summaryrefslogtreecommitdiff
path: root/Electronic_Principles_/Chapter_7_New.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Principles_/Chapter_7_New.ipynb')
-rw-r--r--Electronic_Principles_/Chapter_7_New.ipynb480
1 files changed, 480 insertions, 0 deletions
diff --git a/Electronic_Principles_/Chapter_7_New.ipynb b/Electronic_Principles_/Chapter_7_New.ipynb
new file mode 100644
index 00000000..5f237c0c
--- /dev/null
+++ b/Electronic_Principles_/Chapter_7_New.ipynb
@@ -0,0 +1,480 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "CHAPTER 7 TRANSISTOR FUNDAMENTALS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-1, Page 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.1.py\n",
+ "#Find saturation current and the cutoff voltage in Figure 7-4a.\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=30 #collector voltage(V)\n",
+ "RC=3 #Collector resistance (KOhm)\n",
+ "\n",
+ "#Calculation\n",
+ "ICsat=VCC/RC #Saturation current(mA)\n",
+ "VCEc=VCC #VCE cutoff voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Saturation current IC(saturation) = ',ICsat,'mA'\n",
+ "print 'Collector emitter cutoff VCE(cutoff) = ',VCEc,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Saturation current IC(saturation) = 10 mA\n",
+ "Collector emitter cutoff VCE(cutoff) = 30 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-2, Page 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.2.py\n",
+ "#What are the saturation current and the cutoff voltage in Figure 7-4b? \n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=9 #collector voltage(V)\n",
+ "RC=3 #Collector resistance(KOhm)\n",
+ "\n",
+ "#Calculation\n",
+ "ICsat=VCC/RC #Saturation current(mA)\n",
+ "VCEc=VCC #VCE cutoff voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Saturation current IC(saturation) = ',ICsat,'mA'\n",
+ "print 'Collector emitter cutoff VCE(cutoff) = ',VCEc,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Saturation current IC(saturation) = 3 mA\n",
+ "Collector emitter cutoff VCE(cutoff) = 9 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-3, Page 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.3.py\n",
+ "#What are the saturation current and the cutoff voltage in Figure 7-5a? \n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15 #collector voltage(V)\n",
+ "RC=1 #Collector resistance(KOhm)\n",
+ "\n",
+ "#Calculation\n",
+ "ICsat=VCC/RC #Saturation current(mA)\n",
+ "VCEc=VCC #VCE cutoff voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Saturation current IC(saturation) = ',ICsat,'mA'\n",
+ "print 'Collector emitter cutoff VCE(cutoff) = ',VCEc,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Saturation current IC(saturation) = 15 mA\n",
+ "Collector emitter cutoff VCE(cutoff) = 15 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-4, Page 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.4.py\n",
+ "#What are the saturation current and the cutoff voltage in Figure 7-5b? \n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15 #collector voltage(V)\n",
+ "RC=3 #Collector resistance(KOhm)\n",
+ "\n",
+ "#Calculation\n",
+ "ICsat=VCC/RC #Saturation current(mA)\n",
+ "VCEc=VCC #VCE cutoff voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Saturation current IC(saturation) = ',ICsat,'mA'\n",
+ "print 'Collector emitter cutoff VCE(cutoff) = ',VCEc,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Saturation current IC(saturation) = 5 mA\n",
+ "Collector emitter cutoff VCE(cutoff) = 15 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-5, Page 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.5.py\n",
+ "#Base resistance is increased to 1MOhm. What happens to the collector-emitter voltage if Bdc is 100?\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15.0 #collector voltage(V)\n",
+ "RC=3 #collector resistance (KOhm)\n",
+ "VBB=15.0 #base voltage(V)\n",
+ "RB=1 #base resistance (MOhm)\n",
+ "Bdc=100 #current gain\n",
+ "\n",
+ "#Calculation\n",
+ "IB1=(VBB/RB) #base current(uA)\n",
+ "IC1=Bdc*IB1/1000 #Collector current(mA)\n",
+ "VCE1=VCC-(IC1*RC) #Collector-emitter voltage(V)\n",
+ "\n",
+ "#second approx. calculation\n",
+ "IB2=((VBB-0.7)/RB) #base current(uA)\n",
+ "IC2=Bdc*IB2/1000 #Collector current(mA)\n",
+ "VCE2=VCC-(IC2*RC) #Collector-emitter voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Collector emitter voltage VCE1 = ',VCE1,'V'\n",
+ "print 'For second approx., collector emitter voltage VCE2 = ',VCE2,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector emitter voltage VCE1 = 10.5 V\n",
+ "For second approx., collector emitter voltage VCE2 = 10.71 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-6, Page 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.6.py\n",
+ "#Base resistance of figure 7-7a is increased to 1MOhm. \n",
+ "#Is the saturation still saturated?\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=20.0 #collector voltage(V)\n",
+ "RC=10 #collector resistance (KOhm)\n",
+ "VBB=10.0 #base voltage(V)\n",
+ "RB=1 #base resistance (MOhm)\n",
+ "Bdc=50 #current gain\n",
+ "\n",
+ "#Calculation\n",
+ "IB=(VBB/RB) #base current(uA)\n",
+ "IC=Bdc*IB/1000 #Collector current(mA)\n",
+ "VCE=VCC-(IC*RC) #Collector-emitter voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Collector emitter voltage VCE = ',VCE,'V'\n",
+ "print 'So, transistor is in active region.'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector emitter voltage VCE = 15.0 V\n",
+ "So, transistor is in active region\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-7, Page 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.7.py\n",
+ "#Collector resistance of figure 7-7a is decreased to 5KOhm. Does the transistor remain in the saturation region?\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=20.0 #collector voltage(V)\n",
+ "RC=5 #collector resistance (KOhm)\n",
+ "VBB=10.0 #base voltage(V)\n",
+ "RB=100 #base resistance(KOhm)\n",
+ "Bdco=50 #old current gain\n",
+ "\n",
+ "#Calculation\n",
+ "ICsat=VCC/RC #Saturation current(mA)\n",
+ "IB=VBB/RB #base current(mA)\n",
+ "IC=Bdc*IB/1000 #Collector current(mA)\n",
+ "VCE=VCC-(IC*RC) #Collector-emitter voltage(V)\n",
+ "Bdcn=ICsat/IB #New current gain\n",
+ " \n",
+ "\n",
+ "#Result\n",
+ "print 'ICsat = ',ICsat,'mA'\n",
+ "print 'Bdc = ',int(Bdcn)\n",
+ "print 'Current can not be more than ICsat So, current gain will decrease.'\n",
+ "print 'So, transistor has two current gain: active region & saturation region.'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ICsat = 4.0 mA\n",
+ "Bdc = 40\n",
+ "Current can not be more than ICsat So, current gain will decrease.\n",
+ "So, transistor has two current gain: active region & saturation region.\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-8, Page 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.8.py\n",
+ "#VCC is decreased to 5V. What are the two values of the output voltage?\n",
+ "#If VCE(sat) is 0.15 V and ICEO is 50 nA, What are two values of the output voltage?\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=5.0 #collector voltage(V)\n",
+ "ICEO=50 #Collector leakage current(nA)\n",
+ "RC=1 #collector resistance (KOhm)\n",
+ "VBB=10.0 #base voltage(V)\n",
+ "RB=10 #base resistance(KOhm)\n",
+ "VCEs=0.15 #VCE saturation(V)\n",
+ "\n",
+ "#Calculation\n",
+ "VCE=VCC-((ICEO*RC)*10**-6) #Collector-emitter voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print 'Two values of output voltage are 0 and 5 V'\n",
+ "print 'first voltage is voltage across saturated transistor = ',VCEs,'V' \n",
+ "print 'Second voltage is: VCE = ',round(VCE,2),'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Two values of output voltage are 0 and 5 V\n",
+ "first voltage is voltage across saturated transistor = 0.15 V\n",
+ "Second voltage is: VCE = 5.0 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-9, Page 239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.9.py\n",
+ "#What is the VC & VCE in figure 7-11?\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15 #collector voltage(V)\n",
+ "VBB=5 #Base voltage(V)\n",
+ "RC=2 #collector resistance (KOhm)\n",
+ "VBE=0.7 #base voltage(V)\n",
+ "RB=100 #base resistance(KOhm)\n",
+ "RE=1 #emitter resistance(KOhm)\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "VE=VBB-VBE #Emitter voltage(V)\n",
+ "IE=(VE/RE) #emitter current(mA)\n",
+ "IC=IE #Collector current(mA)\n",
+ "VC=VCC-(IC*RC) #Collector-emitter voltage(V)\n",
+ "VCE=VC-VE #Collector-emitter voltage(V)\n",
+ " \n",
+ "\n",
+ "#Result\n",
+ "print 'Emitter current IE = ',IE,'mA'\n",
+ "print 'Emitter voltage VE = ',VE,'V'\n",
+ "print 'Collector emitter voltage VCE = ',VCE,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Emitter current IE = 4.3 mA\n",
+ "Emitter voltage VE = 4.3 V\n",
+ "Collector emitter voltage VCE = 2.1 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7-10, Page 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 7.10.py\n",
+ "#We want 25 mA of LED current when the switch is closed in figure 7-12b. How can we do it?\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=20 #collector voltage(V)\n",
+ "VBB=15 #Base voltage(V)\n",
+ "VBE=0.7 #base voltage(V)\n",
+ "RE=1.5 #emitter resistance(KOhm)\n",
+ "IE=25.0 #emitter current(mA)\n",
+ "\n",
+ "#Calculation\n",
+ "VE=IE*RE #emitter current(mA)\n",
+ "RE=(VBB/IE)*1000 #emitter resistance(KOhm)\n",
+ "RE2=((VBB-VBE)/IE)*1000 #emitter resistance(KOhm)\n",
+ " \n",
+ "#Result\n",
+ "print 'Emitter voltage VE = ',VE,'V'\n",
+ "print 'Emitter resistance RE = ',RE,'Ohm'\n",
+ "print 'Emitter resistance RE2 = ',RE2,'Ohm'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Emitter voltage VE = 37.5 V\n",
+ "Emitter resistance RE = 600.0 Ohm\n",
+ "Emitter resistance RE2 = 572.0 Ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file