diff options
Diffstat (limited to 'Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb')
-rw-r--r-- | Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb | 569 |
1 files changed, 569 insertions, 0 deletions
diff --git a/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb b/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb new file mode 100644 index 00000000..a9d0084e --- /dev/null +++ b/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17 : MicroWave Devices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1 : pg 621" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The max usable freq is 7500000000.0 Hz\n" + ] + } + ], + "source": [ + "#calculate the max usable freq\n", + "#page no 621\n", + "#prob no. 17.1\n", + "#given\n", + "#TE10 mode in air dielectric mode with inside cross sectn=2cm*4cm\n", + "#Determination of cut-off freq \n", + "a=4.*10**-2;#largest dimn is used for calculation \n", + "c=3.*10**8;#Speed of light in m/s\n", + "#calculations\n", + "fc=c/(2*a);\n", + "#Determination of dominant mode of propagation over 2:1\n", + "MUF=2*fc;\n", + "#results\n", + "print 'The max usable freq is',MUF,'Hz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2 : pg 624" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The group velocity is 198431348.33 m/s\n" + ] + } + ], + "source": [ + "#calculate the group velocity \n", + "#page no 624\n", + "#prob no. 17.2\n", + "#Determination of group velocity for waveguide in example 7.1\n", + "from math import sqrt\n", + "#given\n", + "f=5*10**9;#freq.in Hz\n", + "fc=3.75*10**9;#cut-off freq from eg.7.1\n", + "c=3.*10**8;#speed of light in m/s\n", + "#calculations\n", + "vg=c*sqrt(1-(fc/f)**2);\n", + "#results\n", + "print 'The group velocity is',vg,'m/s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3 : pg 624" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The group velocity for 12GHz signal is 165831239.518 m/s\n", + "The group velocity for 17GHz signal is 242606948.556 m/s\n", + "The diffn in the travel times for 2 signals is 9.5416670466e-08 sec\n" + ] + } + ], + "source": [ + "#calculate the froup velocity \n", + "#page no 624\n", + "#prob no. 17.3\n", + "#A waveguide with fc=10GHz.2 signal with frequency 12 & 17GHz propogate down=50m\n", + "from math import sqrt\n", + "#given\n", + "fc=10*10**9;c=3.*10**8;f1=12.*10**9;f2=17.*10**9;d=50.;\n", + "#calculations and results\n", + "#Determination of group velocity for 12GHz\n", + "vg1=c*sqrt(1-(fc/f1)**2);\n", + "print 'The group velocity for 12GHz signal is',vg1,'m/s'\n", + "#Determination of group velo for 17GHz\n", + "vg2=c*sqrt(1-(fc/f2)**2);\n", + "print 'The group velocity for 17GHz signal is',vg2,'m/s'\n", + "#Determination of time taken for 50m dist by f1\n", + "t1=d/vg1;\n", + "#Determination of time taken for 50m dist by f2\n", + "t2=d/vg2;\n", + "#Determination of diffn in the travel times for 2 signals \n", + "dela=t1-t2;\n", + "print 'The diffn in the travel times for 2 signals is',dela,'sec'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4 : pg 627" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The phase velocity is 453557367.611 m/s\n" + ] + } + ], + "source": [ + "#calculate the phase velocity \n", + "#page no 627\n", + "#prob no. 17.4\n", + "#Determination of phase velo.with given 5GHz freq\n", + "from math import sqrt\n", + "#given\n", + "f=5.*10**9;c=3.*10**8;fc=3.75*10**9;#Cut-off freq refering eg.17.1\n", + "#calculations\n", + "vp=c/sqrt(1-(fc/f)**2);#Calculation of phase velo.