summaryrefslogtreecommitdiff
path: root/Electronic_Principles_/Chapter_16_New.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Principles_/Chapter_16_New.ipynb')
-rw-r--r--Electronic_Principles_/Chapter_16_New.ipynb1046
1 files changed, 1046 insertions, 0 deletions
diff --git a/Electronic_Principles_/Chapter_16_New.ipynb b/Electronic_Principles_/Chapter_16_New.ipynb
new file mode 100644
index 00000000..82ef1353
--- /dev/null
+++ b/Electronic_Principles_/Chapter_16_New.ipynb
@@ -0,0 +1,1046 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "CHAPTER 16 Frequency Effets"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-1, Page 567"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.1.py\n",
+ "#Amplifier has midband Av of 200, with cutoff frequencies f1=20 Hz, f2=20KHz. \n",
+ "#Find voltage gain for 5Hz & 200KHz input frequencies.\n",
+ "\n",
+ "#Variable declaration\n",
+ "Avm=200 #mid band voltage gain\n",
+ "f1=20 #cutoff frequency1 (Hz)\n",
+ "f2=20*10**3 #cutoff frequency2 (Hz)\n",
+ "fi1=5 #input frequency1(Hz)\n",
+ "fi2=200*10**3 #input frequency2(Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "Av=0.707*Avm #voltage gain at either frequency\n",
+ "Av1=Avm/(1+(f1/fi1)**2)**0.5 #voltage gain for 5Hz\n",
+ "Av2=Avm/(1+(fi2/f2)**2)**0.5 #voltage gain for 200KHz\n",
+ "\n",
+ "#Result\n",
+ "print 'voltage gain for 200KHz = ',round(Av1,2)\n",
+ "print 'voltage gain for 5Hz = ',round(Av2,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "voltage gain for 200KHz = 48.51\n",
+ "voltage gain for 5Hz = 19.9\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-2, Page 568"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.2.py\n",
+ "#In figure 16-4a OP-Amp with midband Av of 100,000. \n",
+ "#if f2=10Hz, then what does frequency response look like? \n",
+ "\n",
+ "#Variable declaration\n",
+ "Avm=100000 #mid band voltage gain\n",
+ "f2=10 #cutoff frequency (Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "Av=0.707*Avm #voltage gain at cutoff frequency\n",
+ "\n",
+ "#Result\n",
+ "print 'voltage gain for 10Hz = ',Av"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "voltage gain for 10Hz = 70700.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-3, Page 569"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.3.py\n",
+ "#In preceding example , what is Av if input frequencies: 100Hz, 1KHz, 10KHZ, 100 KHz, 1MHz?\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Avm=100000 #mid band voltage gain\n",
+ "fc=10.0 #cutoff frequency (Hz)\n",
+ "fi1=100.0 #input frequency1(Hz)\n",
+ "fi2=1*10**3 #input frequency2(Hz)\n",
+ "fi3=10*10**3 #input frequency3(Hz)\n",
+ "fi4=100*10**3 #input frequency4(Hz)\n",
+ "fi5=1*10**6 #input frequency5(Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "Av1=Avm/(1+(fi1/fc)**2)**0.5 #voltage gain for 100Hz\n",
+ "Av2=Avm/(1+(fi2/fc)**2)**0.5 #voltage gain for 1KHz\n",
+ "Av3=Avm/(1+(fi3/fc)**2)**0.5 #voltage gain for 10KHz\n",
+ "Av4=Avm/(1+(fi4/fc)**2)**0.5 #voltage gain for 100KHz\n",
+ "Av5=Avm/(1+(fi5/fc)**2)**0.5 #voltage gain for 1MHz\n",
+ "\n",
+ "#Result\n",
+ "print 'voltage gain for 100Hz = ',math.ceil(Av1)\n",
+ "print 'voltage gain for 1KHz = ',math.ceil(Av2)\n",
+ "print 'voltage gain for 10KHz = ',math.ceil(Av3)\n",
+ "print 'voltage gain for 100KHz = ',math.ceil(Av4)\n",
+ "print 'voltage gain for 1MHz = ',math.ceil(Av5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "voltage gain for 100Hz = 9951.0\n",
+ "voltage gain for 1KHz = 1000.0\n",
+ "voltage gain for 10KHz = 100.0\n",
+ "voltage gain for 100KHz = 10.0\n",
+ "voltage gain for 1MHz = 1.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-4, Page 571"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.4.py\n",
+ "#Calculate power gain(dB) for following values Ap=1,2,4,8\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ap1=1 #power gain1\n",
+ "Ap2=2 #power gain2\n",
+ "Ap3=4 #power gain3\n",
+ "Ap4=8 #power gain4\n",
+ "\n",
+ "#Calculation\n",
+ "Ap_db1=10*math.log10(Ap1) #decibel power gain(dB)\n",
+ "Ap_db2=10*math.log10(Ap2) #decibel power gain(dB)\n",
+ "Ap_db3=10*math.log10(Ap3) #decibel power gain(dB)\n",
+ "Ap_db4=10*math.log10(Ap4) #decibel power gain(dB)\n",
+ "\n",
+ "#Result\n",
+ "print 'decibel power gain Ap1(dB) = ',Ap_db1,'dB'\n",
+ "print 'decibel power gain Ap2(dB) = ',round(Ap_db2,2),'dB'\n",
+ "print 'decibel power gain Ap3(dB) = ',round(Ap_db3,2),'dB'\n",
+ "print 'decibel power gain Ap4(dB) = ',round(Ap_db4,2),'dB'\n",
+ "print 'Each time Ap increase by factor 2, decibel power gain increases by 3 dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "decibel power gain Ap1(dB) = 0.0 dB\n",
+ "decibel power gain Ap2(dB) = 3.01 dB\n",
+ "decibel power gain Ap3(dB) = 6.02 dB\n",
+ "decibel power gain Ap4(dB) = 9.03 dB\n",
+ "Each time Ap increase by factor 2, decibel power gain increases by 3 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-5, Page 571"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.5.py\n",
+ "#Calculate decibel power gain for following values Ap=1,0.5,0.25,0.125\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ap1=1 #power gain1\n",
+ "Ap2=0.5 #power gain2\n",
+ "Ap3=0.25 #power gain3\n",
+ "Ap4=0.125 #power gain4\n",
+ "\n",
+ "#Calculation\n",
+ "Ap_db1=10*math.log10(Ap1) #decibel power gain(dB)\n",
+ "Ap_db2=10*math.log10(Ap2) #decibel power gain(dB)\n",
+ "Ap_db3=10*math.log10(Ap3) #decibel power gain(dB)\n",
+ "Ap_db4=10*math.log10(Ap4) #decibel power gain(dB)\n",
+ "\n",
+ "#Result\n",
+ "print 'decibel power gain Ap1(dB) = ',Ap_db1,'dB'\n",
+ "print 'decibel power gain Ap2(dB) = ',round(Ap_db2,2),'dB'\n",
+ "print 'decibel power gain Ap3(dB) = ',round(Ap_db3,2),'dB'\n",
+ "print 'decibel power gain Ap4(dB) = ',round(Ap_db4,2),'dB'\n",
+ "print 'Each time Ap decreases by factor 2, decibel power gain decreases by 3 dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "decibel power gain Ap1(dB) = 0.0 dB\n",
+ "decibel power gain Ap2(dB) = -3.01 dB\n",
+ "decibel power gain Ap3(dB) = -6.02 dB\n",
+ "decibel power gain Ap4(dB) = -9.03 dB\n",
+ "Each time Ap decreases by factor 2, decibel power gain decreases by 3 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-6, Page 572"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.6.py\n",
+ "#Calculate decibel power gain for following values Ap=1,10,100,1000\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ap1=1 #power gain1\n",
+ "Ap2=10 #power gain2\n",
+ "Ap3=100 #power gain3\n",
+ "Ap4=1000 #power gain4\n",
+ "\n",
+ "#Calculation\n",
+ "Ap_db1=10*math.log10(Ap1) #decibel power gain(dB)\n",
+ "Ap_db2=10*math.log10(Ap2) #decibel power gain(dB)\n",
+ "Ap_db3=10*math.log10(Ap3) #decibel power gain(dB)\n",
+ "Ap_db4=10*math.log10(Ap4) #decibel power gain(dB)\n",
+ "\n",
+ "#Result\n",
+ "print 'decibel power gain Ap1(dB) = ',Ap_db1,'dB'\n",
+ "print 'decibel power gain Ap2(dB) = ',Ap_db2,'dB'\n",
+ "print 'decibel power gain Ap3(dB) = ',Ap_db3,'dB'\n",
+ "print 'decibel power gain Ap4(dB) = ',Ap_db4,'dB'\n",
+ "print 'Each time Ap increases by factor 10, decibel power gain increases by 10 dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "decibel power gain Ap1(dB) = 0.0 dB\n",
+ "decibel power gain Ap2(dB) = 10.0 dB\n",
+ "decibel power gain Ap3(dB) = 20.0 dB\n",
+ "decibel power gain Ap4(dB) = 30.0 dB\n",
+ "Each time Ap increases by factor 10, decibel power gain increases by 10 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-7, Page 572"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.7.py\n",
+ "#Calculate decibel power gain for following values Ap=1,0.1,0.01,0.001\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ap1=1 #power gain1\n",
+ "Ap2=0.1 #power gain2\n",
+ "Ap3=0.01 #power gain3\n",
+ "Ap4=0.001 #power gain4\n",
+ "\n",
+ "#Calculation\n",
+ "Ap_db1=10*math.log10(Ap1) #decibel power gain(dB)\n",
+ "Ap_db2=10*math.log10(Ap2) #decibel power gain(dB)\n",
+ "Ap_db3=10*math.log10(Ap3) #decibel power gain(dB)\n",
+ "Ap_db4=10*math.log10(Ap4) #decibel power gain(dB)\n",
+ "\n",
+ "#Result\n",
+ "print 'decibel power gain Ap1(dB) = ',Ap_db1,'dB'\n",
+ "print 'decibel power gain Ap2(dB) = ',Ap_db2,'dB'\n",
+ "print 'decibel power gain Ap3(dB) = ',Ap_db3,'dB'\n",
+ "print 'decibel power gain Ap4(dB) = ',Ap_db4,'dB'\n",
+ "print 'Each time Ap decreases by factor 10, decibel power gain decreases by 10 dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "decibel power gain Ap1(dB) = 0.0 dB\n",
+ "decibel power gain Ap2(dB) = -10.0 dB\n",
+ "decibel power gain Ap3(dB) = -20.0 dB\n",
+ "decibel power gain Ap4(dB) = -30.0 dB\n",
+ "Each time Ap decreases by factor 10, decibel power gain decreases by 10 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-8, Page 575"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.8.py\n",
+ "#What is total voltage gain in decibels?\n",
+ "#find decibel voltage gain of each stage and total.\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Av1=100 #voltage gain1\n",
+ "Av2=200 #voltage gain2\n",
+ "\n",
+ "#Calculation\n",
+ "Av=Av1*Av2 #total voltage gain\n",
+ "Av_db=20*math.log10(Av) #decibel total voltage gain(dB)\n",
+ "Av_db1=20*math.log10(Av1) #decibel voltage gain(dB)\n",
+ "Av_db2=20*math.log10(Av2) #decibel voltage gain(dB)\n",
+ "Avt_db=Av_db1+Av_db2 #decibel total voltage gain(dB)\n",
+ "\n",
+ "#Result \n",
+ "print 'decibel total voltage gain Av(dB) = ',round(Av_db,2),'dB'\n",
+ "print 'decibel voltage gain Av1(dB) = ',Av_db1,'dB'\n",
+ "print 'decibel voltage gain Av2(dB) = ',round(Av_db2,2),'dB'\n",
+ "print 'so, again, decibel total voltage gain by addition of both: Avt(dB) = ',round(Avt_db,2),'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "decibel total voltage gain Av(dB) = 86.02 dB\n",
+ "decibel voltage gain Av1(dB) = 40.0 dB\n",
+ "decibel voltage gain Av2(dB) = 46.02 dB\n",
+ "so, again, decibel total voltage gain by addition of both: Avt(dB) = 86.02 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-9, Page 577"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.9.py\n",
+ "#Impedance matched stages with R=50 Ohm. \n",
+ "#Find total decibel gain, total power gain & total voltage gain.\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Av_db1=23 #voltage gain1(dB)\n",
+ "Av_db2=36 #voltage gain2(dB)\n",
+ "Av_db3=31 #voltage gain3(dB)\n",
+ "\n",
+ "#Calculation\n",
+ "Avt_db=Av_db1+Av_db2+Av_db3 #decibel total voltage gain(dB)\n",
+ "Ap=10**(Avt_db/10) #power gain by taking antilog\n",
+ "Avt=10**(Avt_db/20.0) #total voltage gain by taking antilog\n",
+ "\n",
+ "#Result \n",
+ "print 'decibel total voltage gain Avt(dB) = ',Avt_db,'dB'\n",
+ "print 'power gain Ap = ',Ap\n",
+ "print 'total voltage gain Avt = ',math.ceil(Avt)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "decibel total voltage gain Avt(dB) = 90 dB\n",
+ "power gain Ap = 1000000000\n",
+ "total voltage gain Avt = 31623.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-10, Page 577"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.10.py\n",
+ "#In preceding example, What is ordinary Av of each stage?\n",
+ "\n",
+ "#Variable declaration\n",
+ "Av_db1=23 #voltage gain1(dB)\n",
+ "Av_db2=36 #voltage gain2(dB)\n",
+ "Av_db3=31 #voltage gain3(dB)\n",
+ "\n",
+ "#Calculation\n",
+ "Av1=10**(Av_db1/20.0) #voltage gain of stage 1 by taking antilog\n",
+ "Av2=10**(Av_db2/20.0) #voltage gain of stage 2 by taking antilog\n",
+ "Av3=10**(Av_db3/20.0) #voltage gain of stage 3 by taking antilog\n",
+ "\n",
+ "#Result \n",
+ "print 'voltage gain of stage 1 : Av1 = ',round(Av1,2)\n",
+ "print 'voltage gain of stage 1 : Av2 = ',round(Av2,2)\n",
+ "print 'voltage gain of stage 1 : Av3 = ',round(Av3,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "voltage gain of stage 1 : Av1 = 14.13\n",
+ "voltage gain of stage 1 : Av2 = 63.1\n",
+ "voltage gain of stage 1 : Av3 = 35.48\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-11, Page 579"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.11.py\n",
+ "#Output of an amplifier is 24 dBm. What is output power?\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ap_dbm=24 #power gain(dBm)\n",
+ "\n",
+ "#Calculation\n",
+ "P=10**(Ap_dbm/10.0) #Output power(mW)\n",
+ "\n",
+ "#Result \n",
+ "print 'Output power P = ',round(P,2),'mW'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output power P = 251.19 mW\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-12, Page 580"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.12.py\n",
+ "#Output of an amplifier is -34 dBV. What is output voltage?\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "Av_dbV=-34 #voltage gain(dBV)\n",
+ "\n",
+ "#Calculation\n",
+ "V=10**(Av_dbV/20.0) #Output voltage(V)\n",
+ "\n",
+ "#Result \n",
+ "print 'Output voltage V = ',math.ceil(V*1000),'mV'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output voltage V = 20.0 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-13, Page 583"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.13.py\n",
+ "#OP-Amp gives midband Av of 100,000. \n",
+ "#a cutoff f=10Hz, and roll off rate of 20 dB per decade. find ordinary voltage gain at 1MHz.\n",
+ "\n",
+ "#Variable declaration\n",
+ "Avm=100000 #mid band voltage gain\n",
+ "f2=10 #cutoff frequency (Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "Av_db=20*math.log10(Avm) #decibel total voltage gain(dB)\n",
+ "\n",
+ "#Result\n",
+ "print 'voltage gain for 10Hz = ',Av_db1,'dB'\n",
+ "print 'At 1MHz, due to roll off factor of 20 dB, voltage gain reduce to 0 dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "voltage gain for 10Hz = 20.0 dB\n",
+ "At 1MHz, due to roll off factor of 20 dB, voltage gain reduce to 0 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-14, Page 588"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.14.py\n",
+ "#Draw ideal bode plot for lag circuit of figure 16-18a.\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "R=5*10**3 #resistance(Ohm)\n",
+ "C=100*10**-12 #Capacitance (F)\n",
+ "\n",
+ "#Calculation\n",
+ "f2=(2*math.pi*R*C)**-1 #cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'cutoff frequency f2 = ',round((f2/1000),2),'KHz'\n",
+ "print 'After f2, response rolls off at rate of 20 dB/decade'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cutoff frequency f2 = 318.31 KHz\n",
+ "After f2, response rolls off at rate of 20 dB/decade\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-15, Page 589"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.15.py\n",
+ "#dc amplifier stage has a midband Av of 100. \n",
+ "#If RTH facing bypass capacitor is 2KOhm. What is the ideal bode plot?\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "R=2*10**3 #resistance(Ohm)\n",
+ "C=500*10**-12 #Capacitance (F)\n",
+ "\n",
+ "#Calculation\n",
+ "f2=(2*math.pi*R*C)**-1 #cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'cutoff frequency f2 = ',round((f2/1000),2),'KHz'\n",
+ "print 'After f2, response rolls off at rate of 20 dB/decade up to funity of 15.9 MHz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cutoff frequency f2 = 159.15 KHz\n",
+ "After f2, response rolls off at rate of 20 dB/decade up to funity of 15.9 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-17, Page 592"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.17.py\n",
+ "#The amplifier of figure 16-22a has a Av of 100,000.\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "R=5.3*10**3 #resistance(Ohm)\n",
+ "C=30*10**-12 #Capacitance (F)\n",
+ "Av=100000 #voltage gain\n",
+ "\n",
+ "#Calculation\n",
+ "Cout_M=C #input Miller Capacitance (F)\n",
+ "Cin_M=Av*C #input Miller Capacitance (F)\n",
+ "f2=(2*math.pi*R*Cin_M)**-1 #cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'cutoff frequency f2 = ',round(f2,3),'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cutoff frequency f2 = 10.01 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-18, Page 595"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.18.py\n",
+ "#What is upper cutoff frequency for circuit shown in figure 16-24a?\n",
+ "\n",
+ "#Variable declaration\n",
+ "TR=1*10**-6 #rise time(s)\n",
+ "\n",
+ "#Calculation\n",
+ "f2=0.35/TR #cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'cutoff frequency f2 = ',f2/1000,'KHz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cutoff frequency f2 = 350.0 KHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-19, Page 597"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.19.py\n",
+ "#calculate low-cutoff frequency for each coupling and by-pass capacitor. \n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "re=22.7 #from past dc calculation (example:9-5)(Ohm)\n",
+ "VCC=10 #collector voltage(V)\n",
+ "RC=3.6 #Collector resistance (KOhm)\n",
+ "RE=1 #Emitter resistance (KOhm)\n",
+ "R1=10 #Base resistance1 (KOhm)\n",
+ "R2=2.2 #Base resistance2 (KOhm)\n",
+ "VBE=0.7 #Base-emitter voltage drop(V)\n",
+ "RL=10 #Load resistance2 (KOhm)\n",
+ "B=150 #current gain\n",
+ "RG=0.6 #source resistance(KOhm)\n",
+ "C1=0.47*10**-6 #input capacitance(F)\n",
+ "C3=2.2*10**-6 #output capacitance(F)\n",
+ "C2=10*10**-6 #emitter capacitance(F)\n",
+ "\n",
+ "#Calculation\n",
+ "Rinb=B*re/1000 #Rin(base) (KOhm)\n",
+ "Ri=RG+((R1**-1)+(Rinb**-1)+(R2**-1))**-1 #thevenin resistance facing i/p capacitor\n",
+ "f1i=((2*math.pi*Ri*C1)**-1)/1000 #input cutoff frequency (Hz)\n",
+ "Ro=RC+RL #thevenin resistance facing o/p capacitor\n",
+ "f1o=((2*math.pi*Ro*C3)**-1)/1000 #output cutoff frequency (Hz)\n",
+ "Zout=(((RE**-1)+((re/1000)**-1))**-1)+((((R1**-1)+(R2**-1)+(RG**-1))**-1)/B) #thevenin resistance facing emitter-bypass capacitor\n",
+ "f1z=((2*math.pi*Zout*C2)**-1)/1000 #cutoff frequency for bypass circuit (Hz)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print 'input cutoff frequency f1 = ',round(f1i,2),'Hz'\n",
+ "print 'output cutoff frequency f1 = ',round(f1o,2),'Hz'\n",
+ "print 'cutoff frequency for bypass circuit f1 = ',round(f1z,2),'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "input cutoff frequency f1 = 190.36 Hz\n",
+ "output cutoff frequency f1 = 5.32 Hz\n",
+ "cutoff frequency for bypass circuit f1 = 631.63 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-20, Page 602"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.20.py\n",
+ "#calculate high cutoff frequency for base bypass and collector bypass circuit. \n",
+ "#B=150 & Cstray=10pF.\n",
+ "\n",
+ "import math # This will import math module\n",
+ "\n",
+ "#Variable declaration\n",
+ "re=22.7 #from past dc calculation (example:9-5)(Ohm)\n",
+ "VCC=10 #collector voltage(V)\n",
+ "RC=3.6 #Collector resistance (KOhm)\n",
+ "RE=1 #Emitter resistance (KOhm)\n",
+ "R11=10 #Base resistance1 (KOhm)\n",
+ "R12=2.2 #Base resistance2 (KOhm)\n",
+ "RL=10 #Load resistance2 (KOhm)\n",
+ "B=150 #current gain\n",
+ "RG=0.6 #source resistance(KOhm)\n",
+ "fT=300*10**6 #current gain bandwidth product(Hz)\n",
+ "CC1=2.1*10**-12 #Cc' capacitance(F)\n",
+ "Cs=10*10**-12 #stray capacitance(F)\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Rinb=B*re/1000 #Rin(base) (KOhm)\n",
+ "Ce1=((2*math.pi*re*fT)**-1) #capacitance Ce'(F)\n",
+ "rc=RC*RL/(RC+RL) #collector resistance(KOhm) \n",
+ "rg=((R11**-1)+(RG**-1)+(R12**-1))**-1 #source resistance (Ohm)\n",
+ "Av=math.ceil(1000*rc/re) #voltage gain\n",
+ "Cin_M=CC1*(Av+1) #input Miller capacitance(F)\n",
+ "C1=Ce1+Cin_M #base bypass capacitance(F)\n",
+ "R1=int(1000*rg*Rinb/(rg+Rinb)) #resistance facing this capacitance(Ohm) \n",
+ "f2=((2*math.pi*R1*C1)**-1) #base bypass circuit cutoff frequency (Hz)\n",
+ "Cout_M=CC1*((Av+1)/Av) #output Miller capacitance(F)\n",
+ "C2=Cout_M+Cs #output bypass capacitance(F)\n",
+ "R2=1000*RC*RL/(RC+RL) #resistance facing this capacitance(Ohm)\n",
+ "f21=((2*math.pi*R2*C2)**-1) #collector bypass circuit cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'base bypass circuit cutoff frequency f2 = ',round((f2/10**6),2),'MHz'\n",
+ "print 'collector bypass circuit cutoff frequency f21 = ',round((f21/10**6),2),'MHz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "base bypass circuit cutoff frequency f2 = 1.48 MHz\n",
+ "collector bypass circuit cutoff frequency f21 = 4.96 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-21, Page 605"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.21.py\n",
+ "#Determine input-coupling & output coupling circuit low-frequency cutoff points.\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "re=22.7 #from past dc calculation (example:9-5)(Ohm)\n",
+ "RC=3.6 #Collector resistance (KOhm)\n",
+ "R1=2*10**6 #Base resistance1 (Ohm)\n",
+ "R2=1*10**6 #Base resistance2 (Ohm)\n",
+ "RD=150 #drain resistance(Ohm) \n",
+ "RL=1*10**3 #Load resistance2 (Ohm)\n",
+ "RG=0.6*10**3 #source resistance(Ohm)\n",
+ "Cin=0.1*10**-6 #Cin capacitance(F)\n",
+ "Cout=10*10**-6 #Cout capacitance(F)\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Rthi=RG+((R1**-1)+(R2**-1))**-1 #Thevenin resistance facing input coupling capacitor resistance (Ohm)\n",
+ "f1=((2*math.pi*Rthi*Cin)**-1) #base bypass circuit cutoff frequency (Hz)\n",
+ "Rtho=RD+RL #Thevenin resistance facing output coupling capacitor resistance (Ohm)\n",
+ "f2=((2*math.pi*Rtho*Cout)**-1) #base bypass circuit cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'base bypass circuit cutoff frequency f1 = ',round(f1,2),'Hz'\n",
+ "print 'collector bypass circuit cutoff frequency f2 = ',round(f2,2),'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "base bypass circuit cutoff frequency f1 = 2.39 Hz\n",
+ "collector bypass circuit cutoff frequency f2 = 13.84 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16-22, Page 606"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 16.22.py\n",
+ "#In figure 16-32, capacitances are: Ciss=60 pF, Coss=25 pF, Crss=5 pF.\n",
+ "#gm=97mS then find high frequency cut off values for gate & drain circuits.\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ciss=60 #Capacitance Ciss (pF)\n",
+ "Coss=25 #Capacitance Coss (pF)\n",
+ "Crss=5 #Capacitance Crss (pF)\n",
+ "gm=93*10**-3 #gm (S)\n",
+ "R1=2*10**6 #resiatance 1(Ohm)\n",
+ "R2=1*10**6 #resiatance 2(Ohm)\n",
+ "RG=600 #resiatance(Ohm)\n",
+ "RD=150 #resiatance(Ohm)\n",
+ "RL=1*10**3 #load resiatance(Ohm)\n",
+ "\n",
+ "#Calculation\n",
+ "Cgd=Crss #Internal Capacitance Cgd (pF)\n",
+ "Cgs=Ciss-Crss #Internal Capacitance Cgs (pF)\n",
+ "Cds=Coss-Crss #Internal Capacitance Cds (pF)\n",
+ "rd=((RD**-1)+(RL**-1))**-1 #rd (Ohm)\n",
+ "Av=gm*rd #voltage gain\n",
+ "Cin_M=Cgd*(Av+1) #Cin(M) (pF)\n",
+ "C=Cgs+Cin_M #gate bypass capacitance (pF)\n",
+ "R=((R1**-1)+(R2**-1)+(RG**-1))**-1 #resistance (Ohm)\n",
+ "f2=((2*math.pi*R*C*10**-12)**-1) #gate bypass cutoff frequency (Hz)\n",
+ "Cout_M=Cgd*((Av+1)/Av) #Cout(M) (pF)\n",
+ "C1=Cds+Cout_M #drain bypass capacitance(pF)\n",
+ "f21=((2*math.pi*rd*C1*10**-12)**-1) #drain bypass cutoff frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print 'Gate bypass cutoff frequency = ',round(f2*10**-6,2),'MHz'\n",
+ "print 'Drain bypass cutoff frequency = ',round(f21*10**-6,2),'MHz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gate bypass cutoff frequency = 2.2 MHz\n",
+ "Drain bypass cutoff frequency = 48.02 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file