summaryrefslogtreecommitdiff
path: root/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb')
-rw-r--r--Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb569
1 files changed, 569 insertions, 0 deletions
diff --git a/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb b/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb
new file mode 100644
index 00000000..a9d0084e
--- /dev/null
+++ b/Electronic_Communication_Systems_by_Roy_Blake/Chapter17.ipynb
@@ -0,0 +1,569 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17 : MicroWave Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1 : pg 621"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The max usable freq is 7500000000.0 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#calculate the max usable freq\n",
+ "#page no 621\n",
+ "#prob no. 17.1\n",
+ "#given\n",
+ "#TE10 mode in air dielectric mode with inside cross sectn=2cm*4cm\n",
+ "#Determination of cut-off freq \n",
+ "a=4.*10**-2;#largest dimn is used for calculation \n",
+ "c=3.*10**8;#Speed of light in m/s\n",
+ "#calculations\n",
+ "fc=c/(2*a);\n",
+ "#Determination of dominant mode of propagation over 2:1\n",
+ "MUF=2*fc;\n",
+ "#results\n",
+ "print 'The max usable freq is',MUF,'Hz'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2 : pg 624"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The group velocity is 198431348.33 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#calculate the group velocity \n",
+ "#page no 624\n",
+ "#prob no. 17.2\n",
+ "#Determination of group velocity for waveguide in example 7.1\n",
+ "from math import sqrt\n",
+ "#given\n",
+ "f=5*10**9;#freq.in Hz\n",
+ "fc=3.75*10**9;#cut-off freq from eg.7.1\n",
+ "c=3.*10**8;#speed of light in m/s\n",
+ "#calculations\n",
+ "vg=c*sqrt(1-(fc/f)**2);\n",
+ "#results\n",
+ "print 'The group velocity is',vg,'m/s'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3 : pg 624"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The group velocity for 12GHz signal is 165831239.518 m/s\n",
+ "The group velocity for 17GHz signal is 242606948.556 m/s\n",
+ "The diffn in the travel times for 2 signals is 9.5416670466e-08 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#calculate the froup velocity \n",
+ "#page no 624\n",
+ "#prob no. 17.3\n",
+ "#A waveguide with fc=10GHz.2 signal with frequency 12 & 17GHz propogate down=50m\n",
+ "from math import sqrt\n",
+ "#given\n",
+ "fc=10*10**9;c=3.*10**8;f1=12.*10**9;f2=17.*10**9;d=50.;\n",
+ "#calculations and results\n",
+ "#Determination of group velocity for 12GHz\n",
+ "vg1=c*sqrt(1-(fc/f1)**2);\n",
+ "print 'The group velocity for 12GHz signal is',vg1,'m/s'\n",
+ "#Determination of group velo for 17GHz\n",
+ "vg2=c*sqrt(1-(fc/f2)**2);\n",
+ "print 'The group velocity for 17GHz signal is',vg2,'m/s'\n",
+ "#Determination of time taken for 50m dist by f1\n",
+ "t1=d/vg1;\n",
+ "#Determination of time taken for 50m dist by f2\n",
+ "t2=d/vg2;\n",
+ "#Determination of diffn in the travel times for 2 signals \n",
+ "dela=t1-t2;\n",
+ "print 'The diffn in the travel times for 2 signals is',dela,'sec'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4 : pg 627"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The phase velocity is 453557367.611 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#calculate the phase velocity \n",
+ "#page no 627\n",
+ "#prob no. 17.4\n",
+ "#Determination of phase velo.with given 5GHz freq\n",
+ "from math import sqrt\n",
+ "#given\n",
+ "f=5.*10**9;c=3.*10**8;fc=3.75*10**9;#Cut-off freq refering eg.17.1\n",
+ "#calculations\n",
+ "vp=c/sqrt(1-(fc/f)**2);#Calculation of phase velo.\n",
+ "#results\n",