\n", + "#results\n", + "print 'The phase velocity is',vp,'m/s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5 : pg 628" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The characteristic impedance of waveguide is 569.97 ohm\n" + ] + } + ], + "source": [ + "#calculate the characteristic impedanccec of waveguide\n", + "#page no 628\n", + "#prob no. 17.5\n", + "from math import sqrt\n", + "#given\n", + "#determination of characteristic impedance of waveguide with given 5GHz freq\n", + "f=5*10**9;fc=3.75*10**9;#Refering in eg. 17.4\n", + "#calculations\n", + "Zo=377/sqrt(1-(fc/f)**2);\n", + "#results\n", + "print 'The characteristic impedance of waveguide is',round(Zo,3),'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7 : pg 631" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The signal level in main guide is 19.0 dBm\n", + "The signal level in secondary guide is 0.0 dBm\n", + "The signal level from sec guide when reversed guide is -40.0 dBm\n" + ] + } + ], + "source": [ + "#page no 631\n", + "#prob no. 17.7\n", + "#calculate the signal level in all cases\n", + "#A signal with level of 20dBm & insertion loss=1dB & coupling =20dB,directivity=40dB\n", + "#given\n", + "sig_in=20.;loss=1.;couple=20.;direct=40.;\n", + "#calculations and results\n", + "#Determination of signal level in main guide\n", + "sig_level_main=sig_in-loss;\n", + "print 'The signal level in main guide is ',sig_level_main,'dBm'\n", + "#Determination of signal level in secondary guide\n", + "sig_level_sec=sig_in-couple;\n", + "print 'The signal level in secondary guide is',sig_level_sec,'dBm'\n", + "#If signal dirn in main guide were reveresed,the signal level in sec gide would reduced by 40dB to\n", + "sig_sec_rev=(sig_level_sec)-(direct);\n", + "print 'The signal level from sec guide when reversed guide is',sig_sec_rev,'dBm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8 : pg 642" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The frequency of oscillation is 14285714285.7 Hz\n" + ] + } + ], + "source": [ + " \n", + "#page no 642\n", + "#prob no. 17.8\n", + "#calculate the frequency of oscillation\n", + "#given\n", + "#A Gunn device with thickness=7um\n", + "d=7*10**-6;v=10**5;#Basic velocity of e\n", + "#calculations\n", + "t=d/v;#Basic velocity relation\n", + "#Determination of freq of oscillation\n", + "f=1/t;#Inverse of period is freq\n", + "#results\n", + "print 'The frequency of oscillation is',f,'Hz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9 : pg 648" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The duty cycle is 0.065\n", + "The length of pulse is 0.00065 sec\n" + ] + } + ], + "source": [ + " \n", + "#page no 648\n", + "#prob no. 17.9\n", + "#calculate the duty cycle and length of pulse\n", + "#given\n", + "#A pulse magnetron with avg power=1.2kW & peak power=18.5kW & 1 pulse is generated every 10ms\n", + "Pavg=1.2*10**3;Pp=18.5*10**3;Tt=10.*10**-3;\n", + "#calculations\n", + "#Determination of duty cycle\n", + "D=Pavg/Pp;\n", + "#Determination of length of pulse\n", + "Ton=D*Tt;\n", + "#results\n", + "print 'The duty cycle is',round(D,3)\n", + "print 'The length of pulse is',round(Ton,5),'sec'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10 : pg 652" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a)The gain is 15.763 dBi\n", + "b)The beamwidth in H-plane is 26.923 degree\n", + "c)The beamwidth in H-plane is 28.966 degree\n" + ] + } + ], + "source": [ + " \n", + "#page no 652\n", + "#prob no. 17.10\n", + "#calculate the gain and beam width in all cases\n", + "import math\n", + "#A pyramidal horn has aperture=58mm in E-plane & 78mm in H-plane & operates at 10GHz\n", + "#given\n", + "f=10*10**9;c=3.*10**8;dH=78.*10**-3;dE=58.