summaryrefslogtreecommitdiff
path: root/Engineering_Heat_Transfer/CHAPTER10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Heat_Transfer/CHAPTER10.ipynb')
-rw-r--r--Engineering_Heat_Transfer/CHAPTER10.ipynb19
1 files changed, 0 insertions, 19 deletions
diff --git a/Engineering_Heat_Transfer/CHAPTER10.ipynb b/Engineering_Heat_Transfer/CHAPTER10.ipynb
index f7b3f4b6..b9bac11c 100644
--- a/Engineering_Heat_Transfer/CHAPTER10.ipynb
+++ b/Engineering_Heat_Transfer/CHAPTER10.ipynb
@@ -37,10 +37,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Calculation of the heat-transfer rate and the amount of steam condensed\n",
"\n",
- "#Given\n",
- "# properties of engine oil at (328 + 325)/2 = 326.5 degree F = 320\u00b0F from appendix table C11\n",
"rou_f=0.909*62.4 # density in lbm/ft**3 \n",
"cp=1.037 # specific heat BTU/(lbm-degree Rankine) \n",
"v_f=0.204e-5 # viscosity in ft**2/s \n",
@@ -57,8 +54,6 @@
"W=3.0 # width in ft\n",
"z=0.204*10**-5 # distance from entry of plate in ft\n",
"\n",
- "#Calculation\n",
- "# film thickness is given as follows\n",
"y=((4*kf*v_f*(Tg-Tw)/3600.0)/(rou_f*g*hfg*(1-(rou_v/rou_f))))**(1/4.0) #let y=delta/z**(1/4)\n",
"hz=1665 #From Table 10.1\n",
"hL=(4/3.0)*hz # at plate end\n",
@@ -66,11 +61,9 @@
"q=mf*hfg\n",
"Re=(4*mf/3600)/(W*rou_f*v_f)\n",
"\n",
- "#Result\n",
"print\"The amount of steam condensed is \",round(mf,1),\"lbm/h\"\n",
"print\"The heat transfer rate is \",round(q,0),\"BTU/hr\"\n",
"\n",
- "#plot\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
@@ -121,10 +114,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Determination of both the heat that the cooling fluid must remove and the condensation rate. \n",
"\n",
- "#Given\n",
- "# properties of water at (100 + 60)/2 = 80\u00b0C from appendix table C11\n",
"rou_f=974.0 # density in kg/m**3 \n",
"cp_1=4196.0 # specific heat in J/(kg*K) \n",
"v_1=0.364e-6 # viscosity in m**2/s \n",
@@ -139,8 +129,6 @@
"Tw=60\n",
"L=1\n",
"\n",
- "#Calculation\n",
- "# specifications of 1 nominal schedule 40 pipe from appendix F1\n",
"OD=0.03340\n",
"hD=0.782*((g*rou_f*(1-(rou_v/rou_f))*(kf**3)*hfg)/(v_1*OD*(Tg-Tw)))**(1/4.0)\n",
"hD=10720 #According to the book\n",
@@ -148,7 +136,6 @@
"q=hD*math.pi*OD*L*(Tg-Tw)\n",
"mf=q/hfg\n",
"\n",
- "#Result\n",
"print\"The heat flow rate is \",round(q,0),\"W\"\n",
"print\"The rate at which steam condenses is \",round(mf*3600,0),\"kg/hr\"\n"
],
@@ -178,10 +165,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "# Calculation of (a) the power input to the water for boiling to occur, (b) the evaporation rate of water, and (c) the critical heat flux.\n",
"\n",
- "#Given\n",
- "# properties of water at 100\u00b0C = 373 K from appendix table 10.3\n",
"rou_f=958 # density in kg/m**3\n",
"cp_f= 4217 # specific heat in J/(kg*K) \n",
"v_f= 2.91e-7 # viscosity in m**2/s \n",
@@ -195,8 +179,6 @@
"g=9.81\n",
"gc=1\n",
"\n",
- "#calculation\n",
- "# nucleate boiling regime\n",
"Cw=0.0132 # formechanically polished stainless steel from table 10.2\n",
"q_A=(rou_f*v_f*hfg)*((g*rou_f*(1-(rou_g/rou_f)))/(sigma*gc))**(0.5)*((cp_f*(Tw-Tg))/(Cw*hfg*Pr_f**1.7))**3\n",
"A=math.pi*D**2/4.0\n",
@@ -204,7 +186,6 @@
"mf=q/hfg # water evaporation rate\n",
"q_cr=0.18*hfg*(sigma*g*gc*rou_f*rou_g**2)**(0.25)\n",
"\n",
- "#Result\n",
"print\"(a)The power delivered to the water is kW\",round(q/1000,2),\"KW\"\n",
"print\"(b)The water evaporation rate is \",round(mf*3600,2),\"kg/h\"\n",
"print\"(c)The critical heat flux is \",round(q_cr,0),\"W/sq.m\"\n"