+ "print 'The phase velocity is',vp,'m/s'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5 : pg 628"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The characteristic impedance of waveguide is 569.97 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#calculate the characteristic impedanccec of waveguide\n",
+ "#page no 628\n",
+ "#prob no. 17.5\n",
+ "from math import sqrt\n",
+ "#given\n",
+ "#determination of characteristic impedance of waveguide with given 5GHz freq\n",
+ "f=5*10**9;fc=3.75*10**9;#Refering in eg. 17.4\n",
+ "#calculations\n",
+ "Zo=377/sqrt(1-(fc/f)**2);\n",
+ "#results\n",
+ "print 'The characteristic impedance of waveguide is',round(Zo,3),'ohm'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7 : pg 631"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The signal level in main guide is 19.0 dBm\n",
+ "The signal level in secondary guide is 0.0 dBm\n",
+ "The signal level from sec guide when reversed guide is -40.0 dBm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#page no 631\n",
+ "#prob no. 17.7\n",
+ "#calculate the signal level in all cases\n",
+ "#A signal with level of 20dBm & insertion loss=1dB & coupling =20dB,directivity=40dB\n",
+ "#given\n",
+ "sig_in=20.;loss=1.;couple=20.;direct=40.;\n",
+ "#calculations and results\n",
+ "#Determination of signal level in main guide\n",
+ "sig_level_main=sig_in-loss;\n",
+ "print 'The signal level in main guide is ',sig_level_main,'dBm'\n",
+ "#Determination of signal level in secondary guide\n",
+ "sig_level_sec=sig_in-couple;\n",
+ "print 'The signal level in secondary guide is',sig_level_sec,'dBm'\n",
+ "#If signal dirn in main guide were reveresed,the signal level in sec gide would reduced by 40dB to\n",
+ "sig_sec_rev=(sig_level_sec)-(direct);\n",
+ "print 'The signal level from sec guide when reversed guide is',sig_sec_rev,'dBm'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8 : pg 642"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The frequency of oscillation is 14285714285.7 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 642\n",
+ "#prob no. 17.8\n",
+ "#calculate the frequency of oscillation\n",
+ "#given\n",
+ "#A Gunn device with thickness=7um\n",
+ "d=7*10**-6;v=10**5;#Basic velocity of e\n",
+ "#calculations\n",
+ "t=d/v;#Basic velocity relation\n",
+ "#Determination of freq of oscillation\n",
+ "f=1/t;#Inverse of period is freq\n",
+ "#results\n",
+ "print 'The frequency of oscillation is',f,'Hz'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9 : pg 648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The duty cycle is 0.065\n",
+ "The length of pulse is 0.00065 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 648\n",
+ "#prob no. 17.9\n",
+ "#calculate the duty cycle and length of pulse\n",
+ "#given\n",
+ "#A pulse magnetron with avg power=1.2kW & peak power=18.5kW & 1 pulse is generated every 10ms\n",
+ "Pavg=1.2*10**3;Pp=18.5*10**3;Tt=10.*10**-3;\n",
+ "#calculations\n",
+ "#Determination of duty cycle\n",
+ "D=Pavg/Pp;\n",
+ "#Determination of length of pulse\n",
+ "Ton=D*Tt;\n",
+ "#results\n",
+ "print 'The duty cycle is',round(D,3)\n",
+ "print 'The length of pulse is',round(Ton,5),'sec'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10 : pg 652"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a)The gain is 15.763 dBi\n",
+ "b)The beamwidth in H-plane is 26.923 degree\n",
+ "c)The beamwidth in H-plane is 28.966 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 652\n",
+ "#prob no. 17.10\n",
+ "#calculate the gain and beam width in all cases\n",
+ "import math\n",
+ "#A pyramidal horn has aperture=58mm in E-plane & 78mm in H-plane & operates at 10GHz\n",
+ "#given\n",
+ "f=10*10**9;c=3.*10**8;dH=78.*10**-3;dE=58.*10**-3;\n",
+ "#calculations and results\n",
+ "#a)Determination of gain in dB\n",
+ "wl=c/f;#calculation of wavelength\n",
+ "G=(7.5*dE*dH)/(wl**2);\n",
+ "G_dBi=10*math.log10(G);#Converting to dBi\n",
+ "print 'a)The gain is',round(G_dBi,3),'dBi'\n",
+ "#b)Determination of beamwidth in H-palne\n",
+ "theta_H=(70*wl)/dH;\n",
+ "print 'b)The beamwidth in H-plane is',round(theta_H,3),'degree'\n",
+ "#c)Determination of beamwidth in E-plane\n",
+ "theta_E=(56*wl)/dE;\n",
+ "print 'c)The beamwidth in H-plane is',round(theta_E,3),'degree'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11 : pg 654"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The antenna width = 53.03 m and The antenna length = 53.03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 654\n",
+ "# problem no 17.11\n",
+ "#calculate the width and length of the antenna\n",
+ "#given\n",
+ "from math import sqrt\n",
+ "#for a square patch antenna\n",
+ "f=2*10**6;# freq of operation in Hz\n",
+ "Er=2;# relative permittivity\n",
+ "c=3*10**8;# velo of light\n",
+ "#calculations\n",
+ "#wavelength is given as\n",
+ "wl=c/(f*sqrt(Er));\n",
+ "#The antenna width and length are each approximately half of this.\n",
+ "w=wl/2;\n",
+ "l=wl/2;\n",
+ "#results\n",
+ "print 'The antenna width = ',round(w,2),'m ','and ','The antenna length = ',round(l,2),'m'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12 : pg 657"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The received power is 1.01251354638e-14 W\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 657\n",
+ "#prob no. 17.12\n",
+ "#calculate the received power\n",
+ "import math\n",
+ "#A radar Tx has power=10kW at freq=9.5GHz & target at 15km with cross sectn=10.2 m2 with gain of antenna is 20dBi\n",
+ "f=9.5*10**9;Pt=10.*10**3;c=3.*10**8;G_dBi=20.;a=10.2;r=15.*10**3;\n",
+ "#calculations\n",
+ "#Determination of received power\n",
+ "wl=c/f;#calculating wavelength\n",
+ "G=10**(G_dBi/10.);#Converting to power ratio\n",
+ "Pr=((wl**2)*Pt*(G**2)*a)/(((4*math.pi)**3)*(r**4));\n",
+ "#results\n",
+ "print 'The received power is',Pr,'W'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13 : pg 659"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The distance of target is 2250.0 m\n",
+ "The maximum range is 150000.0 m\n",
+ "The minimum range is 150.0 m\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 659\n",
+ "#prob no. 17.13a\n",
+ "#calculate the distance of target\n",
+ "#a pulse sent,returns after 15us\n",
+ "#given\n",
+ "t=15*10**-6;c=3.*10**8;\n",
+ "tp=10**-6;#pulse duration of pulse radar\n",
+ "f=10**3;#operating freq in Hz\n",
+ "#calculations\n",
+ "#Determination of distance of target\n",
+ "R=(c*t)/2;\n",
+ "#The maximum unambiguous range is \n",
+ "Rmax=c/(2*f);\n",
+ "#The minimum unambiguous range is \n",
+ "Rmin=c*tp/2;\n",
+ "#results\n",
+ "print 'The distance of target is',R,'m'\n",
+ "print 'The maximum range is ',Rmax,'m'\n",
+ "print 'The minimum range is ',Rmin,'m'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14 : pg 662"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Doppler shift is 1777.78 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "#page no 662\n",
+ "#prob no. 17.14\n",
+ "#calculate the doppler shift\n",
+ "#given\n",
+ "v=60.;#speed of vehicle moving towards radar in mph\n",
+ "c=3*10**8;#velo of light in m/s\n",
+ "f=10.**10;# operating frequency in Hz\n",
+ "#calculations\n",
+ "# conversion of speed from mph to km/hr\n",
+ "v1=60*1.6;\n",
+ "# conversion of speed from km/hr to m/s\n",
+ "v2=v1*10**3/3600.;\n",
+ "# Now the Doppler shift is found as\n",
+ "fd=2*v2*f/c;\n",
+ "#results\n",
+ "print 'The Doppler shift is ',round(fd,2),'Hz'"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}