summaryrefslogtreecommitdiff
path: root/Electronic_Principles_/Chapter_20_New.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Principles_/Chapter_20_New.ipynb')
-rw-r--r--Electronic_Principles_/Chapter_20_New.ipynb55
1 files changed, 0 insertions, 55 deletions
diff --git a/Electronic_Principles_/Chapter_20_New.ipynb b/Electronic_Principles_/Chapter_20_New.ipynb
index 1b58e3b8..1bf81dd2 100644
--- a/Electronic_Principles_/Chapter_20_New.ipynb
+++ b/Electronic_Principles_/Chapter_20_New.ipynb
@@ -27,19 +27,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.1.py\n",
- "#In figure 20-6, R1=100KOhm, Rf=100KOhm, R2=1KOhm, what is the voltage gain when JFET is On & off?\n",
"\n",
- "#Variable declaration\n",
"Rf=100.0 #feedback path resistance Rf (KOhm)\n",
"R1=100.0 #inverting input resistance R1(KOhm)\n",
"R2=1.0 #inverting input & drain resistance R2(KOhm)\n",
"\n",
- "#Calculation\n",
"Av1=(Rf/(R1**-1+R2**-1)**-1)+1 #maximum voltage gain\n",
"Av2=(Rf/R1)+1 #minimum voltage gain\n",
"\n",
- "#Result\n",
"print 'maximum voltage gain = ',Av1\n",
"print 'minimum voltage gain = ',Av2"
],
@@ -69,18 +64,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.2.py\n",
- "#In figure 20-10. R1=1.2KOhm, R2=91KOhm, what are the max & min Av?\n",
"\n",
- "#Variable declaration\n",
"R1=1.2 #inverting input resistance R1(KOhm)\n",
"R2=91.0 #feedback resistance R2(KOhm)\n",
"\n",
- "#Calculation\n",
"Av1=-R2/R1 #maximum voltage gain\n",
"Av2=0 #minimum voltage gain\n",
"\n",
- "#Result\n",
"print 'maximum voltage gain = ',round(Av1,2)\n",
"print 'minimum voltage gain = ',Av2"
],
@@ -110,18 +100,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.3.py\n",
- "#If R=1.5KOhm, nR=7.5KOhm in figure 20-10, what is the maximum positive voltage gain & other fixed resistance?\n",
"\n",
- "#Variable declaration\n",
"R=1.5 #inverting input resistance R1(KOhm)\n",
"nR=7.5 #feedback resistance(KOhm)\n",
"\n",
- "#Calculation\n",
"n=nR/R #max. limit of voltage gain \n",
"rf=nR/(n-1) #fixed resistor (KOhm)\n",
"\n",
- "#Result\n",
"print 'maximum positive voltage gain = ',n\n",
"print 'other fixed resistor = ',rf,'KOhm'"
],
@@ -151,11 +136,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.4.py\n",
- "#In figure 20-18 R1=1KOhm, R2=100KOhm, R=10KOhm. what is differential voltage gain & common mode voltage gain? \n",
- "#resistance tolerance is 0.01% ,Vin=10mV, Vin(CM)=20V, what are the values of differential & common mode output signals?\n",
"\n",
- "#Variable declaration\n",
"R1=1.0 #inverting input resistance R1(KOhm)\n",
"R2=100.0 #feedback resistance R2(KOhm)\n",
"R=10.0 #resistor of opamp in seconnd stage(KOhm)\n",
@@ -163,13 +144,11 @@
"Vin_CM=10 #common mode input voltage(V)\n",
"T=0.0001 #tolerance of resistor \n",
"\n",
- "#Calculation\n",
"Av=(R2/R1)+1 #preamp voltage gain\n",
"Av_CM=2*T #common mode voltage gain of 2nd stage\n",
"Vout=-Av*Vin #output siganl voltage(V)\n",
"Vout_CM=Av_CM*Vin_CM #output siganl voltage for common mode signal(V)\n",
"\n",
- "#Result\n",
"print 'output siganl voltage for common mode signal Vout(CM) = ',Vout_CM,'V'\n",
"print 'output siganl voltage Vout = ',Vout,'V'"
],
@@ -199,10 +178,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.5.py\n",
- "#In figure 20-22, R1=1KOhm, R2=2KOhm, R3=3KOhm, R4=4KOhm, R5=5KOhm ,Rf=6KOhm. what is voltage gain of each channel?\n",
"\n",
- "#Variable declaration\n",
"Rf=6.0 #feedback path resistance Rf (KOhm)\n",
"R1=1.0 #inverting input resistance R1(KOhm)\n",
"R2=2.0 #inverting input resistance R2(KOhm)\n",
@@ -210,13 +186,11 @@
"R4=4.0 #non-inverting input resistance R4(KOhm)\n",
"R5=5.0 #non-inverting input resistance R5(KOhm)\n",
"\n",
- "#Calculation\n",
"Av1=(-Rf/R1) #voltage gain1\n",
"Av2=(-Rf/R2) #voltage gain2\n",
"Av3=(1+(Rf/((R1**-1+R2**-1)**-1)))*(((R4**-1+R5**-1)**-1)/(R3+((R4**-1+R5**-1)**-1))) #voltage gain3\n",
"Av4=(1+(Rf/((R1**-1+R2**-1)**-1)))*(((R3**-1+R5**-1)**-1)/(R4+((R3**-1+R5**-1)**-1))) #voltage gain4\n",
"\n",
- "#Result\n",
"print 'Voltage gain channel-1 Av1 = ',Av1\n",
"print 'Voltage gain channel-2 Av2 = ',Av2\n",
"print 'Voltage gain channel-3 Av3 = ',round(Av3,2)\n",
@@ -250,11 +224,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.6.py\n",
- "#In figure 20-25, D0=1,D1=0,D2=0, and D3=1. using Vref =5V, \n",
- "#determine decimal equivalent of BIN and output voltage of converter.\n",
"\n",
- "#Variable declaration \n",
"D0=1 #digital input0 (binary)\n",
"D1=0 #digital input1 (binary)\n",
"D2=0 #digital input2 (binary)\n",
@@ -262,11 +232,9 @@
"Vref=5 #reference voltage(V)\n",
"N=4 #no. of inputs\n",
"\n",
- "#Calculation \n",
"BIN=(D0*2**0)+(D1*2**1)+(D2*2**2)+(D3*2**3) #decimal equivalent BIN\n",
"Vout=-((2*Vref*BIN)/2.0**N) #output voltage of converter(V)\n",
"\n",
- "#Result\n",
"print 'decimal equivalent BIN = ',BIN\n",
"print 'output voltage of converter Vout = ',Vout,'V'"
],
@@ -296,25 +264,19 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.7.py\n",
- "#In figure 20-27, R1=1KOhm, R2=51 KOhm, what is voltage gain & closed loop output impedance? \n",
- "#what is shorted load current of circuit if each transistor has B = 125?\n",
"\n",
- "#Variable declaration\n",
"R2=51 #feedback path resistance (KOhm)\n",
"R1=1 #inverting input resistance R1(KOhm)\n",
"Bdc=125 #current gain\n",
"Zout=75 #open loop output impedance(Ohm)\n",
"AVOL=100000 #741C voltage gain\n",
"\n",
- "#Calculation\n",
"Av=-R2/R1 #closed loop voltage gain\n",
"B=R1/(R1+R2) #feedback fraction\n",
"Zout_CL=Zout/(1+(AVOL*B)) #closed loop output impedance(Ohm)\n",
"Isc=25.0/1000 #shorted current for 741C op-amp(A)\n",
"Imax=Bdc*Isc #maximum load current(A)\n",
"\n",
- "#Result\n",
"print 'closed loop output impedance Zout(CL) = ',Zout_CL,'Ohm'\n",
"print 'maximum load current Imax = ',Imax,'A'"
],
@@ -344,21 +306,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.8.py\n",
- "#if the current source of figure 20-28 has R=10KOhm, Vin =1 V, VCC=15V. what is output current? \n",
- "#what is maximum load resistance for vin = 10V?\n",
"\n",
- "#Variable declaration\n",
"Vin=1.0 #input voltage(V)\n",
"VCC=15 #supply voltage(V)\n",
"R=10 #inverting input resistance(KOhm)\n",
"Vin2=10.0 #larger input(V)\n",
"\n",
- "#Calculation\n",
"iout=Vin/R #output current(mA)\n",
"RL_max=R*(VCC/Vin2-1) #Maximum load resistance(KOhm) \n",
"\n",
- "#Result\n",
"print 'Output current iout = ',iout,'mA'\n",
"print 'Maximum load resistance RL(max) = ',RL_max,'KOhm'"
],
@@ -388,21 +344,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.9.py\n",
- "#figure 20-31 has R=15KOhm, Vin =3 V, VCC=15V. what is output current? \n",
- "#what is maximum load resistance for maximum Vin = 9V?\n",
"\n",
- "#Variable declaration\n",
"Vin=3.0 #input voltage(V)\n",
"VCC=15 #supply voltage(V)\n",
"R=15 #inverting input resistance(KOhm)\n",
"Vin2=12.0 #larger input(V)\n",
"\n",
- "#Calculation\n",
"iout=-Vin/R #output current(mA)\n",
"RL_max=(R/2.0)*(VCC/Vin2-1) #Maximum load resistance(KOhm) \n",
"\n",
- "#Result\n",
"print 'Output current iout = ',iout,'mA'\n",
"print 'Maximum load resistance RL(max) = ',RL_max,'KOhm'"
],
@@ -432,21 +382,16 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#Example 20.10.py\n",
- "#If rds varies from 50 Ohm to 120 KOhm in figure 20-32, what is the maximum & minimum voltage gain?\n",
"\n",
- "#Variable declaration\n",
"R2=47 #feedback path resistance (KOhm)\n",
"R1=1.0 #inverting input resistance R1(KOhm)\n",
"R3=100 #non-inverting input resistance R3(KOhm)\n",
"rds1=0.050 #ohmic resistance of JFET (KOhm)\n",
"rds2=120.0 #ohmic resistance of JFET (KOhm)\n",
"\n",
- "#Calculation\n",
"Av1=((R2/R1)+1)*(rds1/(rds1+R3)) #minimum voltage gain\n",
"Av2=((R2/R1)+1)*(rds2/(rds2+R3)) #maximum voltage gain\n",
"\n",
- "#Result\n",
"print 'Maximum voltage gain Av = ',round(Av2,2)\n",
"print 'Minimum voltage gain Av = ',round(Av1,3)"
],