diff options
Diffstat (limited to 'Electronic_Principles_/Chapter_5_New.ipynb')
-rw-r--r-- | Electronic_Principles_/Chapter_5_New.ipynb | 446 |
1 files changed, 0 insertions, 446 deletions
diff --git a/Electronic_Principles_/Chapter_5_New.ipynb b/Electronic_Principles_/Chapter_5_New.ipynb deleted file mode 100644 index cfea03f3..00000000 --- a/Electronic_Principles_/Chapter_5_New.ipynb +++ /dev/null @@ -1,446 +0,0 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "CHAPTER 5 SPECIAL-PURPOSE DIODES"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-1, Page 146"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vsmin=20 #Source voltage minimum(V)\n",
- "Vsmax=40 #Source voltage maximum(V)\n",
- "Vbd=10 #Breakdown voltage(V)\n",
- "R=0.82 #Resistance(KOhm)\n",
- "\n",
- "Vr1=Vsmin-Vbd #voltage across resistor(V)\n",
- "Is1=Vr1/R #Minimum current(mA)\n",
- "Vr2=Vsmax-Vbd #voltage across resistor(V)\n",
- "Is2=Vr2/R #Maximum current(mA)\n",
- "\n",
- "print 'Ideally, zener diode acts as a battery(of breakdown voltage = 10V) shown in figure 5-4b'\n",
- "print 'Minimum current Is1=',round(Is1,2),'mA'\n",
- "print 'Maximum current Is1=',round(Is2,2),'mA'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ideally, zener diode acts as a battery(of breakdown voltage = 10V) shown in figure 5-4b\n",
- "Minimum current Is1= 12.2 mA\n",
- "Maximum current Is1= 36.59 mA\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-2, Page 149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vs=18 #supply voltage(V)\n",
- "Rs=0.27 #source resistance(KOhm)\n",
- "RL=1 #Load resistance(KOhm)\n",
- "Vz=10 #Zener voltage(V)\n",
- "\n",
- "VTH=(RL/(Rs+RL))*Vs #Thevenin voltage(V)\n",
- "\n",
- "print 'Thevenin voltage VTH = ',round(VTH,2),'V'\n",
- "print 'Thevenin voltage is greater than zener voltage, zener diode is operating in breakdown region.'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Thevenin voltage VTH = 14.17 V\n",
- "Thevenin voltage is greater than zener voltage, zener diode is operating in breakdown region.\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-3, Page 149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vs=18 #supply voltage(V)\n",
- "Rs=0.27 #source resistance(KOhm)\n",
- "RL=1 #Load resistance(KOhm)\n",
- "Vbd=10 #Zener voltage(V)\n",
- "\n",
- "Vr=Vs-Vbd #voltage across resistor(V)\n",
- "Is=Vr/Rs #Current(mA)\n",
- "IL=Vbd/RL #Current(mA)\n",
- "Iz=Is-IL #Zener current(mA)\n",
- "\n",
- "print 'Load current IL = ',IL,'mA'\n",
- "print 'Zener current Iz = ',round(Iz,2),'mA'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Load current IL = 10 mA\n",
- "Zener current Iz = 19.63 mA\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-7, Page 153"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Iz=20 #zener current(mA)\n",
- "Rz=8.5 #zener resistance(Ohm)\n",
- "Vbd=10 #Zener voltage(V)\n",
- "\n",
- "DVL=Iz*Rz/1000 #change in load voltage(V)\n",
- "VL=Vbd+DVL #Load voltage(V)\n",
- "\n",
- "print 'Change in load voltage DVL =',DVL,'V'\n",
- "print 'Load voltage with second approx., VL =',VL,'V'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Change in load voltage DVL = 0.17 V\n",
- "Load voltage with second approx., VL = 10.17 V\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-8, Page 154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Rs=270 #Source resistance (Ohm)\n",
- "Rz=8.5 #zener resistance(Ohm)\n",
- "VRin=2 #Zener voltage(V)\n",
- "\n",
- "VRout=(Rz/Rs)*VRin*1000 #Load ripple voltage(V)\n",
- "\n",
- "print 'Load ripple voltage VRout=',round(VRout,2),'mV'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Load ripple voltage VRout= 62.96 mV\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-10, Page 157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vil=22 #input voltage range low(V)\n",
- "Vih=30 #input voltage range high(V)\n",
- "Vz=12 #regulated output voltage(V)\n",
- "Rl=140 #Load resistance low(KOhm)\n",
- "Rh=10 #Load resistance high(KOhm)\n",
- "\n",
- "RSmax=Rl*(float(Vil)/float(Vz)-1) #Maximum series resistance\n",
- "\n",
- "print 'Maximum series resistance RSmax =',round(RSmax,2),'V'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum series resistance RSmax = 116.67 V\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-11, Page 157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "\n",
- "Vil=15 #input voltage range low(V)\n",
- "Vih=20 #input voltage range high(V)\n",
- "Vz=6.8 #regulated output voltage(V)\n",
- "Il=5 #Load current low(mA)\n",
- "Ih=20 #Load current high(mA)\n",
- "\n",
- "RSmax=(Vil-float(Vz))/Ih*1000 #Maximum series resistance\n",
- "\n",
- "print 'Maximum series resistance RSmax =',RSmax,'V'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum series resistance RSmax = 410.0 V\n"
- ]
- }
- ],
- "prompt_number": 69
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-12, Page 168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vi=50 #voatage supply(V)\n",
- "Rs=2.2 #series resistance(KOhm)\n",
- "Vf=2 #forward approx. voltage\n",
- " \n",
- "Is=(Vi-Vf)/Rs\n",
- "\n",
- "print 'LED current Is =',round(Is,2),'mA'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "LED current Is = 21.82 mA\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-13, Page 168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vs=9 #voatage supply(V)\n",
- "Rs=470.0 #series resistance(Ohm)\n",
- "Vf=2 #forward approx. voltage\n",
- " \n",
- "Is=(Vs-Vf)/Rs\n",
- "\n",
- "print 'LED current Is =',round((Is*1000),2),'mA'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "LED current Is = 14.89 mA\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-14, Page 169"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "\n",
- "Vac=20 #AC voatage supply(V)\n",
- "Rs=680.0 #series resistance(KOhm)\n",
- " \n",
- "Vacp=1.414*Vac #peak source voltage(V)\n",
- "Is1=(Vacp/Rs)*1000 #approx. peak current(mA)\n",
- "Is2=Is1/math.pi #average of half-wave current through LED(mA)\n",
- "P=(Vac)**2/Rs #Power dissipation(W)\n",
- "\n",
- "print 'approx. peak LED current Is1 =',round(Is1,2),'mA'\n",
- "print 'average of half-wave current through LED Is2 =',round(Is2,2),'mA'\n",
- "print 'Power dissipation P =',round(P,2),'W'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "approx. peak LED current Is1 = 41.59 mA\n",
- "average of half-wave current through LED Is2 = 13.24 mA\n",
- "Power dissipation P = 0.59 W\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5-15, Page 170"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "\n",
- "Vs=120 #AC voatage supply(V)\n",
- "f=60 #frequency(Hz)\n",
- "C=0.68 #series resistance(KOhm)\n",
- " \n",
- "Xc=1/(2*math.pi*f*C)*1000 #capacitive reactance(KOhm)\n",
- "Vacp=Vs*1.414\n",
- "Is1=(Vacp/Xc) #approx. peak current(mA)\n",
- "Is2=Is1/math.pi #average current through LED(mA)\n",
- "\n",
- "print 'Capacitance reactance Xc = ',round(Xc,2),'KOhm'\n",
- "print 'approx. peak LED current Is1 =',round(Is1,2),'mA'\n",
- "print 'average current through LED Is2 =',round(Is2,2),'mA'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Capacitance reactance Xc = 3.9 KOhm\n",
- "approx. peak LED current Is1 = 43.5 mA\n",
- "average current through LED Is2 = 13.85 mA\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |