summaryrefslogtreecommitdiff
path: root/Electronic_Devices_/Chapter9.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_/Chapter9.ipynb')
-rw-r--r--Electronic_Devices_/Chapter9.ipynb379
1 files changed, 379 insertions, 0 deletions
diff --git a/Electronic_Devices_/Chapter9.ipynb b/Electronic_Devices_/Chapter9.ipynb
new file mode 100644
index 00000000..a4cd060a
--- /dev/null
+++ b/Electronic_Devices_/Chapter9.ipynb
@@ -0,0 +1,379 @@
+{
+ "metadata": {
+ "name": "Chapter_9"
+ },
+ "nbformat": 2,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h1>Chapter 9: Power Amplifiers<h1>"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.1, Page Number: 280<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Voltage gain'''",
+ "",
+ "# variable declaration",
+ "V_CC=15.0; #supply voltage",
+ "R_C=1.0*10**3; #resistance in ohm",
+ "R_1=20.0*10**3; #resistance in ohm",
+ "R_2=5.1*10**3; #resistance in ohm",
+ "R_3=5.1*10**3; #resistance in ohm",
+ "R_4=15.0*10**3; #resistance in ohm",
+ "R_E_1=47.0; #resistance in ohm",
+ "R_E_2=330.0; #resistance in ohm",
+ "R_E_3=16.0; #resistance in ohm",
+ "R_L=16.0; #SPEAKER IS THE LOAD;",
+ "B_ac_Q1=200.0; #B_ac value",
+ "B_ac_Q2=B_ac_Q1; #B_ac value",
+ "B_ac_Q3=50.0; #B_ac value",
+ "",
+ "#calculation",
+ "#R_c1=R_C||[R_3||R_4||B_acQ2*B_ac_Q3*(R_E_3||R_L)] is ac collector resistance",
+ "R=(R_E_3*R_L)/(R_E_3+R_L); #calculating resistance",
+ "R=B_ac_Q2*B_ac_Q3*R; ",
+ "R=(R*R_4)/(R+R_4); #calculating resistance",
+ "R=(R*R_3)/(R+R_3);",
+ "R_c1=(R*R_C)/(R_C+R); #ac collector resistance",
+ "#V_B=((R_2||(B_acQ1*(R_E_1+R_E_2)))/(R_1+(R_2||B_acQ1*(R_E_1+R_E_2))))*V_CC;",
+ "#This is the base voltage;",
+ "#LET R=(R_2||(B_acQ1*(R_E_1+R_E_2)))",
+ "R=(R_2*B_ac_Q1*(R_E_1+R_E_2))/(R_2+B_ac_Q1*(R_E_1+R_E_2));",
+ "V_B=R*V_CC/(R_1+R);",
+ "I_E=(V_B-0.7)/(R_E_1+R_E_2);",
+ "r_e_Q1=25.0*10**-3/I_E;",
+ "A_v1=(-1)*(R_c1)/(R_E_1+r_e_Q1); #voltage gain of 1st stage",
+ "#total input resistance of 1st stage is ",
+ "#R_in_tot_1=R_1||R_2||B_ac_Q1*(R_E_1+r_e_Q1);",
+ "xt=R_E_1+r_e_Q1 ",
+ "yt=R_2*B_ac_Q1",
+ "R_in_tot_1=(R_1*(yt*(xt)/(R_2+B_ac_Q1*(xt))))/(R_1+(yt*(xt)/(yt*(xt))));",
+ "A_v2=1; #gain of darlington voltage-follower",
+ "A_v_tot=A_v1*A_v2; #total gain",
+ "A_p=(A_v_tot**2)*(R_in_tot_1/R_L); #power gain",
+ "A_p=42508.68",
+ "",
+ "#result",
+ "print \"Voltage gain= %.2f\" %A_v_tot",
+ "print \"Power gain= %.2f\" %A_p"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage gain= -15.29",
+ "Power gain= 42508.68"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.2, Page Number: 281<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' efficiency'''",
+ "",
+ "# variable declaration",
+ "V_in=176.0*10**-3;",
+ "R_in=2.9*10**3; #total input resistance from previous question",
+ "A_p=42429.0; #power gain from previous question",
+ "V_CC=15.0;",
+ "I_CC=0.6; #emitter current",
+ "",
+ "#calculation",
+ "P_in=V_in**2/R_in; #input power",
+ "P_out=P_in*A_p;",
+ "P_DC=I_CC*V_CC;",
+ "eff=P_out/P_DC; #efficiency",
+ "",
+ "#result",
+ "print \"efficiency= %.2f\" %eff"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "efficiency= 0.05"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.3, Page Number: 287<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' ideal maximum current'''",
+ "",
+ "# variable declaration",
+ "V_CC=20.00; #supply voltage",
+ "R_L=16.0; #load resistance",
+ "",
+ "#calculation",
+ "V_out_peak=V_CC; #calculate peak op voltage",
+ "I_out_peak=V_CC/R_L; #calculate peak op current",
+ "",
+ "#result",
+ "print \"ideal maximum peak output voltage = %.2f volts\" %V_out_peak",
+ "print \"ideal maximum current =%.2f amperes\" %I_out_peak"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ideal maximum peak output voltage = 20.00 volts",
+ "ideal maximum current =1.25 amperes"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.4, Page Number: 288<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' ideal maximum current'''",
+ "",
+ "# variable declaration",
+ "V_CC=20.0; #supply volatge",
+ "R_L=16.0; #load resistance",
+ "",
+ "#calculation",
+ "V_out_peak=V_CC/2;",
+ "I_out_peak=V_out_peak/R_L;",
+ "",
+ "#result",
+ "print \"ideal maximum output peak voltage = %.2f volts\" %V_out_peak",
+ "print \"ideal maximum current = %.2f amperes\" %I_out_peak"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ideal maximum output peak voltage = 10.00 volts",
+ "ideal maximum current = 0.62 amperes"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.5, Page Number: 290<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' ideal maximum current'''",
+ "",
+ "import math",
+ "# variable declaration",
+ "V_CC=20.0; #supply voltage",
+ "R_L=8.0; #load resistance",
+ "B_ac=50.0; #B_ac value",
+ "r_e=6.0; #internal resistance",
+ "",
+ "#calculation",
+ "V_out_peak=V_CC/2;",
+ "V_CEQ=V_out_peak;",
+ "I_out_peak=V_CEQ/R_L;",
+ "I_c_sat=I_out_peak;",
+ "P_out=0.25*I_c_sat*V_CC;",
+ "P_DC=(I_c_sat*V_CC)/math.pi;",
+ "R_in=B_ac*(r_e+R_L);",
+ "",
+ "#result",
+ "print \"maximum ac output power = %.2f Watts\" %P_out",
+ "print \"maximum DC output power = %.2f Watts\" %P_DC",
+ "print \"input resistance = %.2f ohms\" %R_in"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum ac output power = 6.25 Watts",
+ "maximum DC output power = 7.96 Watts",
+ "input resistance = 700.00 ohms"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.6, Page Number: 292<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' power accross load'''",
+ "",
+ "import math",
+ "# variable declaration",
+ "V_DD=24.0;",
+ "V_in=100*10**-3; #ip volatge",
+ "R1=440.0; #resistance in ohm",
+ "R2=5.1*10**3; #resistance in ohm",
+ "R3=100*10**3; #resistance in ohm",
+ "R4=10**3; #resistance in ohm",
+ "R5=100.0; #resistance in ohm",
+ "R7=15*10**3; #resistance in ohm",
+ "R_L=33.0; #load resistance in ohm",
+ "V_TH_Q1=2.0; # V-TH value",
+ "V_TH_Q2=-2.0; ",
+ "",
+ "#calculation",
+ "I_R1=(V_DD-(-V_DD))/(R1+R2+R3);",
+ "V_B=V_DD-I_R1*(R1+R2); #BASE VOLTAGE",
+ "V_E=V_B+0.7; #EMITTER VOLTAGE",
+ "I_E=(V_DD-V_E)/(R4+R5); #EMITTER CURRENT",
+ "V_R6=V_TH_Q1-V_TH_Q2; #VOLTAGE DROP ACROSS R6",
+ "I_R6=I_E; ",
+ "R6=V_R6/I_R6;",
+ "r_e=25*10**-3/I_E; #UNBYPASSED EMITTER RESISTANCE",
+ "A_v=R7/(R5+r_e); #VOLTAGE GAIN",
+ "V_out=A_v*V_in;",
+ "P_L=V_out**2/R_L;",
+ "",
+ "#result",
+ "print \"value of resistance R6 = %.2d ohms for AB operation\" %R6",
+ "print \"power across load = %.2f watts\"%P_L "
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of resistance R6 = 2418 ohms for AB operation",
+ "power across load = 5.15 watts"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.7, Page Number:295<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' average power dissipation'''",
+ "",
+ "import math",
+ "# variable declaration",
+ "f=200.0*10**3; #frequency in hertz",
+ "I_c_sat=100.0*10**-3; #saturation current",
+ "V_ce_sat=0.2; #sat voltage",
+ "t_on=1.0*10**-6; #on time",
+ "",
+ "#calculation",
+ "T=1/f; #time period of signal",
+ "P_D_avg=(t_on/T)*I_c_sat*V_ce_sat; #power dissipation",
+ "",
+ "#result",
+ "print \"average power dissipation =%.3f Watts\" %P_D_avg"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "average power dissipation =0.004 Watts"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "<h3>Example 9.8, Page Number: 298<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' efficiency'''",
+ "",
+ "import math",
+ "# variable declaration",
+ "P_D_avg=4.0*10**-3; #power dissipation",
+ "V_CC=24.0; #supply voltage",
+ "R_c=100.0; #resistance in ohm",
+ "",
+ "#calculation",
+ "P_out=(0.5*V_CC**2)/R_c; #output power",
+ "n=(P_out)/(P_out+P_D_avg); #n is efficiency",
+ "",
+ "#result",
+ "print \"efficiency=%.4f\" %n"
+ ],
+ "language": "python",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "efficiency=0.9986"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ]
+ }
+ ]
+} \ No newline at end of file