diff options
Diffstat (limited to 'Elements_of_Power_system/Chapter_8.ipynb')
-rwxr-xr-x | Elements_of_Power_system/Chapter_8.ipynb | 123 |
1 files changed, 123 insertions, 0 deletions
diff --git a/Elements_of_Power_system/Chapter_8.ipynb b/Elements_of_Power_system/Chapter_8.ipynb new file mode 100755 index 00000000..423bc6e5 --- /dev/null +++ b/Elements_of_Power_system/Chapter_8.ipynb @@ -0,0 +1,123 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6d073c49f372dda47c7aa22d6e606de390e394a91f8374089b05d9ccb3405267"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8 - ELECTROSTATIC AND ELECTROMAGNETIC INTERFERENCE WITH COMMUNICATION LINES"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E1 - Pg 203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate Voltage induced per Km in the line in Volt\n",
+ "import math\n",
+ "#Given data :\n",
+ "f=50.##Hz\n",
+ "hor_con=1.2##horizontal configuration spacing in m\n",
+ "x=0.85##telephone line location below power line in meter\n",
+ "I=120.##current in power line in A\n",
+ "d=0.4##spacing between conductors in meter\n",
+ "dAD=math.sqrt(x**2.+((hor_con+d)/2.)**2.)##m\n",
+ "dAC=math.sqrt(x**2.+((hor_con-d)/2.)**2.)##m\n",
+ "dBD=dAC##m\n",
+ "dBC=dAD##m\n",
+ "M=d*math.log(math.sqrt(dAD*dBC/dAC/dBD))##mh/km\n",
+ "Vm=2*math.pi*f*M*10.**-3*I##V\n",
+ "print '%s %.3f' %(\"Voltage induced per Km in the line in Volt :\",Vm)#\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage induced per Km in the line in Volt : 3.275\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E2 - Pg 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate \n",
+ "import math\n",
+ "#Given data :\n",
+ "f=50.##HzdAP=AO+5##m\n",
+ "l=200.##km\n",
+ "V=132.*1000.##V\n",
+ "Load=28000.##kW\n",
+ "pf=0.85##lagging power factor\n",
+ "r=5./1000.##radius of conductor in m\n",
+ "#From the figure given in question\n",
+ "AO=math.sqrt(4.**2.-2.**2.)##m\n",
+ "dAP=AO+5.##m\n",
+ "dAQ=dAP+1.##m\n",
+ "dBP=math.sqrt(5.**2.+2.**2.)##m\n",
+ "dBQ=math.sqrt(6.**2.+2.**2.)##m\n",
+ "MA=0.2*math.log(dAQ/dAP)##mH/km\n",
+ "MB=0.2*math.log(dBQ/dBP)##mH/km\n",
+ "MC=MB##mH/km\n",
+ "M=MB-MA##mH/km(MA,MB and Mc are print '%s %.2f' %laced by 120 degree)\n",
+ "I=Load*1000./math.sqrt(3.)/V/pf##A\n",
+ "Vm=2.*math.pi*f*M*10.**-3.*I##V/km\n",
+ "Vm1=Vm*l##V(For whole route)\n",
+ "print '%s %.1f' %(\"Induced Voltage(For whole route) in Volts : \",Vm1)#\n",
+ "VA=V/math.sqrt(3.)##V\n",
+ "VB=V/math.sqrt(3.)##V\n",
+ "hA=20.+AO##m\n",
+ "VPA=VA*math.log((2.*hA-dAP)/dAP)/math.log((2.*hA-r)/r)##V\n",
+ "VPB=VB*math.log((2.*hA-dBP)/dBP)/math.log((2.*hA-r)/r)##V\n",
+ "VPC=VPB##V\n",
+ "VP=VPB-VPA##V\n",
+ "print '%s %.f' %(\"Potential of telephone conductor in Volts :\",VP)#\n",
+ "#Answer in the book is wrong due to little accuracy as compared to scilab.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Induced Voltage(For whole route) in Volts : 88.9\n",
+ "Potential of telephone conductor in Volts : 4409\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |