The length of the box for proton in its second excited state is 60.8 fm\n"
- ]
- }
- ],
- "prompt_number": 35
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |