diff options
Diffstat (limited to 'Electronic_Principles_/Chapter_3_New.ipynb')
-rw-r--r-- | Electronic_Principles_/Chapter_3_New.ipynb | 36 |
1 files changed, 0 insertions, 36 deletions
diff --git a/Electronic_Principles_/Chapter_3_New.ipynb b/Electronic_Principles_/Chapter_3_New.ipynb index e2552e78..e4397d8b 100644 --- a/Electronic_Principles_/Chapter_3_New.ipynb +++ b/Electronic_Principles_/Chapter_3_New.ipynb @@ -27,19 +27,13 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.2.py\n",
- "#A diode has a power rating of 5W. If diode voltage is 1.2V and diode current is 1.75A,\n",
- "#What is the power dissipation? Will the diode be destroyed?\n",
"\n",
- "#Variable declaration\n",
"Pr=5 #Power rating(W)\n",
"Vd=1.2 #diode voltage(V)\n",
"Id=1.75 #diode current(A)\n",
"\n",
- "#Calculation\n",
"PD=Vd*Id #Power dissipaion(W)\n",
"\n",
- "#Result\n",
"print 'Power Dissipation =',PD,'W'\n",
"print 'PD(',PD,'W) < ''Pr(',Pr,'W), So diode will not be destroyed.'"
],
@@ -69,19 +63,14 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.3.py\n",
- "#Use the ideal diode to calculate the VL & IL in Fig. 3-6a.\n",
"\n",
"\n",
- "#Variable declaration\n",
"Vs=10 #Source voltage(V)\n",
"RL=1 #Load resistance(KOhm)\n",
"VL=Vs #LOad voltage(V)\n",
"\n",
- "#Calculation\n",
"IL=VL/RL #Load current(mA)\n",
"\n",
- "#Result\n",
"print 'Vs will be appearing across RL'\n",
"print 'Load voltage VL =',Vs,'V'\n",
"print 'Load current IL =',IL,'mA'"
@@ -113,24 +102,19 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.4.py\n",
- "#Calculate the VL & IL in Fig. 3-6b using an ideal diode.\n",
"\n",
- "#Variable Declaration\n",
"print 'As per figure 3-6b, Thevenize the circuit to the left of the diode'\n",
"R1=6 #Resistance(KOhm)\n",
"R2=3 #Resistance(KOhm)\n",
"RL=1 #Load Resistance(KOhm)\n",
"Vs=36 #Supply voltage(V)\n",
"\n",
- "#Calculation\n",
"Vth=R2*Vs/(R1+R2) #ThCevenin voltage(V)\n",
"Rth=(R1*R2)/(R1+R2) #Thevenin resistance(KOhm)\n",
"Rt=Rth+RL #total resistance(KOhm)\n",
"IL=Vth/Rt #Load current(mA)\n",
"VL=IL*RL #Load voltage(V)\n",
"\n",
- "#Result\n",
"print 'Vth =',Vth,'V & Rth =',Rth,'KOhm'\n",
"print 'Visualize diode as closed switch,'\n",
"print 'IL =',IL,'mA'\n",
@@ -165,21 +149,16 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.5.py\n",
- "#Use the second approximation to calculate the VL, IL & PD in Fig 3-8. \n",
"\n",
- "#Variable Declaration\n",
"print 'As per Second approximation in Fig.3-8,'\n",
"Vd=0.7 #diode voltgage(V)\n",
"Vs=10 #supply voltage(V)\n",
"RL=1 #Load resistance(KOhm)\n",
"\n",
- "#Calculation\n",
"VL=Vs-Vd #Load voltage(v)\n",
"IL=VL/RL #Load current(mA)\n",
"PD=Vd*IL #diode power(mW)\n",
"\n",
- "#Result\n",
"print 'IL =',IL,'mA & VL =',VL,'V'\n",
"print 'Diode power PD =',PD,'mW'"
],
@@ -210,10 +189,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.6.py\n",
- "#Calculate the VL, IL & PD in fig. 3-9a using the second approximation.\n",
"\n",
- "#Variable Declaration\n",
"print 'As per Second approximation in Fig.3-9a,'\n",
"Vd=0.7 #diode voltgage(V)\n",
"Vs=36 #supply voltage(V)\n",
@@ -221,14 +197,12 @@ "R2=3 #Resistance(KOhm)\n",
"RL=1 #Load resistance(KOhm)\n",
"\n",
- "#Calculation\n",
"Vth=R2*Vs/(R1+R2)#Thevenin Voltage(V)\n",
"Rth=(R1*R2)/(R1+R2)#Thevenin resistance(KOhm)\n",
"IL=(Vth-Vd)/R2#Load current(mA)\n",
"VL=IL*RL#Load voltage(V)\n",
"PD=Vd*IL#diode power(mW)\n",
"\n",
- "#Result\n",
"print 'Thevenize the circuit to the left of the diode'\n",
"print 'Vth =',Vth,'V & Rth =',Rth,'KOhm'\n",
"print 'VL =',round(VL,2),'V & IL =',round(IL,2),'mA'\n",
@@ -263,17 +237,13 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.7.py\n",
- "#The IN4001 has a bulk resistance of 0.23 Ohm. What is VL, IL & PD?\n",
"\n",
- "#Variable Declaration\n",
"print 'In Fig.3-11a,'\n",
"Vd=0.7 #diode voltgage(V)\n",
"Vs=10 #supply voltage(V)\n",
"RL=1000L #Load resistance(Ohm)\n",
"Rb=0.23 #bulk resistance\n",
"\n",
- "#Calculation\n",
"print 'As per third approximation, we get fig.3-11b'\n",
"if Rb<(RL/100):\n",
" print'If Rb < 0.01RL than ignore Rb & use second approximation.'\n",
@@ -281,7 +251,6 @@ " IL=(VL/RL)*1000 #Load current(mA)\n",
" PD=Vd*IL #diode power(mW)\n",
"\n",
- "#Result \n",
" print 'IL =',IL,'mA & VL =',VL,'V'\n",
" print 'Diode power PD =',PD,'mW'"
],
@@ -314,10 +283,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "#Example 3.8.py\n",
- "#Repeat the preceding example for RL of 10 Ohm.\n",
"\n",
- "#Variable Declaration\n",
"print 'In Fig.3-11a, take RL = 10 Ohm'\n",
"Vd=0.7 #diode voltgage(V)\n",
"Vs=10 #supply voltage(V)\n",
@@ -326,14 +292,12 @@ "RT=Rb+RL #Total reistance(Ohm)\n",
"VT=Vs-Vd #total voltage(V)\n",
"\n",
- "#Calculation\n",
"print 'RT =',RT,'Ohm & VT =',VT,'V'\n",
"IL=VT/RT #Load current(mA)\n",
"VL=IL*RL #Load voltage(V)\n",
"VD=Vd+(IL*Rb) \n",
"PD=VD*IL #diode power(W)\n",
"\n",
- "#Result\n",
"print 'IL =',round(IL,2),'mA & VL =',round(VL,2),'V'\n",
"print 'VD =',round(VD,2),'V'\n",
"print 'Diode power PD =',round(PD,2),'W'"
|