*10**-3;\n", + "#calculations and results\n", + "#a)Determination of gain in dB\n", + "wl=c/f;#calculation of wavelength\n", + "G=(7.5*dE*dH)/(wl**2);\n", + "G_dBi=10*math.log10(G);#Converting to dBi\n", + "print 'a)The gain is',round(G_dBi,3),'dBi'\n", + "#b)Determination of beamwidth in H-palne\n", + "theta_H=(70*wl)/dH;\n", + "print 'b)The beamwidth in H-plane is',round(theta_H,3),'degree'\n", + "#c)Determination of beamwidth in E-plane\n", + "theta_E=(56*wl)/dE;\n", + "print 'c)The beamwidth in H-plane is',round(theta_E,3),'degree'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11 : pg 654" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The antenna width = 53.03 m and The antenna length = 53.03 m\n" + ] + } + ], + "source": [ + " \n", + "#page no 654\n", + "# problem no 17.11\n", + "#calculate the width and length of the antenna\n", + "#given\n", + "from math import sqrt\n", + "#for a square patch antenna\n", + "f=2*10**6;# freq of operation in Hz\n", + "Er=2;# relative permittivity\n", + "c=3*10**8;# velo of light\n", + "#calculations\n", + "#wavelength is given as\n", + "wl=c/(f*sqrt(Er));\n", + "#The antenna width and length are each approximately half of this.\n", + "w=wl/2;\n", + "l=wl/2;\n", + "#results\n", + "print 'The antenna width = ',round(w,2),'m ','and ','The antenna length = ',round(l,2),'m'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12 : pg 657" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The received power is 1.01251354638e-14 W\n" + ] + } + ], + "source": [ + " \n", + "#page no 657\n", + "#prob no. 17.12\n", + "#calculate the received power\n", + "import math\n", + "#A radar Tx has power=10kW at freq=9.5GHz & target at 15km with cross sectn=10.2 m2 with gain of antenna is 20dBi\n", + "f=9.5*10**9;Pt=10.*10**3;c=3.*10**8;G_dBi=20.;a=10.2;r=15.*10**3;\n", + "#calculations\n", + "#Determination of received power\n", + "wl=c/f;#calculating wavelength\n", + "G=10**(G_dBi/10.);#Converting to power ratio\n", + "Pr=((wl**2)*Pt*(G**2)*a)/(((4*math.pi)**3)*(r**4));\n", + "#results\n", + "print 'The received power is',Pr,'W'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13 : pg 659" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The distance of target is 2250.0 m\n", + "The maximum range is 150000.0 m\n", + "The minimum range is 150.0 m\n" + ] + } + ], + "source": [ + " \n", + "#page no 659\n", + "#prob no. 17.13a\n", + "#calculate the distance of target\n", + "#a pulse sent,returns after 15us\n", + "#given\n", + "t=15*10**-6;c=3.*10**8;\n", + "tp=10**-6;#pulse duration of pulse radar\n", + "f=10**3;#operating freq in Hz\n", + "#calculations\n", + "#Determination of distance of target\n", + "R=(c*t)/2;\n", + "#The maximum unambiguous range is \n", + "Rmax=c/(2*f);\n", + "#The minimum unambiguous range is \n", + "Rmin=c*tp/2;\n", + "#results\n", + "print 'The distance of target is',R,'m'\n", + "print 'The maximum range is ',Rmax,'m'\n", + "print 'The minimum range is ',Rmin,'m'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14 : pg 662" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Doppler shift is 1777.78 Hz\n" + ] + } + ], + "source": [ + " \n", + "#page no 662\n", + "#prob no. 17.14\n", + "#calculate the doppler shift\n", + "#given\n", + "v=60.;#speed of vehicle moving towards radar in mph\n", + "c=3*10**8;#velo of light in m/s\n", + "f=10.**10;# operating frequency in Hz\n", + "#calculations\n", + "# conversion of speed from mph to km/hr\n", + "v1=60*1.6;\n", + "# conversion of speed from km/hr to m/s\n", + "v2=v1*10**3/3600.;\n", + "# Now the Doppler shift is found as\n", + "fd=2*v2*f/c;\n", + "#results\n", + "print 'The Doppler shift is ',round(fd,2),'Hz'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |